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ГИПОТЕЗА ДЬЕДОННЕ И НЕСЮРЪЕКТИВНОСТЬ НАКРЫТИЙ 
АЛГЕБРАИЧЕСКИХ ГРУПП НА /с-ТОЧКАХ

Пусть D/k — некоммутативное тело конечной размерности т' над 
центром к (charA=A2) с нетривиальной инволюцией т. ^ — подпростран­
ство элементов D, симметричных относительно т. S — подгруппа муль­
типликативной группы D’, порожденная ненулевыми симметричными 
элементами. Легко видеть, что S — нормальный делитель D* и изучение 
строения фактор-группы £>*/2 представляет интерес с разных точек 
зрения (см. С-4)).

Предположим, что k^Sr, т. е. инволюция первого рода. Тогда dim 5Т= 
—m(m+i)/2\/m(m—1)/2. Это соответствует случаю симплектических пли 
ортогональных «форм». Если dim Sx=m(m+i)/2, то Z)*=S, ибо если x^D’, 
то из размерностных соображений xS^OS^ (0) (').

В связи с этим Дьедонне в 1952 г. в (‘) высказал гипотезу, что и для 
более существенного случая — dim1)/2 — группа £Г=2, если 
только т>2 (для т=2 очевидно, что 2=А* и Z)*#=S). При этом Дьедонне 
отмечает ((*), стр. 379), что считает эту гипотезу весьма вероятной. Ни­
же будет показано, что эта гипотеза имеет почти абсолютное опроверже­
ние. А именно, по крайней мере для любого конечно-порожденного поля к 
£>*=^2 (очевидно, что D всегда определено над конечно-порожденным 
полем). Метод доказательства, на наш взгляд, довольно неожиданный, 
имеет существенно более общую природу. Сначала обнаруживается, что 
гипотеза Дьедонне является очень частным случаем общей задачи о сюръ­
ективности изогений ^-определенных алгебраических групп на подгруп­
пах А-точек, а затем применяется, по-видимому, впервые, техника локаль­
но-компактных локализаций для произвольных конечно-порожденных 
полей.

Прежде всего заметим, что если Ф — n-мерная (п>2) невырожденная 
эрмитова форма над D положительного индекса, С7(Ф) —унитарная груп­
па, соответствующая Ф, и Ти(Ф) — подгруппа, порожденная трансвек- 
циями, то по теореме Уолла (3) и(Ф)/ТСЦФ)=Е‘/2Е', где £)' —ком­
мутант D*. Следовательно, гипотеза £>’=2-*=^£7(Ф) =ТС/(Ф), т. е. эквива­
лентна тривиальности спинорной нормы (2, 3) для унитарной группы 
?7(Ф). Хорошо известно, что группа V(Ф) является группой /с-рациональ- 
ных точек Gk некоторой Л-формы G обычно ортогональной группы над 
универсальным полем (5). Пусть G — односвязная накрывающая груп­
пы G, определенная над к, т. е. G — спинорная Zc-группа; ср : G-+G — соот­
ветствующая /с-изогения.

Предложение 1. Если cp(Gft)=H=GJj, то £Т¥=2.
Таким образом, гипотеза Дьедонне входит весьма частным случаем в 

следующую общую задачу: пусть /: G-»-G'—/с-изогения связных /с-опре- 
деленных алгебраических групп; когда f(Gk)=£Gh'? Для некоторых спе­
циальных полей эта задача исследовалась в ряде работ (например, для 
конечного поля Ленгом (6), для поля вещественных чисел Борелем и 
Титсом (’)).

В дальнейшем поле к предполагается бесконечным. Что касается ко­
нечного поля к, то в этом случае решение сформулированной задачи 
непосредственно вытекает из (6) в виде следующего утверждения.
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Предложение 2. Если к —конечное поле и f: G->~G' — к-изогения, 
то /(Gfe)=#G/<=>(Ker/)ft#=(l).

Дадим теперь когомологическую интерпретацию. Точной последова­
тельности 0-*Ker/-*G-*Gz->0 обычным образом соответствует точная 
последовательность когомологий Галуа

0->(Ker/)ft-*GA^G/-*^(/c, Кег/)^Я‘(Л, G)-tf‘(*, G').

Тогда /(Ga) =G/-*=>i|‘ инъективно; в частности, если И'(к, Кег/)=0, то 
f(Gk) —Gh.

Будем предполагать, что изогения / мультипликативного типа, 
т. е. Кег/ не содержит неединичных унипотентных элементов. Это усло­
вие всегда выполнено, если char к=0 или G — редуктивная группа.

Основная теорема. Пусть к — конечно-порожденное поле, f: G-+ 
-+G' — нетривиальная к-изогения. Тогда /(Gft) ^G/.

Замечание. В общем случае условие конечно-порожденности к су­
щественно, например, даже для вещественных или р-адических полей ос­
новная теорема не верна.

Пусть к0 — простое подполе в к. Тогда к есть конечное расширение 
подполя рациональных функций ко (х15 х2,..., хг). Следующее утвержде­
ние играет важную роль при доказательстве основной теоремы.

Предложение 3. Пусть А — конечное сепарабельное расшире­
ние поля к. Тогда существует такое неархимедово локально-компактное 
нормирование v поля к, что пополнение к„=>&.

Доказательство. Ограничимся основным случаем, когда к=к0(х,, 
х2,...,хг). Для char А=0 это равносильно рассмотрению общей ситуации, 
а при charW=0 нужно еще дополнительно рассмотреть случай, когда к 
есть чисто несепарабельное расширение поля ко (xh х2,..., хг).

Ввиду сепарабельности к существует примитивный элемент а^А, 
&[а] — А. Если [А : к]—п, то а является корнем неприводимого многочлена 
Цу) =а„уп+ап-,уп~'+ ...+а0^к[у]. При этом можно считать, что ап=1, 
а все ai^k0[xt, х2,..., хг].

Локально-компактные неархимедовы нормирования на к0(а^,...,хт), 
т. е. плотные вложения в локально-компактное поле, определяются сле­
дующим образом. Если k0=Q, то Q вкладывается в поле р-адических чи­
сел обычным образом, а где х", х2,... ,хг° — произвольные Q-
алгебраически независимые элементы Qv (степень трансцендентности Q» 
над Q бесконечна). Полученные нормирования далее продолжаются на 
любое конечное расширение поля ko]xi, х2,...,хг). Если Л —конечное по­
ле, то построения аналогичны, только в качестве базисного рассматрива­
ется стандартное вложение ko(xi') в поле формальных степенных рядов.

Так как дальнейшие рассуждения для char к=0 и char к=£0 совершен­
но аналогичны, то в целях большей выпуклости изложения ограничимся 
случаем char к=0, т. е. ko=Q.

Обозначим через R (j, f) результант f и производной Из сепарабель­
ности / следует, что R(j, f)^0, R(j, /Z)e&o[zi, х2,..., хг]. Если заранее 
выбрать ff=Z[xt, х2,... , хг], то R(f, f]^Z[xi, х2,..., хг]. Существуют та­
кие целые числа z,, z2,..., zr, что 7?(/, /') (zb z2,..., zr)^=0. Тогда много­
член /(z/)(zi, Z!,... ,Zr)=yn+a„_)(z1,..., zr)yn-‘+. . .+а„ будет сепарабель­
ным многочленом с целыми коэффициентами. По теореме плотности Арти- 
на — Чеботарева существует такая бесконечная совокупность ^-адических 
полей Q^{, г=1, 2,..., что/(у)<г,.......Zr> разлагается над кольцами целых
ZVl на линейные множители. Пусть ft (у) (Z1,.... Zr> — многочлен, получен­
ный из /(у)............  редуцированием его коэффициентов по модулю
Тогда /,(y)(z........zr) разлагается на линейные множители над конечным
полем Z/ (р,). Можно считать, что для всех fr результант 7?(/, /') (zf,... 
.. ., zr) является единицей кольца Zjn- Специализируем для каждого 5, по­
строенное ранее вложение т,: <2(zi, х2,..., xr) -+Q, следующим образом:
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где Ti(xj) (mod(pi))==Zj(inod(p()). Тогда многочлен т4(/) (у) = 
={/п+т<(ап_1)г/п_1+... 4-Т((а0) по модулю (р,) совпадает с /,(у)(г,.......
По одному из вариантов теоремы Хензеля (см. (’), стр. 312) т<(/) (у) 
разлагается на линейные множители над полем QVt. Следовательно, 
Д-’-й,1=(?Рг Для всех fc.

Предложение 3 доказано.
Замечание. Условие сепарабельности в предложении 3 существен­

но и не может быть опущено, как показывает пример уже простейшего 
чисто несепарабельного расширения.

Напомним, что алгебраическая /с-группа G обладает свойством слабой 
аппроксимации относительно некоторого нормирования v поля к, если 
Gk=Gkv, где Gk означает замыкание Gk в р-адической топологии. Следующее 
утверждение, в существенном принадлежащее Серру, впервые отмечено 
Хардером (9).

Предложение 4. Пусть Т — к-опр ед еленный алгебраический тор, 
разложимый над локально-компактным пополнением к„. Тогда Т обладает 
свойством слабой аппроксимации относительно v.

Доказательство основной теоремы. Пусть Т' — А-опреде- 
ленный максимальный тор группы G'. Тогда f~l(T')=T — /«-определенный 
максимальный тор в G, разложимый над конечным сепарабельным расши­
рением \/к (см. (i0), гл. 3). Достаточно доказать, что изогения fT: Т-*-Т' 
несюръективна на /«-точках. Согласно предложению 3 существует такое 
локально-компактное неархимедово нормирование v поля к, что &<=кх, 
следовательно, торы ТпТ' разложимы над kv. Из предложения 4 тогда 
вытекает, что Тк=Тк„ Tk'—Tkv'. Так как /г (/«„): Th^Th„' — открытое ото­
бражение, то /т(Тй)=/=7’/^=/т(7,Ао)^7’к/.

Для доказательства последнего неравенства воспользуемся точной по­
следовательностью

0->(Кег/)ч^пДло'->Я‘(^ Кег/)-Я‘(/«0, Т).

По теореме Гильберта 90 Hl(kv, Т)=0; значит, достаточно доказать, 
что Н1(к„, Кег/)=/=0. А это следует из рассмотрения той же последователь­
ности, только /г необходимо заменить на отображение <рт: х-^хт, где т — 
экспонента Кег/; тогда card (Hl(kv, Кег/))>[/«„*: А:/™] (см. (“)). Остается 
заметить, что для локально-компактного неархимедова поля к„ при 
всегда [/с„’:/св*т]>1.

Основная теорема доказана.
Как уже отмечалось ранее, в качестве частного случая основная теоре­

ма содержит следующую теорему, опровергающую гипотезу Дьедонне для 
произвольных конечно-порожденных полей.

Теорема. Если к — конечно-порожденное поле, то
В действительности, следуя общему плану, развитому выше, можно 

дать непосредственное доказательство этой теоремы, не переходя к уни­
тарным группам. Ниже приводится это доказательство, представляющее 
самостоятельный интерес и позволяющее получить о S новую информацию.

Пусть А — сепарабельное максимальное подполе в D. Тогда существу­
ет такое неархимедово локально-компактное нормирование v поля к, что 
А<=/с„ и D®kv=L(jn, к„У Инволюция т продолжается на D^kr. п из общих 
свойств инволюций (см. (12)> гл. 10) следует, что Sxfkv=Sx(kx) =aS~, где 
a^S~, S~ обозначает подпространство в Цт, kv), состоящее из обычных 
кососимметрических матриц. Если x^Sx(k„), то x=as~, det a:=det a dets~= 
= (^/(a)^/(s_1)У, где Pf обозначает пфаффиан (см. (13), гл. 9). Тогда под­
группа Х(/с„) ={5Т (&„)*} обладает свойством: если z/eS(/c„), то detу^к2. 
Так как kv^k2, то 2(/сг)^С/,(771, к„). Используя свойства и-адической то­
пологии можно показать, что Е(/с„) —замкнутая подгруппа в GL(jn, kv). 
Здесь существенно, что £(&„) — нормальный делитель в GL(m, kv); значит, 
SL(т, kv)<=Z(kv), и для всякого a^kv2 найдется yaeS(/c„) с detz/a=a. 
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Если теперь Z)*=S, то замыкание в к-адической топологии Z)*=S. Тогда 
D*=GL(m, к„) =E(7t„), что невозможно. Противоречие. Следовательно, 
£)*=/=£. Теорема доказана.

Предыдущие рассуждения почти доказывают следующее утверждение. 
Предложение 5. Если x^St, то к(х) — немаксималъное подполе 

в D; в частности, если ое£, то редуцированная норма N red (0)=^.
Замечание. Для поля Q(ж) рациональных функций одной перемен­

ной В. И. Янчевский явно построил (не опубликовано) тело D индекса че­
тыре над Q(x) с инволюцией первого рода, в котором Nrea(D)<£(Q(x))2. 
Это, по-видимому, было первым контрпримером к гипотезе Дьедонне.
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