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Рассматриваются диффеоморфизмы q: Q-»-Qo ограниченных областей 
Q эвклидового пространства И\ действующих по формуле

(х, у, г)ей, 9(х, у, z) = (u, v, w)eQ0. (1)

Используется следующая интегральная формулировка свойства ква­
зиконформности, эквивалентная обычному определению (*). Пусть |Q| — 
объем области Q, d=ux2+uy2+uz2+vx2+vy2+v2+wx2+wy2+wz2,

д (и, v. w) d leer------- Г’ = Ля, V,^1 = 777- f ff Qdxdydz. (2) 
d(x,y,z) 3J'3 |Q| JJ/

Если KA[u, v, w]=^K<°°, то отображение (1) называется A-квази­
конформным.

Минимальным значениям К соответствуют экстремальные отображе­
ния. Существование таких отображений в множестве непрерывных ква­
зиконформных отображений доказывалось многими авторами для опреде­
ленных областей. В работе (2) этот вопрос рассматривался для двух кру­
говых торов. Там же можно найти ссылки на работы, где изучались 
отображения шара на шар, двугранного утла на двугранный угол, конуса 
на цилиндр и т. д.

В настоящей работе разыскиваются отображения осесимметричных 
областей, экстремальные в классе гладких отображений, образующих псев­
догруппу Ли G, задаваемую дифференциальными уравнениями

ux=vy, vx——иу, ivx=0, ш„=0.

Общее решение этих уравнений имеет вид t,=u+iv=t,(a, z), a—x+iy, 
w=w(z), где £(a, z) — аналитическая функция комплексного переменно­
го а так, что вместо (1) можно написать q (a, z) = (£, w).

1. Сначала рассмотрим области О «цилиндрического» типа: проекция 
Q на ось z есть интервал 0<z<z0, пересечение Q с каждой плоскостью 
z=const, 0<z<z0, есть непустая односвязная ограниченная плоская об­
ласть Qz с отличной от нуля площадью. Тогда преобразованиями из G об­
ласть Q может быть отображена на цилиндр Qo единичного радиуса и вы­
соты h. При этом в качестве w=w(z) можно взять произвольную гладкую 
возрастающую функцию, лишь бы w (0) =0, w (z0) =h. Если £ (a, z) — ка­
кое-то отображение Qz на | £ | <1, то q (a, г) = (ц(а, z), rn(z)), где

T](a, z)= e“<2)—, P=5+ic, l£l<l, (3)
l-0(z)£(a,z)

есть произвольное отображение £2 на Qo из псевдогруппы G.
Итак, обшее отображение Q на Q» из G зависит от четырех функций 

одного действительного переменного.
Для отыскания экстремального отображения из псевдогруппы G ре­

шается вариационная задача, полученная из (2) подстановкой (3).
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Рассмотрим осесимметричные области с осью z и ограничимся случа­
ем р=0. Тогда функционал F примет вид

Zo
F[a, ш] = JФ(г,а', w']dz, 

О
(4)

Ф (z, а', и/)

о, ф, <р, т — функции переменной z, которые определяются по й, йг и 
функции (a, г).

Краевые условия w (0) =0, w(z0)=/i. Так как экстремальное отображе­
ние определяется с точностью до вращения области вокруг оси z, то мож­
но принять а(0)=0; значение а(г0) остается произвольным. Уравнения 
Эйлера функционала (4) имеют вид

а'——7гф/ф, 2rw'2=Aw's/s+a— 74ф2/ф

(Л — произвольная постоянная) с краевыми условиями

а(0)=0, w (0) =0, w?(z0)=/i.

Теорема. Всякая гладкая осесимметричная область й «цилиндри­
ческого» типа может быть отображена на цилиндр Йо единственным об­
разом (с точностью до вращения) гладким отображением из псевдогруп­
пы G, дающим сильный минимум функционалу (4).

Пример. Экстремальное отображение цилиндра радиуса R и высо­
ты Н на цилиндр радиуса 1 и высоты 1 будет иметь вид

u=x!R, v=y/R, w=z!H.

Минимальное значение константы квазиконформности

а;„1п-=7з[2(я//?)^+(/?/я)‘/’].

2. Далее рассмотрим гладкие области Й типа «шара»: проекция на 
ось z есть интервал —p<z<p, пересечение й с каждой плоскостью г= 
=const, —p<z<p, есть непустая односвязная ограниченная плоская об­
ласть й2 с площадью, стремящейся к нулю при |z | -+р. Преобразованиями 
из псевдогруппы G ее можно отобразить на единичный шар 5. Если 
q (a, z) = (£(a, z), z(z)) есть какое-то отображение Й на S, то ?(<%, z) = 
= (т](а, z), w(z)), где

W' Ua,z)-p(z)
T)(a,z) = e

(l_z2(z))V1 1 — [р (z)£ (а, z) ]/(1—z2(z))

P=&+ic, |p|<(l-z2)7’,

есть произвольное отображение й на S из G; здесь а, р, w — произвольные 
функции, как и в случае цилиндра, с условиями —р) =— 1, w(p)=l. 
Для определения экстремального отображения осесимметричных обла­
стей, ограничиваясь случаем Р=0, будем иметь вариационную задачу, по­
лученную из функционала (2) подстановкой ц=ег“(1—w2)'"S, 
£=£(1—z2)~'/!. Значение функционала не меняется при преобразовании 
z=z/E, а=а!Е, w=w!E, т\=т\/Е. При Е=р получим исходную вариацион­
ную задачу с р=1. Уравнение Эйлера для функции a(z) будет точно та­
ким же, как в случае области типа «цилиндра», а для функции w(z) име­
ет вид

w’ al(i—w2)3+blw(i—w2)2w'+cl(l—w2)w'2 +d.ww’3 

а2(1—w2)2+b2w{l—w2)w'+c2w' 2 
(5)
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с краевыми условиями ш(—1)=—1, и>(1)=1, где щ, bh ct, dh a2, b2, c2— 
функции переменных z, w, которые определяются no й, йг и функции

Если исходная область была единичным шаром, то решением зада­
чи (5) будет w=z. Рассмотрим области Й, близкие к шару. Обозначим 
(х2+у2)‘1г=г. Пусть уравнение г=(1—z2)v,(l—^(z)) задает область Й 
(l(—1)(1) =0» 7(z) мало вместе с производными). Будем искать при­
ближенное решение задачи (5) в виде zp(z)=z+6(z). Потребуем, чтобы 
6(z) удовлетворяла линеаризованному уравнению, которое получится из 
(5), если в качестве начального отображения взять z=z, £=а/(1+,у). Это 
приводит к задаче

L6(z)=/7i(z), б(—1)=б(1)=0, (6)
2(4—5z2)

Lb = (8—5z2) б —10z6' + —---- г— б,
1—z2

т (z) =—3z (1 —z2) у " +4 (5z2—2) ’у/+24г’ц

оператор L самосопряженный.
Сопряженная однородная задача (3) имеет вид (6) с м(зН0. Для ее 

анализа делаем замену 7=1—z2, у (7) =б (z). В результате получим

у(о)=о.

5 1

12 7+3/5

В окрестности 7=0 из двух фундаментальных решений можно выбрать 
только одно, удовлетворяющее краевому условию. Оно имеет вид у<0>(7) =

=t Г ckth. Отсюда легко видеть, что решение сопряженной однородной за- 
Л=0

дачи четно. Аналитически продолжим у(0)(7) в окрестность 7=1. В силу 

четности решение там будет иметь вид у(1>(7) = 2 йй(1—7)\ Таким обра-
Л=0

зом, существует одно регулярное четное решение сопряженной задачи. 
Обозначим его у (7). Можно проверить, что необходимым и достаточным 
условием разрешимости задачи (6) будет

1
J со (z)m(z)dz = 0, (8)

где со (z) =у (1—z2).
Пусть при выполнении (8) 60(z) будет частным решением задачи (6). 

Тогда общее решение имеет вид 6(z)=60(z)+Cy(l—z2), где С — произ­
вольная постоянная.

Заметим, что для симметричных относительно плоскости z=0 обла­
стей условие (8) выполнено тождественно. Действительно, тогда функ­
ция y(z) будет четной, a m(z) — нечетной. Для областей с функцией y(z), 
не являющейся четной, может случиться, что (8) не выполняется, тогда 
задача (6) не разрешима.
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