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Relativistic two-particle Sturm-Liouville problems for p-states:
exact and numerical solutions in the momentum representation

V.N. KAPsHAI, S.I. FIALKA

PensTUBHCTCKUE CBA3aHHBIC COCTOSHHUS ABYXYACTHYHBIX CHCTEM ¢ opOutansHbiM MomenToM | =1 (p-
COCTOSIHHUS) UCCIIEAYIOTCS B CIIELIMAJILHOM CJIydae OoIlepaTopa B3auMOJEHCTBUS, KOTOPHIN JOMyCcKaeT 2K-
BUBAJICHTHYIO HHTEIPaJbHOMY ypaBHEHHUIO (hopMyIUpoBKY B Buze 3anad Lltypma-JInysuiis Henocpen-
CTBEHHO B UMITYJIbCHOM IpeACTaBIeHUN. YHUCIEHHO HalIeH BUJ yCIOBUI KBAHTOBAHUS ISl P-COCTOSHHUM
u pemenuit 3agaq Lltypma-JlnyBusuis, a Takke BUI BOJHOBHIX (QyHKUMH. B mpenensHoM citydae Hyle-
BOIl Macchl CBSI3aHHOTO COCTOSIHUSI YUCJICHHBIE PEIICHUS CPaBHUBAIOTCS C TOYHBIMU aHAIUTHUYECKHUMH,
KOTOpBIE TAK)KE Hal/ICHbI.

KnaioueBble cioBa: pelsTUBUCTCKAas IBYXYAaCTHYHAs CHCTEMA, CBA3aHHOE COCTOSHHE, HWHTETPalbHOE
ypaBHEHHeE, MapIuaIbHOE pasiokeHue, 3agada ltypma-JInyBums.

Relativistic two-particle system bound states with orbital momentum | =1 (p-states) are being investi-
gated in a special case of the interaction operator, which allows the formulation in the form of Sturm-
Liouville problems, equivalent to the integral equation, directly in the momentum representation. The
quantization conditions for p-states, solutions of the Sturm-Liouville problems, and behaviors of the wave
functions are found numerically. In the limiting case of the zero bound state mass the numerical solutions
are compared with exact analytical ones, which are also found.

Keywords: relativistic two-particle system, bound state, integral equation, partial decomposition, Sturm-
Liouville problem.

Introduction

Description of relativistic two-particle bound states can be realized with the help of the dy-
namic equations of local quantum field theory, commonly used examples of which include quasipo-
tential equations by Logunov-Tavkhelidze [1] and Kadyshevsky [2]. It is important to note that qua-
sipotential equations in the momentum representation can be reduced to one-dimensional integral
equations for the majority of quasipotentials used in applications, where quasipotentials have the
property of spherical symmetry in the relativistic configuration representation [3], [4]. The kernels of
three-dimensional dynamic equations (quasipotentials), which are local in the Lobachevski momen-
tum space [3], are relativistic generalizations of the nonrelativistic quantum-mechanical potentials
recorded in the momentum representation. This allows for the use of conventional non-relativistic
quantum mechanical considerations in the construction of quasipotential interactions and the investi-
gation of two-particle systems with such interactions [4]. One method for solving integral quasipo-
tential equations is based on reducing these equations to differential ones in the rapidity space [5].

Partial decomposition of integral quasipotential equations
Consider the integral quasipotential equations for the bound states of a system of two rela-
tivistic spinless particles of mass m each [5]

GaY (B, Ew;(P) = [ V(E, p.K)w; (k) m &

- 1
E, 1)
where y;(p) are the relative motion wave functions, p and k are the initial and final relative

momenta of the particles in the center-of-mass system, E, =-/p?+m?* and E, =+/k®+m? are
the initial and final energies of the particles respectively, 2E is the two-particle system energy,
GO“lj are the inverse Green functions of the Logunov-Tavkhelidze (j=1) and Kadyshevsky
( Jj =2) equations and of their modified versions (j=3, j=4):
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Goi(E,E,)=E?-EZ; Gos(E,Ep) =E,(E—E,); @
Gos(E,E,)=m(E*—E;)/E,; Ggi(E,E,)=m(E-E,).
If one makes the partial decomposition of a local in the Lobachevski momentum space quasipoten-
tial  V(E,Dp, IZ) =V (E, ﬁ(—)E) and chooses the wave function in the form of
wi(P) =w;(P)Y“(N,), then the three dimensional equation (1), after applying the addition theo-

rem for Legendre polynomials and spherical harmonics reduction, will be reduced to the one-
dimensional equation

HEEW ()= mJV.<Epk)w,.(k)k2d" ©)
k

where

Vi (E, p.K) = 2I+1

IV(E p,k,cos &y )P (cos by )sindy, db . 4)

As an example of relat|V|st|c potential V (E, p,k), consider a generalization [5] of the non-
relativistic quantum mechanical potential V (p,k) = -1 (47;‘ p- E\)ﬁl, namely:

V(BK) =V (pOR) == A LA m . ©)

i ATPOK 4 e g k)
Using the explicit form of potential (5) in the partial potential definition (4), introducing the notations
a=E,E —pk, B=E,E +pk, and making the substitution y = E,E, — pkcos &, , one obtains

21+1Am 1 % ta—2 1
a N Ay —m
Then, substituting the partial potentials (6) into equation (3), one obtains
- o dk
G (E.Ep)pyi(p) =—ﬂmZIV.(p,k)kwj,.(k)?, )
0 k
where
7 4z pk L+a—-2y 1
Vi(p k) == TV (p,k) = IP.[ j dy . )
21 +1 Am 2 ° L—a \/y2_7m4

Let us introduce the parameterizations E=mcosw, p=msinhy,, k=msinhy,, where
wel0;z/2]; and y,, x are rapidities, and let us also denote pw;,(p)=¢;,(x,) and

\7, (p.K) =1 (xp: xc)- Then itis clear that o =mcosh(y, — xc), B =mcosh(y, + ) and partial
quasipotential equations (7) take the form

Gy (mcosw, mcosh 1) ¢ () ==Am* [1, (xp. 21 ) 851 (i) A 9)
0

In order to find the kernels of integral equations explicitly (9), it is necessary to carry out the calcu-
lation of values (8).

Partial equations for the p-states
Further in this paper we consider the case | =1 (p-states), for which formula (8) takes the
form

1 J-ﬁ+a 2ydy (10)

Zﬂ— \Jy? —m*

1(Zp Xk) =
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Implementing the integration in (10) one obtains:
Lo p) = {Coth;(k (;(p Coth;(p —1), Xk = Xpi
1ap COth)(p()(k coth g, —1), Xk < Xp-
It is clear from (11) that the quantity 1,(x,, x) can be interpreted as the Green function of

a homogeneous boundary value problem. Therefore, using the derivations of equations (9) with the
kernel (11) with respect to the parameter y, one can see that the functions

(11)

Fii(xp)= G&lj (mcosw, mcosh x,)#; 1 (%) are solutions of boundary value problems containing
differential equations, which are similar to the Schrodinger equation (with zero energy):

Fj',’l()() - W Fj,l()() _/lmZGo,j (mcosw, mcosh Z)Fj,l()() =0, (12)
where, for all j, the boundary conditions take the form
F;.1(0)=0; F1(:0) =0. (13)

At first consider the Sturm-Liouville problems (12), (13) at w= /2, where E =0, and dif-
ferential equations (12) at j=1and j=2 take the form
Fl21 () —2sinh?y Fy 55 () + Acosh ™ Fy 51 (1) =0. (14)
Taking into account boundary conditions (13) at point y =0, solution of equations (14) yields the
functions F,, () inthe form of the hypergeometric series [6]:

Fioq(x) = A stanh?y 2Fl(l— s: 2+ S: 52; tanhz;(j, (15)

where the notation A =2s(2s+1) is introduced.

Then from the boundary conditions at infinity one gets
s=n+1, A=2n+2)(2n+3), n=012.... (16)
Thus, (15) and (16) are the exact analytical solutions of problems (12), (13) in the limiting case
when the mass of the bound state 2E is equal to zero.
At other values of the bound state mass we find solutions to problems (12), (13) numerical-
ly. Values of the coupling constant A can be obtained from the integral equations (9). If one uses

the above introduced notation for F;;(x,), and the notation f =—271, then equation (9) can be
written as

mz_[|1(Zp1Zk)Go,j(mCOSW,mCOSth)Fj,l(lk)d}(k =fF.(xp)- (7)
0

After choosing a sufficiently large but finite upper limit of integration let us divide the integration
domain into elementary segments ["™: »' =ih]. Then, replacing the integrals with the composite
trapezoidal quadrature formula and introducing the notation

le =ih; Fji,lej,l(Z:o); F,—‘?1=Fj,1(zf);
T"9 = coth 7, (2 coth 77 —1); B"% =coth x¢(, coth 7, -1);
K§ (mcosw) =Gy ;(mcosw,mcosh z,'),
one obtains a matrix eigenvalue problem MF; , = fF; ;, or in the index form:
Mi Fil=fF, (18)
where

(19)

{mthi'qK?(mcosw), q>i;
ig =

m?hB" 9K {(mcosw), q<i.
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Eigenvalues of matrix (19) were found with the help of the computer algebra system Math-
ematica [7]. The resulting solutions to problem (18), namely the quantities 4 =—f ~*, were verified
using the Richardson extrapolation [8]. Then, after solving differential equations (12) in the Math-
ematica package, the eigenfunctions F; ;(y) were determined.

As in the case | =0 [9], values of the coupling constant A obtained numerically, have up to

eight correct significant digits. The maximum absolute error of the numerical solution of differential
equations with j =1,2 at w= /2, for which there exists an analytical solution, is on the order of
107 It should be noted that the values of the constant A for j=3 and j=4, aswell as for j=1
and j=2, coincide at w= /2. Also, the values of the constant A for j=1 and j =2, obtained
numerically, coincide with the exact values (16).

Figures 1-4 illustrate the dependence of the coupling constant A, as well as of F(y) and
w(p), on parameter w e (0;z/2], for j = 1:4.
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Figure 1 — The dependence of the coupling constant A on parameter w for the ground (a)
and the first excited (b) states
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Figure 2 — Solutions of the Sturm-Liouville problems F(y) (a; c),

and of the integral equations y(p) (b; d) for the ground state at j = 1-4
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Figure 3 — Solutions of the Sturm-Liouville problems F(y) (a; c),
and of the integral equations y(p) (b; d) for the first excited state at j = 1-4
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Figure 4 — Solutions of the Sturm-Liouville problems F(y) (a; c),
and of the integral equations y(p) (b; d) for the second excited state at j = 1-4
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Dependence of the coupling constant A on parameter w and corresponding solutions of the
Sturm-Liouville problems and integral equations have also been determined in our calculations for
larger values of the principal quantum number (up to n=5). These solutions are not represented
here due to the limited volume of this article.

It has to be noted that for all four types of quasipotential equations the found functions
F () and wave functions y(p) have the number of zeros (except zero at y =0), coinciding with

the principal quantum number n.

Conclusion
In this paper the three dimensional integral quasipotential equations are reduced to one-
dimensional equations in the case of the orbital angular momentum |=1 for the potential

V(p,K)=-4 (4= ‘an‘)‘l, which is a relativistic generalization of the nonrelativistic quantum me-

chanical potential V(p,k) =—/1(47z\p—ﬂ)_1. It is shown that one-dimensional integral equations

are equivalent to Sturm-Liouville problems in the momentum or rapidity space. Numerical solutions
of the quasipotential equations considered are obtained for the cases of zero and non-zero mass of
bound states. In the strong coupling limit of 2E =0, exact analytical solutions of the discussed
Sturm-Liouville problems are also found. Correspondence between numerical and exact solutions in
this limiting case is verified.
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