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[lyerh G komeunan rpynna 1§ — QopMauua KoHeuHoii rpynnel. Msl repopuM, yto noarpynna H rpynnel G spisercs

3, -HOpMaNbHOM B G €CNH CYIECTBYET Takad HOpManbHast moarpynna 7 rpynnel G, uto ‘AT~ HOpMATbHAA XONOBCKAA

noarpynna 8 G n (HnT)Hz/H; colepkures B § -THNEpUEHTpe ZE(G/HU) rpynnel G/H; . B paunoii paGote Mbl

NO/y4aeM HEKOTOPHIE PE3YIIETATE O §, -HOPMATLHBIX MOArPYNNAX U HCMOMB3YEM HX JUIR H3YHEHHA KOHEYHBIX TPYIIL

Knwouesvte cnosa: xoweunas epynna, F, -HOpmaishas noozpynnd, nodepynhg Cunoed, MAKCUMARbHAA Rodepynnd,
MUHUMATbHAR ROJ2PYNNG.

Let G be a finite group and § a formation of finite groups. We say that a’subgroup # of G is §, -normal in G if there
exists a normal subgroup 7 of G such that A7 is a normal Hall'subgroup of G and (H nT)H;/H,; is contained in the § -

hypercenter ZX(G/H,;) of G/H,; . In this paper, we obtain sbme results about the §, -normal subgroups and use them to study

the structure of finite groups.
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Introduction

Throughout this paper, all groups are finite and
G denotes a group. The notation’and terminology
are standard, as in [1] and [2].

The relationship between the subgroups and the
structure of G has been‘extensively studied in the
literature. Many useful results of finite groups have
been obtained umder.the assumption that some
certain subgroups of G of prime power orders are
well situatedvin & . Ito [3] has proved that if G is a
group of ‘odd order and all minimal subgroups of G
lie in‘the center of G, then G is nilpotent. Buckley
[4] showed that a group G of odd order is
supersoluble if all minimal subgroups of G are
normal in G. Srinivasan [5] proved that a group G
is supersoluble if every maximal subgroup of every
Sylow subgroup of ¢ is normal in G.

Recently, by considering some special
supplemented subgroups, people have obtained a
series of new interesting results. For example, Wang
[6] introduced c-normal subgroup: a subgroup H
of G is said to be c-normal in G if there exists a
normal subgroup K of G such that G=HK and
HNK<H,;, where H; is the maximal normal
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subgroup of G contained in H . Later, Yang and
Guo [7] gave the concept of % -supplemented
subgroup: a subgroup H of G is said to be §, -
supplemented in G if there exists a normal
subgroup K of G such that G=HK and
(HNK)H;/H,; is contained in the §F-hypercenter

Z3(G/H,) of G/H, . Many facts have shown that

c-normal and 3§, -supplemented properties of some

subgroups can give a good insight into the structure
of supersoluble groups and p -nilpotent groups (see

[6]-112]).
As a development of this topic, the authors
introduce the following new concept.

Definition 0.1 [13]. Let § be a class of groups.
A subgroup H of G is said to be §, -normalin G

if there exists a normal subgroup 7" of G such that
HT is a normal Hall subgroup of G and

(HNTYH /H, <Z3(G/H,).

Recall that, for a class § of groups, a chief
factor H/K of G is called §-central (see [14] or
[1, Definition 2.4.3]) if [H/K|(G/C,(H/K)€T.
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The symbol Z3(G) denotes the § -hypercenter of a
group G, that is, the product of all such normal
subgroups H of G whose G -chief factors are
§-central. A subgroup H of G is said to be
§ -hypercenter in G if H < Z¥(G).

A class § of groups is called a formation if it
is closed under homomorphic image and every
group G has a smallest normal subgroup (called § -
residual of G and denoted by G%) with quotient is
in §. A formation § is said to be saturated if it
contains every group G with G/®(G) e §. We use
J1, 4 to denote the formations of all nilpotent
groups and supersoluble groups, respectively,

Obviously, all normal subgroups, c-normal
subgroups and §, -supplemented subgroups are all
§,-normal in G, for any nonempty saturated
formation § . However, the converse is not true in
general (see [13, Example 1.2]).

In this paper, we will use §, -normal subgroups

to give some new characterizations of some classes
of groups. Some previously known results are
generalized.

1 Preliminaries
A formation § is said to be S-closed (S,-

closed) if it contains all subgroups (all normal
subgroups, respectively) of all its groups.
For the sake of convenience, we cite/the
following lemmas which are useful in this papér,
Lemma 1.1 [15, Lemma 2.1]. Let § be anon-

emply saturated formation, A<G and Z.=Z3(G).
Then

(1) If 4 is normal in G, then AZ/A < ZE (G/A).

(2) I § is S-closed, thén Z. A < Z5 (A).

(3)If § is S, -closed.and A is normal in G,
then Z A< Z3(A)!

(4)If GeF, then Z =G.

Lemma<1.2\[12, Lemma 2.5]. Let p be a
prime number such that (|G|, p* -1)=1. If G/L is
p-nilpotent and p* | L|, then G is p-nilpotent.

Lemma 1.3 [16, 11 7.9]. Let N be a nilpotent
normal subgroup of G. If N#1 and Nn®(G) =1,

then N is a direct product of some minimal normal
subgroups of G.

Lemma 1.4 [3, VI 143). Let G be a finite
group. If G has an abelian Sylow p-subgroup P

of G, then Z(G)NG' NP =1.
Lemma 1.5 {17, Theorem 1]. Let § be a
saturated formation and G be a minimal non-5 -

group such that (G*)' is a proper subgroup of G,
then G® is a solvable group.
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Lemma 1.6 [1, Corollary 3.2.91. If § is a local
formation, then [G%,Z3(G)] =1, for any group G.

Lemma 1.7 [13, Theorem 3.2]. Let § be a S-
closed saturated formation containing . Suppose
that G is a group with a normal subgroup E such
that G/IE €5 . If all cyclic subgroups of E of prime
order and order 4 are U, -normal in G, then
Ge§.

Lemma 1.8 {13, Theorem 4.1]. 4 group G is
solvable if and only if every minimal subgroup of G
is i, -normal in G.

Lemma 1.9 [13, Theorem 3.1]. 4A'group G is
supersoluble if and only if there_exists. a normal
subgroup E of G such that G/E s supersoluble
and every maximal subgroup” of“every non-cyclic
Sylow subgroup of E is Uy =normal in G.

Lemma 1,10, Let| Rocbe a soluble minimal
normal subgroup of "G \If there exists a maximal
subgroup R of R ‘such that R, is A, -normal in

G, then R is d group of prime order.
Proof.Since R is a minimal normal subgroup
of G, &\ s an elementary abelian group and

(R)e=d. By hypothesis, there exists a normal
subgroup K of G such that R K is a normal Hall
sibgroup of G and R NK<ZYG). Since
RNKG, RnK=1 or RnK=R If RnK=1,
then R=RNRK=R(RNK)=R, a contradict-
tion. If RNK =R, then R<K, andso R <K. It
follows that R =R NK <ZY(G). If R is not a
group of prime order, then 1= R <ZX(G)NnR.
Hence ZX(G)nR+#1 and R<ZX(G). It follows
that R is a group of prime order. This contradiction
completes the proof.

Lemma 1.11 [13, Lemma 2.6]. Let G be a
group and H < K <G. Then

(1) H is §,-normal in G if and only if G has
a normal subgroup T such that HT is a normal
Hall  subgroup  of G, H,<T and
HIH; nT/H; <Z3(G/H,).

(2) Suppose that H is normal in G. If K is
$,-normal in G, then K/H is §,-normal in G/H.

(3) Suppose that H is normal in G. Then for
every §,-normal subgroup E of G satisfying
(|H|,|E|)=1, HE/H is §,-normal in G/H.

@I H is §,-normal in G and § is
S-closed, then H is §,-normal in K,

) If H is §,-normal in G and § is
S, -closed then H is §, -normal in K.

(6) If Ge§, then every subgroup of G is
&, -normal in G.
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2 Main Results
Theorem 2.1. Let p be a prime divisor of |G |

with (|G|,p-1)=1. Then G is p-nilpotent if and
only if there exists a normal subgroup N of G such
that GIN is p-nilpotent and every maximal
subgroup of every Svliow subgroup of N is i, -
normal in G.

Proof. The necessity is obvious. We only need
to prove the sufficiency. Suppose that the assertion
is false and let G be a counterexample of minimal
order, we proceed the proof via the following steps.

(1) G is soluble, G has a minimal normal
subgroup L <N and L is an elementary abelian » -
group, where r is the largest prime in 7 (N).

If p>2, then G is soluble since (|G |,p-1)=1.
Now we assume that p=2. Then G/N is 2-
nilpotent and so G/N is soluble. Since every
maximal subgroup of every Sylow subgroup of N is
i, -normal in G, it is il, -normal in N by Lemma
1.11 (4). Applying Lemma 1.9 for the case G =N,
we get that N is supersoluble and so G is soluble.
Hence, for the largest prime number r in z(N), the
Sylow r-subgroup R of N is normal in N. Since

R char NJG, R is normal in G. Thus, G has a

minimal normal subgroup L<N and L is an
elementary abelian » -group.

(2) G/L is p-nilpotentand L=R ¢ Syl, (V).

Obviously, (G/L)/(N/L)=G/N is ptnilpo-
tent. Let R/L be a maximal subgroup-ofia Sylow
r-subgroup of AN/L. Then R, _is“a“ maximal
subgroup of the Sylow r-subgroetip R of N. By
hypothesis and Lemma 1.11 (2);"R 4L is il, -normal

in G/L. Let Q/L be a maximal subgroup of a
Sylow g -subgroup of N/I\, where g # r. It is clear
that O, = O] L, where 49/"is a maximal subgroup of
a Sylow g-subgroup of N . By hypothesis and
Lemma 1.LING),» O/L=0'L/L is &, -normal in
G/L. Hene€¢ by the minimal choice of G, G/L is
p-nilpotent. If p{| L], then G is p-nilpotent, a
contradiction. So L isa p-group. Since the class of
all p-nilpotent groups is a saturated formation, L is
the unique minimal normal subgroup of G
contained in N and L£L®(G). By Lemma 1.3,
F{N)=L. Since N is soluble, L<C,(F(N)<F(N)
and so C,(L)=L=F(N). Because RG and
R< F(N), we have that L =Re Syl (N).

(3) Final contradiction,
Let L, be a maximal subgroup of L. By (2)

and the hypothesis, L, is L[, -normal in G. Then by
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Lemma 1.10, we have that | L|= p. Since G/L is
p-nilpotent, G/L has a normal p-complement
H/L. By Schur Zassenhaus theorem, H =G,.L,
where G, is a Hall p'-subgroup of G. Since p is
the prime divisor of |G| with ((G|,p—1)=1 and
Ny (LY Cy(L)S Aur(L) is a cyclic subgroup of
order p—1. By the well known Burnside theorem,
we have that H is p-nilpotent. Hence, G, char

H<G and so G, 4G Clearly, G

L
complement of G, which implies that G\is p-
nilpotent. The final contradiction, completes the
proof.

Theorem 2.2. Let p be aprinie divisor of | G |
with (|G|, p—-1)=1. Then G is p-nilpotent if and
only if G has a solublé normal subgroup H such
that G/H is p-nilpotent and every maximal

is a normal p-

subgroup of every Sylow subgroup of F(H) is 4, -
normal in G.

Progof.The necessity is obvious. We only need
to prove‘the sufficiency. Suppose that the assertion
is false{and let G be a counterexample with
| GY|H . is minimal. Let P be an arbitrary Sylow

r<subgroup of F(H). Since P char F(H) char
HAG, P<G. We proceed the proof via the following
steps.

(1) GYNP=1.

If not, then 1z2®(G)NP<G. Let
R=®(G)nP. Clearly, (G/R)/(H/R)=G/H is p-

nilpotent. By [3, Theorem II1.3.5], we have that
F(H/R)=F(H)/R. Assume that P/R is a Sylow

r-subgroup of F(H/R) and P/R a maximal
subgroup of P/R. Then F, is a maximal subgroup of
P. By hypothesis, £ is &, -normal in G. Then by
Lemma 1.11 (2), £/R is 4, -normal in G/R. Now,
let O/R be a maximal subgroup of some Sylow
g -subgroup of F(H/R)=F(H)/R, where g=r.
Then O =0 R, where Q, is a maximal subgroup of
the Sylow g -subgroup of F'(#7). By hypothesis, O,
is il, -normal in G. Hence Q/R=(QR/R is i, -

normal in G/R by Lemma 1.11 (3). This shows that
(G/R,H/R) satisfies the hypothesis. The minimal

choice of (G,H) implies that G/R is p-nilpotent.
Since G/D(G) = (G/R)/(P(G)/R) is p-nilpotent
and the class of all p-nilpotent groups is a saturated

formation, G is p-nilpotent, a contradiction. Hence
(1) holds.
() P=(x)x--x(x,), where every (x)
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(i=1,---,m) is a normal subgroup of G of order ».
By (1) and Lemma 1.3, P=R x---xR_, where

R (i=1-,m) is a minimal normal subgroup of
G. We now prove that all R, are of order .
Assume that | R, [> r, for some i. Without loss
of generality, we let | R, [>». Let R’ be a maximal
subgroup of R. Then R'xR,x--xR =P is a
maximal subgroup of P. Set T =R, x---xR_, then,
clearly (R); =7. By hypothesis, £, is {(, -normal
in G. Hence by Lemma 1.11 (1), there exists a
normal subgroup N of G, such that (F), <N,

AN is a normal Hall subgroup of G and
(BN (P); <ZXGIP),). 1t follows that
AN=RTN=R'N. If RN #1, then
I<RNNd2G. By the minimal normality of R,
RNN=R and so R <N. Hence AN=RN=N.
R <N It  follows  that
RIR)G < ZE(GIP),). If (B), =P, then R =1,
which contradicts RN #1. Hence (B); <P,
and so 1# PAR), <Z2(GHP);)NP/(P),. Since
P/(R); =R and R is a minimal normal subgroup
of G, P/(R), is a chief factor of G. This implies
that  Z(G/P);)NPI(P), =P/(P), and so
PI(R); < ZU(G/(P),). 1t follows that | P/(P), |# 7
Hence | R, |=r, a contradiction. Now assumfe that
RN =1. Then (R'); =1<N <9G, R'N'= PN is
a normal Hall subgroup and
(RT N"NY(R)), =12 Z2(G/(R}) ) This shows that

R is 4, -normal in G. Hencg R), is a cyclic group

Consequently

of order » by Lemma 1.10, a contradiction again.
Thus (2) holds.

(3) G/F(H) is pxnilpotent.

From (2), F(H)={y)x--x(y,), where every
(y,) (i=1,4,n)is a normal subgroup of G of
prime order. Since G/C, ((y,)) is isomorphic to a
subgrouprof Aur({y,)), G/Cs ((1,)) is eyelic and
so it is p-nilpotent for each /. It follows that
G/, C;((»)) is p-nilpotent. Obviously, C,(F(H))=
=, Co((y)). Hence G/C,(F(H)) is p-nilpo-
tent. Consequently G/(H NC,(F(H)))= G/C,,(F(H))
is p-nilpotent. Because F(H) is abelian, we have
that F(H)<C,(F(H)). On the other hand,
C,(F(H)<F(H) for H is soluble. Thus
F(H)=C,(F(H)) and so G/F(H) is p-nilpotent.

(4) Final contradiction.
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In view of Theorem 2.1, we have that G is
p-nilpotent. The final contradiction completes the

proof.
Theorem 2.3. Let § be a S -closed saturated

Jormation which satisfies that every minimal non- <5 -
group is soluble. Then G is an § -group if and only
if G has a normal subgroup N such that GIN € §
and every cyclic subgroup of order 4 of N is
§,-normal in G and every minimal subgroup of N
is contained in Z3(G).

Proof. The necessity is obvious. We anly need
to prove the sufficiency. Assume that the assertion is
false and choose G to be a counterexample of
minimal order. Then, obviously N %1%

Let L be a proper subgroup of G. Then
LILAN = LN/N <G/N implies that L/LAN e §.
Since LN <N, by hypothesis, every cyclic
subgroup of LN N of order 4 is §,-normal in G
and hence is §, -normal in L by Lemma 1.11. On

the other hand, sin¢e ‘every minimal subgroup of L
is a minimal subgroup of G, every minimal

subgroup\of. L is contained in Z3(G)nL < Z3(L)
by Lémma 1.1. This shows that (L,N ~ L) satisfies
the-hypothesis. By the minimal choice of G, Le§
and so G is a minimal non-% -group. By [I,

Theorem 3.4.2] and the hypothesis, we know that G
is soluble and G has the following properties: (1)

G® is a p-group, for some prime p; (2)
GS/®(G®) is a chief factor of G: (3) If G¥ is
abelian, then G¥ is an elementary abelian p-group;
(4) If p>2, then the exponent of G® is p; If
p =2, then the exponent of G¥ is 2 or 4.

Since G/Ne§, G®<N. Suppose that the
exponent of G*® is a prime. Then by hypothesis,
G® < Z¥(G) and so G € §, a contradiction.

Now assume that G* is not abelian and p =2.
We claim that there is no an element of order 4 in
G5\ ®(G®). Assume that there exists an element

xeG®\®(G®) with |(x)|=4. Then by hypothesis,
(x) is §,-normal in G . Hence by Lemma 1.11 (1),

there exists a normal subgroup T of G such that
(x)T is a normal Hall subgroup of G and

{(x)/{x), NT/{x), <ZE(G/(x),). Thus G® <(x)T
by (1). Let B=G'nT. Then P<G. If
R <®(G"), then GF =G* n{x)T=(x}(G* nT)=
=(x)P ={(x), a contradiction. So P, ¢ ®(G*). By
(2) PO(G*)/D(G®)=G¥/D(G®). 1t follows that
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R=G" and so G®<T. Thus (x)<T and
( > ( > We first
(x)/{x), mT/( ) =1. Then (x)=(x)_ <G. Hence
(X)DGH/D(G®) aG/D(GF).  Then by (2),
(x)D(G*)=G? and so {(x)=G?¥, a contradiction.
Hence (x)/(x), nT/{x}, #1, that is (x); <{x),
and so |(x), |<2. If [(x), |=1, then (x)<Z3(G).
G® <Z%¥(G) and consequently
If E(x)(; =2, then
(x)/(x), <Z}(G/(x),) and (x),<Z}(G). 1t
follows that Z3(G/(x).)=Z5(G)/(x),. Hence
(x)<Z¥(G). This implies that G% <Z5(G).
Consequently Ge§. This final contradiction
completes the proof.

Corollary 23.1. lLet § be a 8§-closed

saturated formation which satisfies that every
minimal non-F -group is soluble. Then G is an

S -group if and only if every cyclic subgroup of
order 4 of G is §,-normal in G and every

X assume that

By hypothesis,

GeF, a contradiction.

minimal subgroup of G is contained in Z%(G).

Corollary 2,3.2 (Miao, Guo [18]). Let § be a
S8 -closed saturated formation which satisfies that a
minimal non-§ -group is soluble and its § -residual
is a Sylow subgroup. If every cyclic subgroup” of
order 4 of G is c-normal in G and every minimal
subgroup of G is contained in the 5 -hypercenter of
G, then G is an § -group.

Corollary 2.3.3 (Miao, Guo [18)). Let § be a
S -closed saturated formation which satisfies that a
minimal non-5 -group is soluble and its § -residual
is a Sylow subgroup. Let N “be a normal subgroup
of G and GIN €§. if every cyclic subgroup of
order 4 of N is c-normal in G and every minimal
subgroup of N _is contained in the § -hypercenter of
G, then G isian'§ -group.

Theorem 2.4. Let § be a S -closed saturated
Jormatien' containing 8 and G a group. Then
Ge§ if and only if there exists a normal subgroup
N of G such that GIN € and all elements of N
of odd prime order are A, -normal in G and N
has an abelian Sylow 2 -subgroup and every
subgroup of N of order 2 is contained in Z2(G).

Proof. Assume that the theorem is false and let
G be a counterexample of minimal order.

First we show that M e § for every maximal

subgroup M of G. If N¢M, then G=MN and
MIMAN=MNINeF. Since § is S-closed,
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MANZE(G)<Z3(M) by Lemma 1.1. Then by
Lemma 1.11, we see that (M, M N N) satisfies the
hypothesis. Hence M e§ by the choice of G.
Therefore G is a minimal non-§-group. Let
R=G?. Then R<N. Assume that R' <R, where

r

R' is the derived subgroup of R. Then R is soluble
by Lemma 1.5. Hence by [1, Theorem 3.4.2] and
since R has an abelian Sylow 2 -subgroup, R is a
p-group of exponent p. If p#2, then Ge F by
Lemma 1.7, a contradiction. Suppose that p =2,
then R is an elementary abelian 2 -group.‘Thus, by
hypothesis, R<Z}(G) and so.“Ge&%, a
contradiction. Now assume that R="R’” Let T bea
Sylow 2-group of R. Then 7is abelian and so
TmZ(R)=1 by Lemma 1.4, Assume that 7 #1.

Then there exists an element) reT with |r|=2.
Hence rer:(G) andvso- re Z5(G)nR. Since
ZXG)NR is contained in Z(R) by Lemma 1.6,

re Z(R)nT =15, That is Z(R)YnT#1. This
contradiction’ shows that R is of odd order.
Therefore by Feit-Thompson theorem, R is soluble,
which contradicts R = R’

These  contradictions show that the
counterexample of minimal order does not exist.
Therefore the Theorem holds.

Theorem 2.5. Let § be a saturated formation
containing i1.. Suppose that G is a group with a
normal subgroup H such that G/He§. Then
G e § if one of the following conditions holds:

(a) G is 2-nilpotent and every element x of
odd prime order of H is Y, -normal in G.

(b) H has an abelian Sylow 2 -subgroup and
every subgroup of prime order of H is i, -normal
inG.

Proof. (a) If G is 2-nilpotent, then H is
2 -nilpotent. Let K be the 2 -complement of H .
Then K<G. Since (G/K)/(H/K)=G/He§ and
H/K is a 2-group, H/K has no element of odd
order . Hence G/K € § by induction on |G |. Since
K is a 2-complement of H, K has no cyclic
subgroup of order 4. Thus G & § by Lemma 1.7.

(b) Let E=G%. Then, obviously, £< H and
E has abelian Sylow 2 -subgroups. By hypotheses,
every subgroup (x) of prime order of £ is 4, -

normal in . Hence, by Lemma 1.11, (x) is also
i, normal in E. It follows from Lemma 1.8 that
E is soluble. Let M be a maximal subgroup of G
such that E€M. Then ME/E=M/M~Ec§. It is
easy to see that (M, M N E) satisfies the hypothesis.
Therefore M €F by induction. Then, applying [I,
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Theorem 3.4.2], we see that £ is a p-group of
exponent p. Thus Ge§ by Lemma 1.7.

REFERENCES

1. Guo, W. The Theory of Classes of Groups /
W. Guo. — Beijing-New York-Dordrecht-Boston-
London : Science Press / Kluwer Academic Publi-
shers, 2000.

2. Robinson, D.J.S. A Course in the Theory of
Groups / D.J.S. Robinson. — New York : Springer,
1982.

3. Huppert, B. Endliche Gruppen 1/ B. Hup-
pert. — Berlin-Heidelberg-New York : Springer-Ver-
lag, 1967.

4. Buckley, J. Finite groups whose minimal
subgroups are normal / J. Buckley // Math. Z. —
1970. - Vol. 116. - P. 15-17.

5. Srinivasan, S. Two sufficient conditions for
supersolvability of finite groups / S. Srinivasan //
Israel J. Math. — 1980. — Vol. 3, Ne 35. — P. 210-214.

6. Wang, Y. c-normality of groups and its
properties / Y. Wang // J. Algebra. — 1996. —
Vol. 180. — P. 954-965.

7. Yang, N. On §, -supplemented subgroups of

finite groups / N. Yang, W. Guo // Asian-European
Journal of Mathematics. — 2008. — Vol. 1, Ne 4, —
P. 619-629,

8. Wang, Y. c-normality and solvability of
groups / Y. Wang // J. Pure Appl. Algebra. — 1996. —
Vol. 110.-P. 315-320.

9. Guo, X. On c¢-normal maximal and minirmal
subgroups of Sylow p-subgroups of finite groups./
X. Guo, K.P. Shum // Arch. Math. — 2003) Vol 80.
—P.561-569

68

10. Li D. The influence of ¢-normality of
subgroups on the structure of finite groups / D. Li,
X. Guo // ]. Pure. App. Algebra. — 2000. — Vol. 150.
—P. 53-60.

11. Li D. The influence of c¢-normality of
subgroups on the structure of finite groups 11/ D. Li,
X. Guo // Comm. Algebra. — 1998. — Vol. 26. —
P. 1913-1922.

12. Miao, L. New criteria for p-nilpotency of

finite groups / L. Miao, W. Guo, K.P. Shum //
Comm. Algebra. — 2007. — Vol. 35. — P. 965-974.

13. Feng X., Guo W., Huang J., New
characterizations of some classes of finite ‘groups,
Malaysian Mathematical Science Society,'to appear.

14. Shemetkov, L.A. Formations of Algebraic
Systems / L.A. Shemetkov, A.N.Skiba.'— Moscow :
Nauka, 1989.

15. Guo, W. On § -supplemented subgroups of
finite group / W. Guo // Manuscripta Math. — 2008.
—Vol. 127. - P. 139-150;

16. Shemetkov, L.A. Formations of Finite
Groups / L.A. Shemetkov. — Moscow : Nauka, 1978.

17.  Ballester-Belinches, 4. On minimal
subgroups.of finite groups / A. Ballester-Belinches,
M.C. Pedraza-Aguilera // Acta Math. — 1966. — Vol.
73, Ne 47 P, 335-342.

18/ Miao, L. The influence of ¢-normality of
some’ subgroups on the structure of a finite /
L. "Miao, W. Guo // Problems in Algebra, — 2000. —
Vol. 3, Ne 16. - P. 101-106.

Research is supported by a NNSF of China
(Grant: 10771180).

fTocmynuna 6 pedaxywio 23.07.10.

Hpobnemur huzurcu, mamemarmuxu u mexuuxu, Ne 3 (4), 2010



	Scan0001.tif
	Scan0002.tif
	Scan0003.tif
	Scan0004.tif
	Scan0005.tif
	Scan0006.tif



