- МАТЕМАТИКА

УДК 512.542

О 🖇 -НОРМАЛЬНЫХ ПОДГРУППАХ КОНЕЧНЫХ ГРУПП

Юфэнг Лиу¹, Хиухиан Фэнг², Джианхонг Хуанг³

¹Шандонгский институт бизнеса и технологии, Янтай, Китай ²Сюйчжоуский нормальный университет, Сюйчжоу, Китай ³Китайский университет науки и технологии, Хефей, Китай

ON \mathfrak{F}_h -NORMAL SUBGROUPS OF FINITE GROUPS

Yufeng Liu¹, Xiuxian Feng², Jianhong Huang³

¹Shandong Institute of Business and Technology, Yantai, China ²Xuzhou Normal University, Xuzhou, China ³University of Science and Technology of China, Hefei, China

Пусть G конечная группа и \mathfrak{F} – формация конечной группы. Мы говорим, что подгруппа H группы G является \mathfrak{F}_h -нормальной в G если существует такая нормальная подгруппа T группы G, что HT – нормальная холовская подгруппа в G и $(H \cap T)H_G/H_G$ содержится в \mathfrak{F} -гиперцентре $Z^{\mathfrak{F}}_{\infty}(G/H_G)$ группы G/H_G . В данной работе мы получаем некоторые результаты о \mathfrak{F}_h -нормальных подгруппах и используем их для изучения конечных групп.

Ключевые слова: конечная группа, F_h-нормальная подгруппа, подгруппа Силова, максимальная подгруппа, минимальная подгруппа.

Let G be a finite group and \mathfrak{F} a formation of finite groups. We say that a subgroup H of G is \mathfrak{F}_h -normal in G if there exists a normal subgroup T of G such that HT is a normal Hall subgroup of G and $(H \cap T)H_G/H_G$ is contained in the \mathfrak{F} -hypercenter $Z_{\infty}^{\mathfrak{F}}(G/H_G)$ of G/H_G . In this paper, we obtain some results about the \mathfrak{F}_h -normal subgroups and use them to study the structure of finite groups.

Keywords: finite groups, \mathcal{F}_h -normal subgroup, Sylow subgroup, maximal subgroup, minimal subgroup.

Introduction

Throughout this paper, all groups are finite and G denotes a group. The notation and terminology are standard, as in [1] and [2].

The relationship between the subgroups and the structure of G has been extensively studied in the literature. Many useful results of finite groups have been obtained under the assumption that some certain subgroups of G of prime power orders are well situated in G. Ito [3] has proved that if G is a group of odd order and all minimal subgroups of G lie in the center of G, then G is nilpotent. Buckley [4] showed that a group G of odd order is supersoluble if all minimal subgroups of G are normal in G. Srinivasan [5] proved that a group G is supersoluble if every maximal subgroup of every Sylow subgroup of G is normal in G.

Recently, by considering some special supplemented subgroups, people have obtained a series of new interesting results. For example, Wang [6] introduced *c*-normal subgroup: a subgroup *H* of *G* is said to be *c*-normal in *G* if there exists a normal subgroup *K* of *G* such that G = HK and $H \cap K \leq H_G$, where H_G is the maximal normal

subgroup of G contained in H. Later, Yang and Guo [7] gave the concept of \mathfrak{F}_n -supplemented subgroup: a subgroup H of G is said to be \mathfrak{F}_n supplemented in G if there exists a normal subgroup K of G such that G = HK and $(H \cap K)H_G/H_G$ is contained in the \mathfrak{F} -hypercenter $Z_{\infty}^{\mathfrak{F}}(G/H_G)$ of G/H_G . Many facts have shown that c-normal and \mathfrak{F}_n -supplemented properties of some subgroups can give a good insight into the structure of supersoluble groups and p-nilpotent groups (see [6]-[12]).

,Hb)

As a development of this topic, the authors introduce the following new concept.

Definition 0.1 [13]. Let \mathfrak{F} be a class of groups. A subgroup H of G is said to be \mathfrak{F}_h -normal in G if there exists a normal subgroup T of G such that HT is a normal Hall subgroup of G and $(H \cap T)H_G/H_G \leq Z_{\infty}^{\mathfrak{F}}(G/H_G)$.

Recall that, for a class \mathcal{F} of groups, a chief factor H/K of G is called \mathcal{F} -central (see [14] or [1, Definition 2.4.3]) if $[H/K](G/C_G(H/K)) \in \mathcal{F}$.

The symbol $Z_{\infty}^{\mathfrak{F}}(G)$ denotes the \mathfrak{F} -hypercenter of a group G, that is, the product of all such normal subgroups H of G whose G-chief factors are \mathfrak{F} -central. A subgroup H of G is said to be \mathfrak{F} -hypercenter in G if $H \leq Z_{\infty}^{\mathfrak{F}}(G)$.

A class \mathcal{F} of groups is called a formation if it is closed under homomorphic image and every group G has a smallest normal subgroup (called \mathcal{F} residual of G and denoted by $G^{\mathfrak{F}}$) with quotient is in \mathfrak{F} . A formation \mathfrak{F} is said to be saturated if it contains every group G with $G/\Phi(G) \in \mathfrak{F}$. We use \mathfrak{N} , \mathfrak{U} to denote the formations of all nilpotent groups and supersoluble groups, respectively.

Obviously, all normal subgroups, *c*-normal subgroups and \mathfrak{F}_n -supplemented subgroups are all \mathfrak{F}_h -normal in *G*, for any nonempty saturated formation \mathfrak{F} . However, the converse is not true in general (see [13, Example 1.2]).

In this paper, we will use \mathcal{F}_h -normal subgroups to give some new characterizations of some classes of groups. Some previously known results are generalized.

1 Preliminaries

A formation \mathfrak{F} is said to be S-closed (S_n closed) if it contains all subgroups (all normal subgroups, respectively) of all its groups.

For the sake of convenience, we cite the following lemmas which are useful in this paper.

Lemma 1.1 [15, Lemma 2.1]. Let § be a nonempty saturated formation, $A \leq G$ and $Z = Z^{\delta}_{\infty}(G)$. Then

(1) If A is normal in G, then $AZ/A \leq Z_{\infty}^{\$}(G/A)$.

(2) If \mathfrak{F} is S-closed, then $Z \cap A \leq Z_{\infty}^{\mathfrak{F}}(A)$.

(3) If \mathcal{F} is S_n -closed and A is normal in G, then $Z \cap A \leq Z_{\infty}^{\mathcal{F}}(A)$.

(4) If $G \in \mathfrak{F}$, then Z = G.

Lemma 1.2 [12, Lemma 2.5]. Let p be a prime number such that $(|G|, p^2 - 1) = 1$. If G/L is p-nilpotent and $p^3 f(L)$, then G is p-nilpotent.

Lemma 1.3 [16, II 7.9]. Let N be a nilpotent normal subgroup of G. If $N \neq 1$ and $N \cap \Phi(G) = 1$, then N is a direct product of some minimal normal subgroups of G.

Lemma 1.4 [3, VI 14.3]. Let G be a finite group. If G has an abelian Sylow p-subgroup P of G, then $Z(G) \cap G' \cap P = 1$.

Lemma 1.5 [17, Theorem 1]. Let \mathcal{F} be a saturated formation and G be a minimal non- \mathcal{F} -group such that $(G^{\mathfrak{F}})'$ is a proper subgroup of $G^{\mathfrak{F}}$, then $G^{\mathfrak{F}}$ is a solvable group.

Lemma 1.6 [1, Corollary 3.2.9]. If \mathcal{F} is a local formation, then $[G^{\mathfrak{F}}, Z_{\infty}^{\mathfrak{F}}(G)] = 1$, for any group G.

Lemma 1.7 [13, Theorem 3.2]. Let \mathcal{F} be a Sclosed saturated formation containing \mathfrak{U} . Suppose that G is a group with a normal subgroup E such that $G/E \in \mathcal{F}$. If all cyclic subgroups of E of prime order and order 4 are \mathfrak{U}_h -normal in G, then $G \in \mathcal{F}$.

Lemma 1.8 [13, Theorem 4.1]. A group G is solvable if and only if every minimal subgroup of G is \mathfrak{U}_h -normal in G.

Lemma 1.9 [13, Theorem 3.1]. A group G is supersoluble if and only if there exists a normal subgroup E of G such that G/E is supersoluble and every maximal subgroup of every non-cyclic Sylow subgroup of E is \mathfrak{U}_h -normal in G.

Lemma 1.10. Let R be a soluble minimal normal subgroup of G. If there exists a maximal subgroup R_1 of R such that R_1 is \mathfrak{U}_h -normal in G, then R is a group of prime order.

Proof. Since *R* is a minimal normal subgroup of *G*, *R* is an elementary abelian group and $(R_1)_G = 1$. By hypothesis, there exists a normal subgroup *K* of *G* such that R_1K is a normal Hall subgroup of *G* and $R_1 \cap K \leq Z_{\infty}^{\mathfrak{u}}(G)$. Since $R \cap KG$, $R \cap K = 1$ or $R \cap K = R$. If $R \cap K = 1$, then $R = R \cap R_1K = R_1(R \cap K) = R_1$, a contradicttion. If $R \cap K = R$, then $R \leq K$, and so $R_1 \leq K$. It follows that $R_1 = R_1 \cap K \leq Z_{\infty}^{\mathfrak{u}}(G)$. If *R* is not a group of prime order, then $1 \neq R_1 \leq Z_{\infty}^{\mathfrak{u}}(G) \cap R$. Hence $Z_{\infty}^{\mathfrak{u}}(G) \cap R \neq 1$ and $R \leq Z_{\infty}^{\mathfrak{u}}(G)$. It follows that *R* is a group of prime order. This contradiction completes the proof.

Lemma 1.11 [13, Lemma 2.6]. Let G be a group and $H \le K \le G$. Then

(1) H is \mathcal{F}_h -normal in G if and only if G has a normal subgroup T such that HT is a normal Hall subgroup of G, $H_G \leq T$ and $H/H_G \cap T/H_G \leq Z^{\mathfrak{F}}_{\infty}(G/H_G)$.

(2) Suppose that H is normal in G. If K is \mathfrak{F}_h -normal in G, then K/H is \mathfrak{F}_h -normal in G/H.

(3) Suppose that H is normal in G. Then for every \mathcal{F}_h -normal subgroup E of G satisfying (|H|, |E|)=1, HE/H is \mathcal{F}_h -normal in G/H.

(4) If H is \mathfrak{F}_h -normal in G and \mathfrak{F} is S-closed, then H is \mathfrak{F}_h -normal in K.

(5) If H is \mathcal{F}_h -normal in G and \mathcal{F} is S_n -closed, then H is \mathcal{F}_h -normal in K.

(6) If $G \in \mathcal{F}$, then every subgroup of G is \mathcal{F}_h -normal in G.

2 Main Results

Theorem 2.1. Let p be a prime divisor of |G|with (|G|, p-1) = 1. Then G is p-nilpotent if and only if there exists a normal subgroup N of G such that G/N is p-nilpotent and every maximal subgroup of every Sylow subgroup of N is \mathfrak{U}_h normal in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose that the assertion is false and let G be a counterexample of minimal order. we proceed the proof via the following steps.

(1) G is soluble, G has a minimal normal subgroup $L \le N$ and L is an elementary abelian r-group, where r is the largest prime in $\pi(N)$.

If p>2, then G is soluble since (|G|, p-1) = 1. Now we assume that p=2. Then G/N is 2nilpotent and so G/N is soluble. Since every maximal subgroup of every Sylow subgroup of N is \mathfrak{U}_h -normal in G, it is \mathfrak{U}_h -normal in N by Lemma 1.11 (4). Applying Lemma 1.9 for the case G = N, we get that N is supersoluble and so G is soluble. Hence, for the largest prime number r in $\pi(N)$, the Sylow r-subgroup R of N is normal in N. Since R char $N \trianglelefteq G$, R is normal in G. Thus, G has a minimal normal subgroup $L \le N$ and L is an elementary abelian r-group.

(2) G/L is p-nilpotent and $L = R \in Syl_n(N)$. Obviously, $(G/L)/(N/L) \simeq G/N$ is p-nilpotent. Let R_1/L be a maximal subgroup of a Sylow r-subgroup of N/L. Then R_1 is a maximal subgroup of the Sylow r-subgroup R of N. By hypothesis and Lemma 1.11 (2), R_1/L is \mathfrak{U}_h -normal in G/L. Let Q_1/L be a maximal subgroup of a Sylow q-subgroup of N/L, where $q \neq r$. It is clear that $Q_1 = Q_1^* L$, where Q_1^* is a maximal subgroup of a Sylow q-subgroup of N. By hypothesis and Lemma 1.11 (3), $Q_1/L = Q_1^* L/L$ is \mathfrak{U}_h -normal in G/L. Hence by the minimal choice of G, G/L is *p*-nilpotent. If $p \nmid |L|$, then G is *p*-nilpotent, a contradiction. So L is a p-group. Since the class of all p-nilpotent groups is a saturated formation, L is the unique minimal normal subgroup of Gcontained in N and $L \not\leq \Phi(G)$. By Lemma 1.3, F(N) = L. Since N is soluble, $L \le C_N(F(N)) \le F(N)$ and so $C_N(L) = L = F(N)$. Because RG and $R \leq F(N)$, we have that $L = R \in Syl_p(N)$.

(3) Final contradiction.

Let L_1 be a maximal subgroup of L. By (2) and the hypothesis, L_1 is \mathfrak{U}_h -normal in G. Then by

Lemma 1.10, we have that |L| = p. Since G/L is p-nilpotent, G/L has a normal p-complement H/L. By Schur Zassenhaus theorem, $H = G_{p'}L$, where $G_{p'}$ is a Hall p'-subgroup of G. Since p is the prime divisor of |G| with (|G|, p-1) = 1 and $N_H(L)/C_H(L) \leq Aut(L)$ is a cyclic subgroup of order p-1. By the well known Burnside theorem, we have that H is p-nilpotent. Hence, $G_{p'}$ char $H \trianglelefteq G$ and so $G_{p'} \trianglelefteq G$. Clearly, $G_{p'}$ is a normal p-complement of G, which implies that G is p-nilpotent. The final contradiction completes the proof.

Theorem 2.2. Let p be a prime divisor of |G|with (|G|, p-1) = 1. Then G is p-nilpotent if and only if G has a soluble normal subgroup H such that G/H is p-nilpotent and every maximal subgroup of every Sylow subgroup of F(H) is \mathfrak{U}_h normal in G.

Proof. The necessity is obvious. We only need to prove the sufficiency. Suppose that the assertion is false and let G be a counterexample with |G||H| is minimal. Let P be an arbitrary Sylow r-subgroup of F(H). Since P char F(H) char $H \trianglelefteq G$, $P \trianglelefteq G$. We proceed the proof via the following steps.

(1) $\Phi(G) \cap P = 1$.

If not, then $1 \neq \Phi(G) \cap P \trianglelefteq G.$ Let $R = \Phi(G) \cap P$. Clearly, $(G/R)/(H/R) \simeq G/H$ is pnilpotent. By [3, Theorem III.3.5], we have that F(H/R) = F(H)/R. Assume that P/R is a Sylow r-subgroup of F(H/R) and P_1/R a maximal subgroup of P/R. Then P_1 is a maximal subgroup of P. By hypothesis, P_1 is \mathfrak{U}_h -normal in G. Then by Lemma 1.11 (2), P_1/R is \mathfrak{U}_h -normal in G/R. Now, let Q/R be a maximal subgroup of some Sylow q-subgroup of F(H/R) = F(H)/R, where $q \neq r$. Then $Q = Q_1 R$, where Q_1 is a maximal subgroup of the Sylow q-subgroup of F(H). By hypothesis, Q_1 is \mathfrak{U}_h -normal in G. Hence $Q/R = Q_1 R/R$ is \mathfrak{U}_h normal in G/R by Lemma 1.11 (3). This shows that (G/R, H/R) satisfies the hypothesis. The minimal choice of (G, H) implies that G/R is p-nilpotent. Since $G/\Phi(G) \simeq (G/R)/(\Phi(G)/R)$ is *p*-nilpotent and the class of all p-nilpotent groups is a saturated formation, G is p-nilpotent, a contradiction. Hence (1) holds.

(2)
$$P = \langle x_1 \rangle \times \cdots \times \langle x_m \rangle$$
, where every $\langle x_i \rangle$

 $(i = 1, \dots, m)$ is a normal subgroup of G of order r. By (1) and Lemma 1.3, $P = R_1 \times \dots \times R_m$, where R_i $(i = 1, \dots, m)$ is a minimal normal subgroup of

G. We now prove that all R_i are of order r. Assume that $|R_i| > r$, for some *i*. Without loss of generality, we let $|R_1| > r$. Let R_1^* be a maximal subgroup of R_1 . Then $R_1^* \times R_2 \times \cdots \times R_m = P_1$ is a maximal subgroup of P. Set $T = R_2 \times \cdots \times R_m$, then, clearly $(P_1)_G = T$. By hypothesis, P_1 is \mathfrak{U}_h -normal in G. Hence by Lemma 1.11 (1), there exists a normal subgroup N of G, such that $(P_1)_G \leq N$, P_1N is a normal Hall subgroup of G and $(P_1 \cap N)/(P_1)_G \le Z^{\mathfrak{u}}_{\infty}(G/(P_1)_G)$. It follows that $P_1 N = R_1^* T N = R_1^* N. \qquad \text{If} \qquad R_1^* \cap N \neq 1,$ then $1 < R_1 \cap N \trianglelefteq G$. By the minimal normality of R_1 , $R_1 \cap N = R_1$ and so $R_1 \leq N$. Hence $P_1 N = R_1^* N = N$. Consequently $P_1 \leq N$. It follows that $P_1/(P_1)_G \le Z_{\infty}^{\mathfrak{U}}(G/(P_1)_G)$. If $(P_1)_G = P_1$, then $R_1^* = 1$, which contradicts $R_1^* \cap N \neq 1$. Hence $(P_1)_G < P_1$ and so $1 \neq P_1/(P_1)_G \leq Z^{\mathfrak{u}}_{\infty}(G/(P_1)_G) \cap P/(P_1)_G$. Since $P/(P_1)_G \simeq R_1$ and R_1 is a minimal normal subgroup of G, $P/(P_1)_G$ is a chief factor of G. This implies that $Z^{\mathfrak{u}}_{\infty}(G/(P_1)_G) \cap P/(P_1)_G = P/(P_1)_G$ and so $P/(P_1)_G \leq Z^{\mathfrak{u}}_{\infty}(G/(P_1)_G)$. It follows that $|P/(P_1)_G| \neq r$. Hence $|R_1| = r$, a contradiction. Now assume that $R_1^* \cap N = 1$. Then $(R_1^*)_G = 1 \le N \le G$, $R_1^* N = P_1 N$ is normal Hall a subgroup $(R_1^{\bullet} \cap N)/(R_1^{\bullet})_G = 1 \le Z_{\infty}^{\mathfrak{ll}}(G/(R_1^{\bullet})_G)$. This shows that R_1^* is \mathfrak{U}_h -normal in G. Hence R_1 is a cyclic group of order r by Lemma 1.10, a contradiction again. Thus (2) holds.

(3) G/F(H) is *p*-nilpotent.

From (2), $F(H) = \langle y_1 \rangle \times \cdots \times \langle y_n \rangle$, where every $\langle y_i \rangle$ $(i = 1, \cdots, n)$ is a normal subgroup of G of prime order. Since $G/C_G(\langle y_i \rangle)$ is isomorphic to a subgroup of $Aut(\langle y_i \rangle)$, $G/C_G(\langle y_i \rangle)$ is cyclic and so it is p-nilpotent for each i. It follows that $G/\bigcap_{i=1}^n C_G(\langle y_i \rangle)$ is p-nilpotent. Obviously, $C_G(F(H)) =$ $= \bigcap_{i=1}^n C_G(\langle y_i \rangle)$. Hence $G/C_G(F(H)) = G/C_H(F(H))$ is p-nilpotent. Because F(H) is abelian, we have that $F(H) \le C_H(F(H))$. On the other hand, $C_H(F(H)) \le F(H)$ for H is soluble. Thus $F(H) = C_H(F(H))$ and so G/F(H) is p-nilpotent. (4) Final contradiction. In view of Theorem 2.1, we have that G is p-nilpotent. The final contradiction completes the proof.

Theorem 2.3. Let \mathfrak{F} be a S-closed saturated formation which satisfies that every minimal non- \mathfrak{F} group is soluble. Then G is an \mathfrak{F} -group if and only if G has a normal subgroup N such that $G/N \in \mathfrak{F}$ and every cyclic subgroup of order 4 of N is \mathfrak{F}_h -normal in G and every minimal subgroup of Nis contained in $\mathbb{Z}_n^{\mathfrak{F}}(G)$.

Proof. The necessity is obvious. We only need to prove the sufficiency. Assume that the assertion is false and choose G to be a counterexample of minimal order. Then, obviously $N \neq 1$.

Let L be a proper subgroup of G. Then $L/L \cap N \simeq LN/N \le G/N$ implies that $L/L \cap N \in \mathfrak{F}$. Since $L \cap N \le N$, by hypothesis, every cyclic subgroup of $L \cap N$ of order 4 is \mathfrak{F}_h -normal in G and hence is \mathfrak{F}_h -normal in L by Lemma 1.11. On the other hand, since every minimal subgroup of L is a minimal subgroup of G, every minimal subgroup of L is contained in $Z^{\delta}_{\infty}(G) \cap L \subseteq Z^{\delta}_{\infty}(L)$ by Lemma 1.1. This shows that $(L, N \cap L)$ satisfies the hypothesis. By the minimal choice of $G, L \in \mathfrak{F}$ and so G is a minimal non- \mathcal{F} -group. By [1, Theorem 3.4.2] and the hypothesis, we know that G is soluble and G has the following properties: (1) $G^{\$}$ is a *p*-group, for some prime *p*; (2) $G^{\$}/\Phi(G^{\$})$ is a chief factor of G; (3) If $G^{\$}$ is abelian, then $G^{\$}$ is an elementary abelian *p*-group; (4) If p > 2, then the exponent of G^{δ} is p; If p = 2, then the exponent of $G^{\mathcal{F}}$ is 2 or 4.

Since $G/N \in \mathfrak{F}$, $G^{\mathfrak{F}} \leq N$. Suppose that the exponent of $G^{\mathfrak{F}}$ is a prime. Then by hypothesis, $G^{\mathfrak{F}} \subseteq Z^{\mathfrak{F}}_{\infty}(G)$ and so $G \in \mathfrak{F}$, a contradiction.

Now assume that $G^{\tilde{s}}$ is not abelian and p = 2. We claim that there is no an element of order 4 in $G^{\tilde{s}} \mid \Phi(G^{\tilde{s}})$. Assume that there exists an element $x \in G^{\tilde{s}} \mid \Phi(G^{\tilde{s}})$ with $|\langle x \rangle| = 4$. Then by hypothesis, $\langle x \rangle$ is \mathfrak{F}_h -normal in G. Hence by Lemma 1.11 (1), there exists a normal subgroup T of G such that $\langle x \rangle T$ is a normal Hall subgroup of G and $\langle x \rangle / \langle x \rangle_G \cap T / \langle x \rangle_G \leq Z_{\infty}^{\tilde{s}}(G / \langle x \rangle_G)$. Thus $G^{\tilde{s}} \leq \langle x \rangle T$ by (1). Let $P_1 = G^{\tilde{s}} \cap T$. Then $P_1 \leq G$. If $P_1 \leq \Phi(G^{\tilde{s}})$, then $G^{\tilde{s}} = G^{\tilde{s}} \cap \langle x \rangle T = \langle x \rangle (G^{\tilde{s}} \cap T) = \langle x \rangle P_1 = \langle x \rangle$, a contradiction. So $P_1 \notin \Phi(G^{\tilde{s}})$. By (2) $P_1 \Phi(G^{\tilde{s}}) / \Phi(G^{\tilde{s}}) = G^{\tilde{s}} / \Phi(G^{\tilde{s}})$. It follows that

 $P_1 = G^{\delta}$ and so $G^{\delta} \leq T$. Thus $\langle x \rangle \leq T$ and $\langle x \rangle = \langle x \rangle \cap T.$ We first assume that $\langle x \rangle / \langle x \rangle_G \cap T / \langle x \rangle_G = 1$. Then $\langle x \rangle = \langle x \rangle_G \trianglelefteq G$. Hence $\langle x \rangle \Phi(G^{\$}) / \Phi(G^{\$}) \trianglelefteq G / \Phi(G^{\$})$. Then by (2), $\langle x \rangle \Phi(G^{\mathfrak{F}}) = G^{\mathfrak{F}}$ and so $\langle x \rangle = G^{\mathfrak{F}}$, a contradiction. Hence $\langle x \rangle / \langle x \rangle_G \cap T / \langle x \rangle_G \neq 1$, that is $\langle x \rangle_G < \langle x \rangle$, and so $|\langle x \rangle_G| \le 2$. If $|\langle x \rangle_G| = 1$, then $\langle x \rangle \le Z_{\infty}^{\mathfrak{F}}(G)$. By hypothesis, $G^{\$} \leq Z^{\$}_{\infty}(G)$ and consequently $G \in \mathfrak{F}$, a contradiction. If $|\langle x \rangle_G| = 2$, then $\langle x \rangle / \langle x \rangle_G \le Z^{\mathfrak{F}}_{\infty}(G/\langle x \rangle_G)$ and $\langle x \rangle_G \le Z^{\mathfrak{F}}_{\infty}(G)$. It follows that $Z^{\$}_{\infty}(G/\langle x \rangle_G) = Z^{\$}_{\infty}(G)/\langle x \rangle_G$. Hence $\langle x \rangle \leq Z_{\infty}^{\mathfrak{F}}(G)$. This implies that $G^{\mathfrak{F}} \leq Z_{\infty}^{\mathfrak{F}}(G)$. Consequently $G \in \mathfrak{F}$. This final contradiction completes the proof.

Corollary 2.3.1. Let \mathcal{F} be a S-closed saturated formation which satisfies that every minimal non- \mathcal{F} -group is soluble. Then G is an \mathcal{F} -group if and only if every cyclic subgroup of order 4 of G is \mathcal{F}_h -normal in G and every minimal subgroup of G is contained in $Z_{\infty}^{\mathcal{F}}(G)$.

Corollary 2.3.2 (Miao, Guo [18]). Let \mathcal{F} be a S-closed saturated formation which satisfies that a minimal non- \mathcal{F} -group is soluble and its \mathcal{F} -residual is a Sylow subgroup. If every cyclic subgroup of order 4 of G is c-normal in G and every minimal subgroup of G is contained in the \mathcal{F} -hypercenter of G, then G is an \mathcal{F} -group.

Corollary 2.3.3 (Miao, Guo [18]). Let \mathcal{F} be a S-closed saturated formation which satisfies that a minimal non- \mathcal{F} -group is soluble and its \mathcal{F} -residual is a Sylow subgroup. Let N be a normal subgroup of G and $G/N \in \mathcal{F}$. If every cyclic subgroup of order 4 of N is c-normal in G and every minimal subgroup of N is contained in the \mathcal{F} -hypercenter of G, then G is an \mathcal{F} -group.

Theorem 2.4. Let \mathcal{F} be a *S*-closed saturated formation containing \mathfrak{U} and *G* a group. Then $G \in \mathcal{F}$ if and only if there exists a normal subgroup *N* of *G* such that $G/N \in \mathcal{F}$ and all elements of *N* of odd prime order are \mathfrak{U}_h -normal in *G* and *N* has an abelian Sylow 2-subgroup and every subgroup of *N* of order 2 is contained in $Z_{\infty}^{\mathfrak{u}}(G)$.

Proof. Assume that the theorem is false and let G be a counterexample of minimal order.

First we show that $M \in \mathfrak{F}$ for every maximal subgroup M of G. If $N \leq M$, then G = MN and $M/M \cap N \simeq MN/N \in \mathfrak{F}$. Since \mathfrak{F} is S-closed,

Проблемы физики, математики и техники, № 3 (4), 2010

 $M \cap Z^{\$}_{\infty}(G) \le Z^{\$}_{\infty}(M)$ by Lemma 1.1. Then by Lemma 1.11, we see that $(M, M \cap N)$ satisfies the hypothesis. Hence $M \in \mathfrak{F}$ by the choice of G. Therefore G is a minimal non- \mathcal{F} -group. Let $R = G^{\mathcal{F}}$. Then $R \leq N$. Assume that R' < R, where R' is the derived subgroup of R. Then R is soluble by Lemma 1.5. Hence by [1, Theorem 3.4.2] and since R has an abelian Sylow 2-subgroup, R is a *p*-group of exponent *p*. If $p \neq 2$, then $G \in F$ by Lemma 1.7, a contradiction. Suppose that p=2, then R is an elementary abelian 2-group. Thus, by hypothesis, $R \leq Z^{\mathfrak{F}}_{\infty}(G)$ and so $G \in \mathfrak{F}$, contradiction. Now assume that R = R'. Let T be a Sylow 2-group of R. Then T is abelian and so $T \cap Z(R) = 1$ by Lemma 1.4. Assume that $T \neq 1$. Then there exists an element $r \in T$ with |r| = 2. Hence $r \in Z^{\S}_{\infty}(G)$ and so $r \in Z^{\S}_{\infty}(G) \cap R$. Since $Z^{\mathfrak{F}}_{\infty}(G) \cap R$ is contained in Z(R) by Lemma 1.6, $r \in Z(R) \cap T \neq 1$. That is $Z(R) \cap T \neq 1$. This contradiction shows that R is of odd order. Therefore by Feit-Thompson theorem, R is soluble, which contradicts R = R'.

These contradictions show that the counterexample of minimal order does not exist. Therefore the Theorem holds.

Theorem 2.5. Let \mathfrak{F} be a saturated formation containing \mathfrak{U} . Suppose that G is a group with a normal subgroup H such that $G/H \in \mathfrak{F}$. Then $G \in \mathfrak{F}$ if one of the following conditions holds:

(a) G is 2-nilpotent and every element x of odd prime order of H is \mathfrak{U}_h -normal in G.

(b) H has an abelian Sylow 2-subgroup and every subgroup of prime order of H is \mathfrak{U}_h -normal in G.

Proof. (a) If G is 2-nilpotent, then H is 2-nilpotent. Let K be the 2-complement of H. Then $K \trianglelefteq G$. Since $(G/K)/(H/K) \simeq G/H \in \mathfrak{F}$ and H/K is a 2-group, H/K has no element of odd order. Hence $G/K \in \mathfrak{F}$ by induction on |G|. Since K is a 2-complement of H, K has no cyclic subgroup of order 4. Thus $G \in \mathfrak{F}$ by Lemma 1.7.

(b) Let $E = G^3$. Then, obviously, $E \le H$ and E has abelian Sylow 2-subgroups. By hypotheses, every subgroup $\langle x \rangle$ of prime order of E is \mathfrak{U}_h -normal in G. Hence, by Lemma 1.11, $\langle x \rangle$ is also \mathfrak{U}_h -normal in E. It follows from Lemma 1.8 that E is soluble. Let M be a maximal subgroup of G such that $E \le M$. Then $ME/E \simeq M/M \cap E \in \mathfrak{F}$. It is easy to see that $(M, M \cap E)$ satisfies the hypothesis. Therefore $M \in \mathfrak{F}$ by induction. Then, applying [1,

Theorem 3.4.2], we see that E is a p-group of exponent p. Thus $G \in \mathfrak{F}$ by Lemma 1.7.

REFERENCES

1. *Guo, W.* The Theory of Classes of Groups / W. Guo. – Beijing-New York-Dordrecht-Boston-London : Science Press / Kluwer Academic Publishers, 2000.

2. Robinson, D.J.S. A Course in the Theory of Groups / D.J.S. Robinson. – New York : Springer, 1982.

3. *Huppert, B.* Endliche Gruppen I / B. Huppert. – Berlin-Heidelberg-New York : Springer-Verlag, 1967.

4. Buckley, J. Finite groups whose minimal subgroups are normal / J. Buckley // Math. Z. – 1970. – Vol. 116. – P. 15–17.

5. Srinivasan, S. Two sufficient conditions for supersolvability of finite groups / S. Srinivasan // Israel J. Math. – 1980. – Vol. 3, № 35. – P. 210–214.

6. Wang, Y. c-normality of groups and its properties / Y. Wang // J. Algebra. - 1996. - Vol. 180. - P. 954-965.

7. Yang, N. On \mathfrak{F}_n -supplemented subgroups of finite groups / N. Yang, W. Guo // Asian-European Journal of Mathematics. - 2008. - Vol. 1, \mathbb{N}_2 4. - P. 619–629.

8. Wang, Y. c-normality and solvability of groups / Y. Wang // J. Pure Appl. Algebra. – 1996. – Vol. 110. – P. 315–320.

9. *Guo, X.* On *c*-normal maximal and minimal subgroups of Sylow *p*-subgroups of finite groups / X. Guo, K.P. Shum // Arch. Math. – 2003. – Vol. 80. – P. 561–569 10. Li, D. The influence of c-normality of subgroups on the structure of finite groups / D. Li, X. Guo // J. Pure. App. Algebra. -2000. - Vol. 150. - P. 53-60.

11. Li, D. The influence of c-normality of subgroups on the structure of finite groups II / D. Li, X. Guo // Comm. Algebra. - 1998. - Vol. 26. - P. 1913-1922.

12. *Miao*, *L*. New criteria for *p*-nilpotency of finite groups / L. Miao, W. Guo, K.P. Shum // Comm. Algebra. – 2007. – Vol. 35. – P. 965–974.

13. Feng X., Guo W., Huang J., New characterizations of some classes of finite groups, Malaysian Mathematical Science Society, to appear.

14. Shemetkov, L.A. Formations of Algebraic Systems / L.A. Shemetkov, A.N. Skiba. – Moscow : Nauka, 1989.

15. Guo, W. On §-supplemented subgroups of finite group / W. Guo // Manuscripta Math. – 2008. – Vol. 127. – P. 139–150.

16. Shemetkov, L.A. Formations of Finite Groups / L.A. Shemetkov. – Moscow : Nauka, 1978.

17. Ballester-Belinches, A. On minimal subgroups of finite groups / A. Ballester-Belinches, M.C. Pedraza-Aguilera // Acta Math. – 1966. – Vol. 73, № 4. – P. 335–342.

18. Miao, L. The influence of c-normality of some subgroups on the structure of a finite / L. Miao, W. Guo // Problems in Algebra. -2000. - Vol. 3, No 16. - P. 101–106.

Research is supported by a NNSF of China (Grant: 10771180).

Поступила в редакцию 23.07.10.