### УДК 621.396.67

# Электродинамический анализ двумерно-периодических решеток из проволочных структур

#### В.П. Кудин

Предложен метод расчета бесконечных плоских фазированных антенных решеток и частотноселективных поверхностей, состоящих из проволочных структур. Каждая структура содержит прямолинейные элементы, произвольным образом ориентированные в пространстве. Ключевые слова: двумерно-периодические структуры, интегральные уравнения, проволочные антенны, функции Грина, численные методы.

A method for the calculation of the infinite planar phased arrays and frequency-selective surfaces consisting of wire structures is proposed in the article. Each structure is composed of arbitrary oriented linear wire elements.

**Keywords**: two-dimensional periodic structures, integral equations, wire antennas, Green functions, numerical methods.

#### Введение

Анализ многоэлементных фазированных антенных решеток (ФАР) и частотноселективных поверхностей в большинстве случаев проводится на модели бесконечной решетки. Если элементы бесконечной решетки возбуждаются равноамплитудно с прогрессивным фазовым набегом (режим ФАР), то такому условию подчиняются и поля решетки, в частности, токи на излучателях (теорема Флоке [1]). Таким образом, достаточно определить распределение токов или полей на одном излучателе. Следовательно, по своей размерности задачи о бесконечной ФАР и единичном излучателе эквивалентны. Математически различие заключается лишь в используемой функции Грина. В случае двумерно-периодической решетки функция Грина представляет собой пространственный двумерный ряд, который сходится довольно медленно. Применение преобразования Пуассона приводит к широко используемому двумерному спектральному ряду, сходимость которого также достаточно медленная и сопоставима со сходимостью пространственного ряда. В литературе известны различные способы ускорения сходимости: метод Эвальда [2], методы, основанные на преобразовании Шанкса [3]–[5] и Куммера [6], [7]. Известны и более сложные схемы [8].

Вместе с тем необходимо отметить, что конечной целью является решение граничной задачи электродинамики, которая формулируется в общем случае в виде набора интегродифференциальных уравнений относительно полей или токов на излучателе. Применительно к проволочным излучателям следует говорить о решении интегральных уравнений типа Поклингтона [9] или Мэя [10] относительно осевого тока на проводниках. В указанных уравнениях присутствуют линейные интегральные операторы, содержащие первую и вторую производные от функции Грина. Применение метода моментов для решения этих уравнений приводит к тому, что матричные элементы выражаются в виде двойных интегралов, которые должны быть найдены численно, и ввиду их большого количества данная процедура требует серьезных вычислительных затрат. Эти обстоятельства фактически сводят на нет преимущества, полученные от ускорения сходимости рядов для функции Грина, и на практике приводят к невозможности решить задачу для излучателей, отличающихся от простейших.

В данной работе на основе Фурье-представления функции Грина получены аналитические представления для элементов матрицы взаимных импедансов, что позволяет существенно сократить вычислительные затраты при последующем их расчете.

#### Функция Грина бесконечной плоской ФАР

Рассматривается бесконечная плоская решетка проволочных структур произвольной формы, расположенных в узлах косоугольной сетки (рисунок 1).



Рисунок 1 – Косоугольная сетка размещения излучателей

Сетка определяется векторами  $\mathbf{d}_1$  и  $\mathbf{d}_2$ , которые для определенности будем считать параллельными плоскости 0xy.

Функция Грина бесконечной ФАР есть

$$G^{\infty}(\mathbf{r}-\mathbf{r}') = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} G(\mathbf{r}-\mathbf{r}'-\mathbf{r}_{mn}) \exp(-im\psi_1 - in\psi_2), \qquad (1.1)$$

где функция Грина одиночного излучателя в свободном пространстве выражается формулой

$$G(\mathbf{r} - \mathbf{r}') = \frac{\exp(-ik|\mathbf{r} - \mathbf{r}'|)}{4\pi|\mathbf{r} - \mathbf{r}'|}, \qquad (1.2)$$

а  $\psi_1$  и  $\psi_2$  являются разностями фаз между комплексными амплитудами возбуждения соседних элементов вдоль соответствующих осей, вектор  $\mathbf{r}_{mn} = m\mathbf{d}_1 + n\mathbf{d}_2$  определяет узлы косоугольной сетки, k – волновое число.

Получим выражение для функции Грина плоской решетки в требуемой форме. Для этого функцию Грина (1.2) в соответствии с [11] представим в спектральном виде

$$G(\mathbf{r} - \mathbf{r}') = \frac{1}{(2\pi)^3} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\kappa^2 - k^2} \exp\left[-i\kappa(\mathbf{r} - \mathbf{r}')\right] d\kappa_1 d\kappa_2 d\kappa_3.$$
(1.3)

$$G^{\infty}(\mathbf{r}-\mathbf{r}') = \frac{1}{2\pi A} \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\mathbf{\kappa}_{pq}^{2} - k^{2}} \exp\left[-i\mathbf{\kappa}_{pq}(\mathbf{r}-\mathbf{r}')\right] d\mathbf{\kappa}_{3}, \qquad (1.4)$$

где

$$\mathbf{\kappa}_{pq} = \mathbf{\kappa}_{pq}^{\perp} + \mathbf{Z}\mathbf{\kappa}_{3}, \quad \mathbf{\kappa}_{pq}^{\perp} = (p + p_{0})\mathbf{\kappa}_{1} + (q + q_{0})\mathbf{\kappa}_{2},$$

 $A = \mathbf{z}[\mathbf{d}_1, \mathbf{d}_2]$  – площадь единичной ячейки,  $\mathbf{z}$  – орт вдоль соответствующей оси, а вектор  $\mathbf{\kappa}_{pq}^{\perp}$ является проекцией пространственного волнового вектора  $\mathbf{\kappa}_{pq}$  порядка pq на плоскость решетки. Векторы  $\mathbf{\kappa}_1 = 2\pi [\mathbf{d}_2, \mathbf{z}]/A$  и  $\mathbf{\kappa}_2 = 2\pi [\mathbf{z}, \mathbf{d}_1]/A$  образуют базис на плоскости волновых чисел. Величины  $p_0 = \psi_1/2\pi = \mathbf{k}\mathbf{d}_1/2\pi$  и  $q_0 = \psi_2/2\pi = \mathbf{k}\mathbf{d}_2/2\pi$  суть межэлементные нормированные фазовые сдвиги вдоль соответствующих осей, волновой вектор  $\mathbf{k} = k(\sin\theta_0\cos\varphi_0 \quad \sin\theta_0\sin\varphi_0 \quad \cos\theta_0)^T$ , где углы ( $\theta_0, \varphi_0$ ) определяют направление фазирования в сферической системе координат.

Обычно вместо (1.3) используется следующее выражение для функции Грина [11]:

$$G(\mathbf{r} - \mathbf{r}') = \frac{1}{8\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\exp\left[-i\kappa_1(x - x') - i\kappa_2(y - y') - \gamma|z - z'|\right]}{\gamma} d\kappa_1 d\kappa_2, \qquad (1.5)$$

которое получается из (1.3), если по одной из переменных провести интегрирование. На основе (1.5) получается широко известное выражение для функции Грина плоской бесконечной решетки

$$G^{\infty}(\mathbf{r} - \mathbf{r}') = \frac{1}{2A} \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \frac{\exp\left[-i\mathbf{\kappa}_{pq}^{\perp}(\mathbf{r} - \mathbf{r}') - \gamma_{pq}|z - z'|\right]}{\gamma_{pq}}.$$
(1.6)

В приведенных формулах  $\gamma = \sqrt{\kappa_1^2 + \kappa_2^2 - k^2}$  и  $\gamma_{pq} = \sqrt{(\kappa_{pq}^\perp)^2 - k^2}$ .

Выражение (1.6) содержит модуль разности координат, что, как уже упоминалось, приводит к трудностям нахождения полей и последующего вычисления матричных элементов.

#### Сведение задачи к системе линейных алгебраических уравнений

Полученные выше соотношения являются совершенно общими, и в них никак не конкретизирована геометрия излучателя.

В качестве элемента решетки рассмотрим проволочную систему, состоящую из набора тонких криволинейных проводников. В соответствии с моделью осевого тока будем полагать, что электрическое поле создается линейным током I(s') = s'(s')I(s'), сосредоточенным на оси проводника, где s' – криволинейная координата, s'(s') – единичный вектор, касательный к линии тока.

Электрическое поле, порожденное таким током, выражается формулой [11]

$$\mathbf{E}^{\infty}(\mathbf{r}) = \frac{W}{ik} \left(k^2 + \text{grad div}\right) \mathbf{A}^{\infty}(\mathbf{r}), \qquad (1.7)$$

где  $\mathbf{A}^{\infty}(\mathbf{r}) = \int \mathbf{s}'(s') I(s') G^{\infty}[\mathbf{r} - \mathbf{r}'(s')] ds'$  – векторный потенциал, а  $W = \sqrt{\mu_0/\varepsilon_0}$  – волновое сопротивление свободного пространства. В данном случае векторная функция  $\mathbf{r}'(s')$  определяет осевую линию проводника.

Проецируя поле (1.7) на единичный вектор s(s), касательный боковой поверхности проводника, подставляя выражение для векторного потенциала, внося дифференциальный оператор под знак интеграла и учитывая, что функция Грина зависит от разности векторов, после несложных преобразований получим

$$\mathbf{E}^{\infty}(s)\mathbf{s}(s) = \frac{W}{ik} \int_{L'} \left[ k^2 \mathbf{s}(s)\mathbf{s}'(s')G^{\infty}(s,s') - \frac{\partial^2}{\partial s \partial s'}G^{\infty}(s,s') \right] I(s')ds'$$

Здесь обозначено  $G^{\infty}(s,s') = G^{\infty}[\mathbf{r}(s) - \mathbf{r}'(s')]$ , а векторная функция  $\mathbf{r}(s)$  описывает боковую поверхность проводника.

Согласно граничному условию в модели осевого тока продольная касательная полного поля на боковой поверхности проводника равна нулю. Таким образом, имеем интегральное уравнение для тока I(s'):

$$\frac{iW}{k} \int_{L'} \left[ k^2 \mathbf{s}(s) \mathbf{s}'(s') G^{\infty}(s,s') - \frac{\partial^2}{\partial s \partial s'} G^{\infty}(s,s') \right] I(s') ds' = \mathbf{E}^{\mathrm{max}}(s) \mathbf{s}(s) , \qquad (1.8)$$

где  $\mathbf{E}^{\text{пад}}(s)$  – падающее поле (поле сторонних источников) на боковой поверхности проводника. Для нахождения распределения тока I(s') применим метод моментов [12]. Следуя

стандартной процедуре, разложим искомый ток по системе базисных функций { $\varphi_n(s')$ ,  $n \in 1$ , 2, ..., N}:

$$I(s') = \sum_{n=1}^{N} I_n \varphi_n(s').$$
(1.9)

Подставляя (1.9) в (1.8) и проецируя последнее уравнение на систему весовых функций  $\{\psi_m(s'), m \in [1, 2, ..., N]$ , получим систему линейных алгебраических уравнений

$$\sum_{n=1}^{N} Z_{mn} I_n = V_m , \quad m = 1, 2, \dots, N.$$

Здесь матричные элементы  $Z_{mn}$  имеют смысл взаимного импеданса между двумя линейными токами с распределениями  $\varphi_n(s')$  и  $\psi_m(s)$ . Для них имеет место формула В.П. Кудин

$$Z_{mn} = \frac{iW}{k} \iint_{L'L} \left[ k^2 \mathbf{s}(s) \mathbf{s}'(s') G^{\infty}(s,s') - \frac{\partial^2}{\partial s \partial s'} G^{\infty}(s,s') \right] \psi_m(s) \varphi_n(s') ds ds'.$$
(1.10)

Элементы столбца правой части вычисляются по формуле

$$V_m = \int_{L} \mathbf{E}^{\text{max}}(s) \mathbf{s}(s) \psi_m(s) ds , \quad m = 1, 2, \dots, N.$$

Примем, что базисные и весовые функции на концах проводников, а в случае использования базиса подобластей и на концах сегментов, обращаются в ноль. Тогда, преобразуя интеграл от второго слагаемого в (1.10) интегрированием по частям, получим

$$Z_{mn} = \frac{iW}{k} \iint_{L'L} \left[ k^2 \mathbf{s}(s) \mathbf{s}'(s') \psi_m(s) \varphi_n(s') - \frac{d\psi_m(s)}{ds} \frac{d\varphi_n(s')}{ds'} \right] G^{\infty}(s,s') ds ds'.$$

Подставив в эту формулу выражение (1.4) для функции Грина, окончательно будем иметь

$$Z_{mn}^{\infty} = \frac{iW}{k} \frac{1}{2\pi A} \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\kappa_{pq}^2 - k^2} \widetilde{Z}_{mn}(\kappa_{pq}) d\kappa_3 , \qquad (1.11)$$

причем

$$\widetilde{Z}_{mn}(\mathbf{\kappa}_{pq}) = k^{2} \int_{L} \mathbf{s}_{m}(s) \psi_{m}(s) \exp[-i\mathbf{\kappa}_{pq}\mathbf{r}(s)] ds \int_{L'} \mathbf{s}_{n}(s') \varphi_{n}(s') \exp[i\mathbf{\kappa}_{pq}\mathbf{r}'(s')] ds' - \int_{L} \frac{d\psi_{m}(s)}{ds} \exp[-i\mathbf{\kappa}_{pq}\mathbf{r}(s)] ds \int_{L'} \frac{d\varphi_{n}(s')}{ds'} \exp[i\mathbf{\kappa}_{pq}\mathbf{r}'(s')] ds'.$$
(1.12)

#### Вычисление элементов матрицы взаимных импедансов

В дальнейшем рассмотрим проволочные структуры, состоящие из прямолинейных отрезков (сегментов). В этом случае области определения базисных и весовых функций включают несколько сегментов, и интегралы в (1.12) распадаются на сумму интегралов по этим сегментам. В каждом интеграле единичные векторы  $\mathbf{s}(s)$  и  $\mathbf{s}'(s')$  не зависят от переменной интегрирования и могут быть вынесены за знак интеграла.

Теперь о выборе базисных и весовых функций.

Для структур, содержащих разветвления, был предложен базис [13], автоматически удовлетворяющий условию Кирхгофа в узле (равенству нулю полного тока). В узле вводятся векторные функции, состоящие из двух ветвей, расположенных на разных проводниках, сходящихся к данному узлу. Если в узле сходится *M* проводников, то достаточно ввести (*M*-1) подобных функций. В [13] описан универсальный алгоритм с использованием введенных функций для анализа произвольных проволочных структур. Поскольку, как отмечалось ранее, задачи об одиночной структуре и в бесконечной решетке отличаются лишь используемой функцией Грина, то алгоритм [13] полностью применим и к анализу плоских ФАР. Для этого достаточно использовать выражение (1.11) для нахождения матричных элементов.

Легко видеть, что для базисных и весовых функций полиномиального или тригонометрического вида (наиболее употребительных на практике) интегралы в (1.12) вычисляются аналитически. Более того, оказывается, что в этом случае интеграл в (1.11) также вычисляется аналитически. Это означает, что матричные элементы фактически представляются в виде характерных для спектрального подхода двойных рядов, состоящих из замкнутых аналитических выражений.

Ниже описанная процедура будет проведена для часто используемых кусочносинусоидальных базисных и весовых функций.

Поскольку каждая кусочно-синусоидальная функция состоит из двух синусоидальных полугармоник вида

$$\phi_j(s) = \frac{\sin k(\Delta_j - s)}{\sin k\Delta_j}, \quad j = 1, 2, \quad 0 \le s \le \Delta_j,$$

где  $\Delta_j$  есть длина соответствующего сегмента, то (1.12) и, следовательно, (1.11) являются комбинацией четырех слагаемых.

Для каждого слагаемого в (1.12) после несложных, но громоздких вычислений и преобразований получим

$$\widetilde{Z}_{12}(\mathbf{\kappa}_{pq}) = -\frac{k^2 \exp[i\mathbf{\kappa}_{pq}(\mathbf{r}_2^{\text{cp}} - \mathbf{r}_1^{\text{cp}})]}{\sin k\Delta_1 \sin k\Delta_2} \times \{(1 + \mathbf{s}_1 \mathbf{s}_2) \left[ e^+ S_1^+ S_2^- + (e^+)^* S_1^- S_2^+ \right] + (1 - \mathbf{s}_1 \mathbf{s}_2) \left[ e^- S_1^+ S_2^+ + (e^-)^* S_1^- S_2^- \right] \},\$$

где введены обозначения

$$e^{\pm} = \exp\left(ik\frac{\Delta_1 \pm \Delta_2}{2}\right), \quad S_j^{\pm} = \frac{\sin(k \pm \kappa_{pq}\mathbf{s}_j)\frac{\Delta_j}{2}}{k \pm \kappa_{pq}\mathbf{s}_j}$$

а вектор  $\mathbf{r}_{j}^{cp}$  есть середина ветви, на которой расположено плечо синусоидальной гармоники. Индексы 1 и 2 относятся к весовой и базисной функциям соответственно.

Аналогично матричные элементы будут состоять из слагаемых вида

$$Z_{12}^{\infty} = -i\frac{15}{k^2 A} \frac{k\Delta_1}{\sin k\Delta_1} \frac{k\Delta_2}{\sin k\Delta_2} \sum_{p=-\infty}^{\infty} \sum_{q=-\infty}^{\infty} \exp[i\kappa_{pq}^{\perp}(\mathbf{r}_2^{\rm cp} - \mathbf{r}_1^{\rm cp})_{\perp}] \times \\ \times \left\{ (1 + \mathbf{s}_1 \mathbf{s}_2) \left[ e^+ \widetilde{I}_1 + (e^+)^* \widetilde{I}_2 \right] + (1 - \mathbf{s}_1 \mathbf{s}_2) \left[ e^- \widetilde{I}_3 + (e^-)^* \widetilde{I}_4 \right] \right\}.$$
(1.13)

۸

В данной формуле

$$I_{1} = I(a,b,c_{1},t_{1}^{+},c_{2},t_{2}^{-}), \quad I_{2} = I(a,b,c_{1},t_{1}^{-},c_{2},t_{2}^{+}),$$
  

$$\widetilde{I}_{3} = I(a,b,c_{1},t_{1}^{+},c_{2},t_{2}^{+}), \quad \widetilde{I}_{4} = I(a,b,c_{1},t_{1}^{-},c_{2},t_{2}^{-}),$$
  

$$a = k \left[ \left( r_{2}^{cp} \right)_{z} - \left( r_{1}^{cp} \right)_{z} \right], \quad b = \frac{\gamma_{pq}}{k}, \quad c_{j} = \frac{k\Delta_{j}}{2} \left( s_{j} \right)_{z}, \quad t_{j}^{\pm} = (\mp k - \kappa_{pq}^{\perp} \mathbf{s}_{j}^{\perp}) \frac{\Delta_{j}}{2}, \quad j = 1, 2,$$

а функция  $I(a,b,c_1,t_1,c_2,t_2)$  есть

$$I(a,b,c_1,t_1,c_2,t_2) = \int_{-\infty}^{\infty} \frac{\exp(iat)}{t^2 + b^2} \frac{\sin(c_1t - t_1)}{c_1t - t_1} \frac{\sin(c_2t - t_2)}{c_2t - t_2} dt$$

Данный интеграл может быть вычислен в замкнутом виде. Для этого, используя представление синусоидальной функции через две показательные, запишем его в виде суммы четырех слагаемых  $I = I_1 + I_2 - I_3 - I_4$ , где

$$I_{1} = \bar{I}(a - c_{1} + c_{2}, t_{2} - t_{1}, b, c_{1}, t_{1}, c_{2}, t_{2}), \quad I_{2} = \bar{I}(a + c_{1} - c_{2}, t_{1} - t_{2}, b, c_{1}, t_{1}, c_{2}, t_{2}),$$
  
$$I_{3} = \bar{I}(a + c_{1} + c_{2}, t_{1} + t_{2}, b, c_{1}, t_{1}, c_{2}, t_{2}), \quad I_{4} = \bar{I}(a - c_{1} - c_{2}, -t_{1} - t_{2}, b, c_{1}, t_{1}, c_{2}, t_{2}),$$

а введенная функция есть

$$\bar{I}(\bar{c},\bar{t},b,c_1,t_1,c_2,t_2) = \frac{\exp(-i\bar{t})}{4} \int_{-\infty}^{\infty} \frac{\exp(i\bar{c}t)}{(t^2+b^2)(c_1t-t_1)(c_2t-t_2)} dt$$

Последний интеграл вычисляется с помощью теории вычетов. После всех преобразований окончательно получим для  $\bar{c} \ge 0$  и  $\bar{c} \le 0$  соответственно

$$\begin{split} \bar{I}(\bar{c},\bar{t},b,c_{1},t_{1},c_{2},t_{2}) &= \frac{\pi}{4}\exp(-i\bar{t}) \Biggl\{ \frac{\exp(-b\bar{c})}{b(t_{1}-ibc_{1})(t_{2}-ibc_{2})} - \\ &- \frac{2i}{c_{1}t_{2}-c_{2}t_{1}} \Biggl[ \frac{\exp\left(i\bar{c}\frac{t_{1}}{c_{1}}\right)}{\left(\frac{t_{1}}{c_{1}}\right)^{2}+b^{2}} \theta \Biggl( -\frac{t_{1}}{c_{1}} \Biggr) - \frac{\exp\left(i\bar{c}\frac{t_{2}}{c_{2}}\right)}{\left(\frac{t_{2}}{c_{2}}\right)^{2}+b^{2}} \theta \Biggl( -\frac{t_{2}}{c_{2}} \Biggr) \Biggr] \Biggr\}, \\ \bar{I}(\bar{c},\bar{t},b,c_{1},t_{1},c_{2},t_{2}) &= \frac{\pi}{4}\exp(-i\bar{t}) \Biggl\{ \frac{\exp(b\bar{c})}{b(t_{1}+ibc_{1})(t_{2}+ibc_{2})} + \\ \end{split}$$

$$+\frac{2i}{c_1t_2-c_2t_1}\left|\frac{\exp\left(i\overline{c}\frac{t_1}{c_1}\right)}{\left(\frac{t_1}{c_1}\right)^2+b^2}\theta\left(\frac{t_1}{c_1}\right)-\frac{\exp\left(i\overline{c}\frac{t_2}{c_2}\right)}{\left(\frac{t_2}{c_2}\right)^2+b^2}\theta\left(\frac{t_2}{c_2}\right)\right|\right\}.$$

Здесь использована функция  $\theta(x)$ , представляющая собой единичный скачок

$$\theta(x) = \begin{cases} 1 & \text{при} \quad x \ge 0 \\ 0 & \text{при} \quad x < 0 \end{cases}.$$

Итак, взаимосвязь двух синусоидальных полугармоник в бесконечной плоской ФАР представляется в виде двойного ряда (1.13), члены которого являются замкнутыми аналитическими выражениями. Матричные элементы (элементы матрицы взаимных импедансов) будут состоять из четырех слагаемых вида (1.13), содержащих характерные спектральные двойные ряды. В этом заключается основной результат предлагаемого метода: взаимный импеданс произвольно ориентированных синусоидальных токовых гармоник для проволочной структуры в составе бесконечной плоской ФАР представляется в виде стандартных спектральных двойных рядов.

В остальном алгоритм остается тем же, что и описанный в [13]. Таким образом, переход от одиночной структуры к плоской решетке структур заключается в замене формул, используемых для вычисления взаимной связи полугармоник: вместо выражений из [13] следует использовать формулу (1.13).

#### Заключение

Таким образом, в данной работе предложен метод расчета характеристик проволочных излучателей в составе бесконечной плоской ФАР с косоугольной сеткой. Каждый излучатель может состоять из набора произвольным образом ориентированных в пространстве прямолинейных проволочных отрезков, включая разветвления, петли и т. д. Для элементов матрицы взаимных импедансов получены двойные спектральные ряды из замкнутых аналитических выражений.

## Литература

1. Амитей, Н. Теория и анализ фазированных антенных решеток / Н. Амитей, В. Галиндо, Ч. Ву. – М. : Мир, 1974. – 456 с.

2. Ewald, P. Die Berechnung optischer und elektrostatischer Gitterpotentiale / P. Ewald // Ann. Phys. – 1921. – Vol. 64. – P. 253–287.

3. Singh, S. Application of transforms to accelerate the summation of periodic free-space Green's functions / S. Singh, R. Singh // IEEE Transactions. – 1990. – Vol. MTT-38, № 11. – P. 1746–1748.

4. Singh, S. On the use of Shanks's transform to accelerate the summation of slowly converging series / S. Singh, R. Singh // IEEE Transactions. – 1991. – Vol. MTT-39, № 3. – P. 608–610.

5. Singh, S. On the use of  $\rho$ -algorithm in series acceleration / S. Singh, R. Singh // IEEE Transactions. – 1991. – Vol. AP-39, No 10. – P. 1514–1517.

6. Иванишин, М.М. Модификация метода Куммера для эффективного вычисления функции Грина двумерно-периодических структур / М.М. Иванишин, С.П. Скобелев // Радиотехника. – 2008. – № 10. – С. 31–36.

7. Skobelev, S.P. A modification of the Kummer's method for efficient computation of the 2-D and 3-D Green's functions for 1-D periodic structures / S.P. Skobelev // IEEE Transactions. – 2012. – Vol. AP-60, N 1. – P. 412–416.

8. Malyuskin, O. Convergence acceleration of the doubly periodic Green's function for the analysis of thin wire arrays / O. Malyuskin, V. Fusco, A. Schuchinsky // IET Microw. Antennas Propag. -2008. - Vol. 2, No 5, P. 410–417.

9. Pocklington, H.C. Electrical oscillations in wires / H.C. Pocklington // Proc. Cambr. Phil. Soc. – 1897. – Vol. 9, № 7. – P. 324–332.

10. Mei, K.K. On the integral equations of thin wire antennas / K.K. Mei // IEEE Transactions. – 1965. – Vol. AP-13, № 3. – P. 374–378.

11. Марков, Г.Т. Возбуждение электромагнитных волн / Г.Т. Марков, А.Ф. Чаплин. – 2-е изд., перераб. и доп. – М. : Радио и связь, 1983. – 296 с.

12. Harrington, R.F. Field computation by moment methods / R.F. Harrington. – New York : Machmillan, 1968. – 240 p.

13. Кудин, В.П. Алгоритмизация задач возбуждения проволочных структур / В.П. Кудин, А.П. Рубан // Изв. вузов. Сер. Радиоэлектроника. – 1986. – Т. 29, № 8. – С. 10–15.

Гомельский государственный EHOSMOPWINT MARKING. университет им. Ф. Скорины

Поступило 19.10.12