УДК 512.542

О КОНЕЧНЫХ ГРУППАХ, ФАКТОРИЗУЕМЫХ ФОРМАЦИОННЫМИ ПОДГРУППАМИ

В.Н. Семенчук, В.Ф. Велесницкий

Гомельский государственный университет им. Ф. Скорины, Гомель

ON THE FINITE GROUPS FACTORIZABLE BY FORMATION SUBGROUPS

V.N. Semenchuk, V.F. Veliasnitski

F. Scorina Gomel State University, Gomel

Работа посвящена изучению конечных групп, факторизуемых формационными погруппами.

Ключевые слова: группа, формация, корадикал, обобщенно субнормальная подгруппа, индекс, подгруппа Фраттини.

This work is devoted to the study of finite groups factorizable by formation subgroups.

Keywords: group, formation, coradical, generalized subnormal subgroup, index, subgroup Frattini.

Введение

Вопросы, посвященные факторизации групп, в теории конечных групп занимают важное место. Под факторизацией конечной группы понимается представление её в виде произведения некоторых её подгрупп, взятых в определенном порядке или попарно перестановочных.

Начало исследований по факторизации конечных групп восходит к классическим работам Ф. Холла [1], [2], посвященных изучению строения разрешимых групп.

Следующий важный шаг в данном направлении был сделан С.А. Чунихиным, которым был исследован ряд важных арифметических свойств конечных групп [3].

Кегель и Виланд [4], [5] установили, что конечная группа, факторизуемая двумя нильпотентными подгруппами, разрешима.

В 1996 году В.Н. Тютянов в работе [6] доказал, что любая конечная группа вида G = AB, где A и $B - \pi$ -замкнутые подгруппы и индексы |G:A|, |G:B| не делятся ни на одно простое число p из некоторого множества простых чисел π , является π -замкнутой группой.

Естественно возникает задача об нахождении новых классов конечных групп \mathfrak{F} , замкнутых относительно произведения \mathfrak{F} -подгрупп, индексы которых не делятся ни на одно простое число из некоторого множества простых чисел π . Именно развитию данного направления и посвящена данная работа.

1 Предварительные сведения

Все рассматриваемые в работе группы конечны. На протяжении всей работы будем пользоваться стандартными обозначениями, взятыми

из [7], [8]. Напомним наиболее часто встречающиеся известные результаты и обозначения.

Обозначим через π — некоторое множество простых чисел, т. е. $\pi \subseteq \mathbb{P}, \ \pi' = \mathbb{P} \setminus \pi$ — дополнение к π во множестве всех простых чисел; в частности, $p' = \mathbb{P} \setminus \{p\}$, где P — множество всех простых чисел.

 \mathfrak{G}_{π} – класс всех π -групп.

Напомним, что произведением классов группп \S и $\mathfrak X$ называется класс $\S \mathfrak X$, который состоит из всех групп G таких, что в G найдется нормальная \S -подгруппа N с условием $G/N \in \mathfrak X$.

Если \mathfrak{F} – класс групп и G – группа, то корадикал $G^{\mathfrak{F}}$ – пересечение всех нормальных подгрупп N из G таких, что $G/N \in \mathfrak{F}$.

Формация – класс групп, замкнутый относительно фактор-групп и подпрямых произведений. Формация называется насыщенной, если $G/\Phi(G) \in \S$, то $G \in \S$.

В теории конечных групп одно из центральных понятий является понятие субнормальной подгруппы.

В теории классов конечных групп естественным обобщением понятия субнормальности является понятие §-субнормальности, которое для произвольных конечных групп впервые введено Л.А. Шеметковым.

Пусть \mathfrak{F} — непустая формация. Подгруппу H группы G называют \mathfrak{F} -субнормальной, если либо H=G, либо существует максимальная цепь

$$G = H_0 \supset H_1 \supset ... \supset H_n = H$$

такая, что $(H_{i-1})^{\$} \subseteq H_i$ для всех i = 1, 2, ..., n.

Несколько другое понятие \S -субнормальности введено Кегелем. Фактически оно объединяет понятие субнормальности и \S -субнормальности в смысле Шеметкова.

Подгруппу H называют \Re -субнормальной в смысле Кегеля или \Re -достижимой, если существует цепь подгрупп

$$G = H_0 \supseteq H_1 \supseteq ... \supseteq H_m = H$$

такая, что для любого i=1,2,...,m либо подгруппа H_i нормальна в H_{i-1} , либо $(H_{i-1})^{\S} \subseteq H_i$.

В следующей лемме приводятся известные свойства обобщенных субнормальных подгрупп.

Лемма 1.1. Пусть \S – непустая наследственная формация. Тогда справедливы следующие утверждения:

- 1) если H подгруппа группы G и $G^{\$} \subseteq H$, то H \$ -субнормальная (\$ -достижимая) подгруппа группы G;
- 2) если $H \Re$ -субнормальная (\Re -достижимая) подгруппа группы G, то $H \cap K \Re$ -субнормальная (\Re -достижимая) подгруппа K для любой подгруппы K группы G;
- 3) если $H \S$ -субнормальная (\S -достижимая) подгруппа K и $K \S$ -субнормальная (\S -достижимая) подгруппа группы G, то $H \S$ -субнормальная (\S -достижимая) подгруппа группы G;
- 4) если H_1 и H_2 \S -субнормальные (\S -достижимые) подгруппы группы G, то $H_1 \cap H_2$ — \S -субнормальная (\S -достижимая) подгруппа группы G;
- 5) если все композиционные факторы группы G принадлежат формации \mathfrak{F} , то каждая субнормальная подгруппа группы G \mathfrak{F} -субнормальна \mathfrak{F} \mathfrak{F}
- 6) если $H \Re$ -субнормальная (\Re -достижимая) подгруппа группы G, то $H^x \Re$ -субнормальна (\Re -достижима) в G для любых $x \in G$.

Напомним, что группа G называется π -замкнутой, если она содержит нормальную π -холлову подгруппу. Класс всех таких групп имеет вид $\mathfrak{G}_{\pi}\mathfrak{G}_{\pi}$.

2 Основные результаты

Теорема 2.1. Пусть π_1 и π_2 — некоторые множества простых чисел и $\mathfrak{F} = \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2}$. Тогда любая π_2 -разрешимая группа G = AB, где A и B \mathfrak{F} -подгруппы, индексы которых |G:A|, |G:B| не делятся ни на одно простое число из π_2 , принадлежит \mathfrak{F} .

Доказательство. Доказательство теоремы проведем индукцией по порядку группы G. Так как по условию теоремы $G-\pi_2$ -разрешимая группа, то любая её минимальная нормальная подгруппа N- либо π_2' -группа, либо абелева p-группа, где $p\in\pi_2$. Рассмотрим следующие два случая.

1. Пусть $N-\pi_2'$ -группа. Покажем, что для фактор-группы G/N условие теоремы выполняется. Действительно,

 $G/N = AN/N \cdot BN/N$.

По теореме об изоморфизмах

 $AN/N \simeq A/A \cap N$ и $BN/N \simeq B/B \cap N$.

Так как A и B- \S -подгруппы и \S -формация, то $A/A\cap N\in \S$, $B/B\cap N\in \S$. Отсюда следует, что $AN/N\in \S$ и $BN/N\in \S$. Известно, что

|G:AN| = |G/N:AN/N| u |G:BN| = |G/N:BN/N|.

Это значит, что индексы |G/N:AN/N| и |G/N:BN/N| не делятся ни на одно простое число из π_2 . Итак, условия теоремы справедливы для фактор-группы G/N. По индукции, $G/N \in \mathfrak{F}$. Покажем, что $N \in \mathfrak{G}_{\pi_1}$. Действительно, так как A и B принадлежат \mathfrak{F} и G=AB, то $\pi(G) \subseteq \pi(\mathfrak{F})$. Отсюда следует, что $N \in \mathfrak{G}_{\pi_1}$. Так как $G/N \in \mathfrak{G}_{\pi_1}, \mathfrak{G}_{\pi_2}$, то $G \in \mathfrak{F} = \mathfrak{G}_{\pi_1}, \mathfrak{G}_{\pi_2}$.

2. Пусть N — абелева p -группа. Покажем, что N — единственная нормальная подгруппа группы G. Действительно, предположим противное. Пусть N_1 и N — две различные минимальные подгруппы группы G. Рассмотрим фактор-группы G/N_1 и G/N. Как и выше нетрудно показать, что условие теоремы для фактор-групп G/N_1 , G/N выполняется. По индукции, $G/N_1 \in \mathfrak{F}$ и $G/N \in \mathfrak{F}$. Так как \mathfrak{F} — формация, то $G = G/N_1 \cap N \in \mathfrak{F}$. Итак, N — единственная минимальная нормальная подгруппа группы G.

Покажем, что $\Phi(G) = 1$. Предположим противное. Тогда рассмотрим фактор-группу $G/\Phi(G)$. Как и выше, нетрудно показать, что условия теоремы выполняются для $G/\Phi(G)$. Следовательно, по индукции, $G/\Phi(G) \in \mathfrak{F}$. Так как \mathfrak{F} — насыщенная формация, то $G \in \mathfrak{F}$. Итак, $\Phi(G) = 1$. Тогда нетрудно показать, что $C_G(N) = N$.

Так как $p\in\pi_2$ и индексы |G:A| и |G:B| не делятся ни на одно простое число из π_2 , то $N\subseteq A\cap B$. Если $p\in\pi_1$, то из того факта, что $G/N\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$ следует, что $G\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$. Итак,

 $p\in\pi_2\setminus\pi_1$. Покажем, что $O_{\pi_1}(A)=1$. Предположим противное, тогда

$$O_{\pi_1}(A) \subseteq C_A(N) = N.$$

Получили противоречие. Итак, $O_{\pi_1}(A)=1$. Теперь из того факта, что $A\in \mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$, следует, что $A\in \mathfrak{G}_{\pi_2}$. Аналогично можно доказать, что $B\in \mathfrak{G}_{\pi_2}$. Так как G=AB, то $G\in \mathfrak{G}_{\pi_2}$. А это значит, что $G\in \mathfrak{F}$. Теорема доказана.

Теорема 2.2. Пусть π_1 и π_2 — некоторые множества простых чисел и $\mathfrak{F} = \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2}$, тогда любая группа G = AB, где A и B \mathfrak{F} -подгруппы и индексы |G:A|, |G:B| не делятся ни на одно простое число из π_2 и A или B — \mathfrak{F} - субнормальная подгруппа G, принадлежит \mathfrak{F} .

Доказательство. Доказательство теоремы проведем индукцией по порядку группы G. Пусть K — произвольная нормальная подгруппа группы G. Покажем, что условия теоремы для фактор-группы G/K выполняются. Действительно,

$$G/K = AK/K \cdot BK/K$$
.

По теореме об изоморфизмах $AK/K \simeq A/A \cap K$ и $BK/K \simeq B/B \cap K$.

Так как A и $B-\S$ -подгруппы и \S -формация, то $A/A\cap K\in \S$, $B/B\cap K\in \S$. Отсюда следует, что $AK/K\in \S$ и $BK/K\in \S$. Известно, что

$$|G:AK| = |G/K:AK/K|$$
 u $|G:BK| = |G/K:BK/K|$.

Это значит, что индексы |G/K:AK/K| и |G/K:BK/K| не делятся ни на одно простое число из π_2 . Итак, условия теоремы справедливы для фактор-группы G/K. По индукции, $G/K \in \mathfrak{F}$.

Покажем, что группа G имеет единственную минимальную нормальную подгруппу N. Предположим противное, пусть N_1 и N — две различные минимальные нормальные подгруппы группы G. Очевидно, что $N_1 \cap N = E$. Как показано выше, по индукции, $G/N_1 \in \mathfrak{F}$ и $G/N \in \mathfrak{F}$. Так как \mathfrak{F} — формация, то $G/N_1 \cap N = G \in \mathfrak{F}$. Получили противоречие.

Покажем, что $\Phi(G) = 1$. Предположим противное, $\Phi(G) \neq 1$. Рассмотрим фактор-группу $G/\Phi(G)$. Как и выше, можно показать, что условия теоремы для фактор-группы $G/\Phi(G)$ выполняются. Следовательно, по индукции, $G/\Phi(G) \in \mathfrak{F}$. Так как \mathfrak{F} — насыщенная формация, то $G \in \mathfrak{F}$. Получили противоречие. Итак, $\Phi(G) = 1$.

Рассмотрим следующие два случая.

1. Пусть N — абелева группа, тогда N — p -группа. Если $p \in \pi_1$, то из этого факта, что $G/N \in \mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$ следует, что $G \in \mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$ и теорема доказана.

Пусть $p \in \pi_2 \setminus \pi_1$. Так как индексы |G:A| и |G:B| не делятся ни на одно простое число p, то, очевидно, что $N \subseteq A \cap B$.

Так как N — единственная минимальная нормальная подгруппа группы G и $\Phi(G)=1$, то известно, что $C_G(N)=N$.

Согласно условию $A\in \mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$. Покажем, что $O_{\pi_1}(A)=1$. Предположим противное, тогда $O_{\pi_1}(A)$ и N поэлементно перестановочны, т. е. $O_{\pi_1}(A)\subseteq C_G(N)=N$, что невозможно. Итак, $O_{\pi_1}(A)=1$. Теперь из того факта, что $A\in \mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$ следует, что $A\in \mathfrak{G}_{\pi_2}$. Аналогичным образом получаем, что $B\in \mathfrak{G}_{\pi_2}$. Так как G=AB, то $G\in \mathfrak{G}_{\pi_2}$. А это значит, что $G\in \mathfrak{F}$ и теорема до-казана

2. Пусть N неабелева группа. В этом случае $N = N_1 \times N_2 \times ... \times N_t$ есть прямое произведение неабелевых простых групп и $C_G(N) = 1$.

Рассмотрим подгруппу H = AN.

Как и выше, нетрудно показать, что $G/N \in \S$. Отсюда следует, что $G^\S \subseteq N$. Так как $G \notin \S$ и N — минимальная нормальная подгруппа группы G, то $N = G^\S$.

Покажем, что $H = AN \neq G$. Допустим противное, т. е. G = AN. Так как A — собственная подгруппа группы G и A — \mathfrak{F} -субнормальная подгруппа группы G, то она содержится в некоторой максимальной \mathfrak{F} -нормальной подгруппе M группы G. Поскольку $N = G^{\mathfrak{F}} \subseteq M$, то $AN \subseteq M = G$, что невозможно. Итак, $AN \neq G$.

Рассмотрим подгруппу $A^H \subseteq AN \neq G$. По тождеству Дедекинда

$$A^{H} = A^{H} \cap G = A^{H} \cap AB = A(A^{H} \cap B).$$

Покажем, что для подгруппы A^H условие теоремы выполнено. Действительно, так как \mathfrak{F} — наследственная формация, то из того, что $B \in \mathfrak{F}$ следует, что $A^H \cap B \in \mathfrak{F}$. Согласно лемме 1.1 $A - \mathfrak{F}$ -субнормальная подгруппа из A^H . Очевидно, что индексы $A^H : A \mid A \mid A^H : A^H \cap B \mid$ не делятся ни на одно простое число из π_2 . Так как A^H — собственные подгруппы группы G, то, по индукции, $A^H \in \mathfrak{F}$. Если $A^H \cap N = 1$, то отсюда

следует, что $A^H \subseteq C_G(N) = 1$. Получили противоречие, а тогда $A^H \cap N \neq 1$. Так как A^H — нормальная подгруппа из AN, то $A^H \cap N$ — нормальная подгруппа из N, но тогда

$$A^{H} \cap N = N_{i_1} \times N_{i_2} \times ... \times N_{i_k}$$

где N_{i_j} — изоморфные неабелевы простые группы, j=1,2,...,k. По доказанному выше $A^H\in \mathfrak{F}$. Так как \mathfrak{F} — наследственная формация, то $A^H\cap N\in \mathfrak{F}$. Отсюда следует, что $N_i\in \mathfrak{F}$, i=1,2,...,t. Так как

$$N = N_1 \times N_2 \times ... \times N_t$$

то из того факта, что \mathfrak{F} — формация, следует, что $N\in\mathfrak{F}=\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$. Если $N-\pi_1$ -группа, то из $G/N\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$ следует, что $G\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$ и теорема доказана.

Итак, порядок |N| делится по крайней мере на одно простое число $p \in \pi_2 \setminus \pi_1$.

Рассмотрим подгруппу $O_{\pi_1}(N)$. Очевидно, что $O_{\pi_1}(N)$ — собственная подгруппа из N. Если $O_{\pi_1}(N) \neq 1$, то, ввиду того, что $O_{\pi_1}(N)$ — нормальная подгруппа группы G, получаем противоречие с тем фактом, что N — минимальная нормальная подгруппа группы G. Итак, $O_{\pi_1}(N) = 1$. Теперь из того, что $N \in \mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$, следует, что $N \in \mathfrak{G}_{\pi_2}$.

Так как индексы |G:A| и |G:B| не делятся ни на одно простое число из π_2 , то $N\subseteq A\cap B$.

Рассмотрим подгруппу $O_{\pi_1}(A)$. Если $O_{\pi}(A) \cap N = 1$, то отсюда следует, что

$$O_{\pi_a}(A) \subseteq C_A(N) \subseteq C_G(N) = 1.$$

Поскольку $A \in \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2}$, то $A \in \mathfrak{G}_{\pi_2}$. Тогда из того, что G = AB и индексы |G:A|, |G:B| не делятся ни на одно простое число из π_2 следует, что G = B. Это значит, что $G \in \mathfrak{F}$ и теорема доказана.

Пусть теперь $O_{\pi_1}(A)\cap N \neq 1$. Так как $O_{\pi_1}(A)\cap N$ — нормальная подгруппа из N, то

$$O_{\pi_1}(A) \cap N = N_{j_1} \times N_{j_2} \times ... \times N_{j_t}$$

где N_{j_i} — изоморфные неабелевы простые группы, i=1,2,...,t. Отсюда следует, что $N_i\in\mathfrak{G}_{\pi_1},$ i=1,2,...,t.

Так как $N=N_1\times N_2\times ...\times N_t$, то $N\in\mathfrak{G}_{\pi_1}$. Поскольку $G/N\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$, то $G\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}$ и теорема доказана.

Теорема 2.3. Пусть $\mathfrak{F} = \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$, где π_1 и π_2 – некоторые множества простых чисел таких, что $\pi_1 \cap \pi_2 = \emptyset$. Если $G = AB - \pi_2$ -разрешимая группа, где A и $B - \mathfrak{F}$ -подгруппы, индексы которых |G:A|, |G:B| есть π_1 -числа, $G \in \mathfrak{F}$.

Доказательство. Доказательство теоремы проведем индукцией по порядку группы G. Покажем, что условия теоремы для фактор-группы G/N выполняются. Действительно,

$$G/N = AN/N \cdot BN/N$$
.

По теореме об изоморфизмах

 $AN/N \simeq A/A \cap N$ и $BN/N \simeq B/B \cap K$.

Так как A и B- \S -подгруппы и \S -формация, то $A/A\cap N\in \S$, $B/B\cap N\in \S$. Отсюда следует, что $AN/N\in \S$ и $BN/N\in \S$. Известно, что

$$|G:AN| = |G/N:AN/N|$$
 u $|G:BN| = |G/N:BN/N|$.

Это значит, что индексы |G/N:AN/N| и |G/N:BN/N| не делятся ни на одно простое число из π_2 . Итак, условия теоремы справедливы для фактор-группы G/N. По индукции, $G/N \in \mathfrak{F}$.

Так как по условию теоремы $G-\pi_2$ -разрешимая группа, то её любая минимальная нормальная подгруппа N- либо π_2' -группа, либо абелева p-группа, где $p\in\pi_2$.

Пусть
$$N-\pi_2'$$
-группа. Рассмотрим
$$G/N=AN/N\cdot BN/N.$$

Очевидно, что AN/N и BN/N § -подгруппы и $\big|G/N:AN/N\big|,\;\; \big|G/N:BN/N\big|\;\;-\;\;\pi_1$ -числа. По индукции, $G/N\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$.

Так как G=AB, где A и B — ${\mathfrak F}$ -подгруппы, то $\pi(G)\subseteq\pi({\mathfrak F})$. Это значит, что N — π_1 -группа. Теперь, из того факта, что $G/N\in{\mathfrak G}_{\pi_1}{\mathfrak G}_{\pi_2}{\mathfrak G}_{\pi_1}$ следует, что $G\in{\mathfrak G}_{\pi_1}{\mathfrak G}_{\pi_2}{\mathfrak G}_{\pi_1}$.

Пусть N — абелева p -группа, где $p \in \pi_2$. Покажем, что N — единственная минимальная нормальная подгруппа группы G. Действительно, предположим противное, пусть N и N_1 — две различные минимальные подгруппы группы G. Ясно, что $N \cap N_1 = 1$. Как и выше, не трудно показать, что условия теоремы переносятся на фактор-группы G/N и G/N_1 . Следовательно, по индукции, $G/N \in \mathfrak{F}$ и $G/N_1 \in \mathfrak{F}$. Так как \mathfrak{F} — формация, то $G \simeq G/N \cap N_1 \in \mathfrak{F}$. Покажем, что $\Phi(G) = 1$. Действительно, в противном случае, как и выше, можно доказать, что $G/\Phi(G) \in \mathfrak{F}$. Так как \mathfrak{F} — насыщенная формация, то $G \in \mathfrak{F}$. Поскольку N — единственная минимальная

нормальная подгруппа группы G и $\Phi(G)=1$, то отсюда следует, что $C_G(N)=N$.

Так как N-p -группа $(p\in\pi_2)$ и индексы |G:A| и $|G:B|-\pi_1$ -числа, то $N\subseteq A\cap B$. Рассмотрим подгруппу $A\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$. Если $O_{\pi_1}(A)\neq 1$, то $O_{\pi_1}(A)\subseteq C_A(N)=N$, что невозможно. Итак, $O_{\pi_1}(A)=1$. Отсюда следует, что $A\in\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$. Аналогичным образом можно доказать, что $B\in\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$. Так как $\pi_2\cap\pi_1=\emptyset$, то A и $B-\pi_2$ -замкнутые группы. Теперь из того факта, что G=AB и индексы |G:A|, $|G:B|-\pi_1$ -числа нетрудно показать, что $G=\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$. Отсюда следует, что $G\in\mathfrak{F}=\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$. Теорема доказана.

Следствие 2.3.1. Пусть G-p-разреши-мая группа, G=AB, где $l_p(A) \le 1$, $l_p(B) \le 1$, индексы |G:A|, |G:B| не делятся на p, тогда $l_p(G) \le 1$.

Доказательство. Известно, что класс всех p-разрешимых групп с p-длинной ≤1 можно записать в следующем виде \mathfrak{G}_p \mathfrak{G}_p \mathfrak{G}_p . Теперь требуемый результат следует из теоремы 2.3.

Теорема 2.4. Пусть $\mathfrak{F} = \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$, где π_1 и π_2 – некоторые множества простых чисел таких, что $\pi_1 \cap \pi_2 = \emptyset$. Тогда любая группа G = AB, где A и $B - \mathfrak{F}$ -подгруппы, индексы которых |G:A|, |G:B| есть π_1 -числа и A или B \mathfrak{F} -субнормальна в G, принадлежит \mathfrak{F} .

Доказательство. Доказательство теоремы проведем индукцией по порядку группы G. Пусть K — произвольная нормальная подгруппа группы G. Покажем, что условия теоремы для фактор-группы G/K выполняются. Действительно,

$$G/K = AK/K \cdot BK/K$$
.

По теореме об изоморфизмах

 $AK/K \simeq A/A \cap K$ и $BK/K \simeq B/B \cap K$. Так как A и $B - \Re$ -подгруппы и \Re -формация, то $A/A \cap K \in \Re$, $B/B \cap K \in \Re$. Отсюда следует, что $AK/K \in \Re$ и $BK/K \in \Re$. Известно, что

$$|G:AK| = |G/K:AK/K|$$

и $|G:BK| = |G/K:BK/K|$.

Это значит, что индексы |G/K:AK/K| и |G/K:BK/K| есть π_1 -числа. Итак, условия теоремы справедливы для фактор-группы G/K. По индукции, $G/K \in \mathfrak{F}$.

Покажем, что группа G имеет единственную минимальную нормальную подгруппу N. Предположим противное, пусть N_1 и N — две различные минимальные нормальные подгруппы группы G. Очевидно, что $N_1 \cap N = 1$. Как показано выше, по индукции, $G/N_1 \in \mathfrak{F}$ и $G/N \in \mathfrak{F}$. Так как \mathfrak{F} — формация, то $G/N_1 \cap N = G \in \mathfrak{F}$ и теорема доказана.

Покажем, что $\Phi(G) = 1$. Предположим противное, $\Phi(G) \neq 1$. Рассмотрим фактор-группу $G/\Phi(G)$. Как и выше, можно показать, что условия теоремы для фактор-группы $G/\Phi(G)$ выполняются. Следовательно, по индукции, $G/\Phi(G) \in \mathfrak{F}$. Так как \mathfrak{F} — насыщенная формация, то $G \in \mathfrak{F}$ и теорема доказана. Итак, $\Phi(G) = 1$.

Рассмотрим следующие два случая.

1. Пусть N — абелева p -группа, тогда N — p -группа. Если $p \in \pi_1$, то из этого факта, что $G/N \in \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$ следует, что $G \in \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$, а тогда $G \in \mathfrak{G}_{\pi} \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$ и теорема доказана.

Пусть $p \in \pi_2 \setminus \pi_1$. Так как индексы |G:A| и |G:B| не делятся ни на одно простое число p, то, очевидно, что $N \subseteq A \cap B$.

Так как N — единственная минимальная нормальная подгруппа группы G и $\Phi(G)$ = 1, то известно, что $C_G(N)$ = N.

Согласно условию $A \in \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$. Покажем, что $O_{\pi_1}(A) = 1$. Предположим противное, тогда $O_{\pi_1}(A)$ и N поэлементно перестановочны, т. е. $O_{\pi_1}(A) \subseteq C_G(N) = N$, что невозможно. Итак, $O_{\pi_1}(A) = 1$. Теперь из того факта, что $A \in \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$ следует, что $A \in \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$. Аналогичным образом получаем, что $B \in \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$. Так как $\pi_1 \cap \pi_2 = \emptyset$, то A и $B - \pi_2$ -замкнутые подгруппы группы G. Поскольку индексы |G:A| и $|G:A| - \pi_1$ -числа, то $G - \pi_2$ -замкнутая группа, а значит $G \in \mathfrak{F}$.

2. Пусть N неабелева группа. В этом случае

$$N = N_1 \times N_2 \times ... \times N_t$$

есть прямое произведение неабелевых простых групп и $C_G(N) = 1$.

Рассмотрим подгруппу H = AN.

Как и выше, нетрудно показать, что $G/N \in \mathfrak{F}$. Отсюда следует, что $G^{\$} \subseteq N$. Так как $G \notin \mathfrak{F}$ и N — минимальная нормальная подгруппа группы G, то $N = G^{\$}$.

Покажем, что $H = AN \neq G$. Допустим противное, т. е. G = AN. Так как A — собственная подгруппа группы G и A — \mathfrak{F} -субнормальная подгруппа группы G, то она содержится в некоторой максимальной \mathfrak{F} -нормальной подгруппе M группы G. Поскольку $N = G^{\mathfrak{F}} \subseteq M$, то $AN \subseteq M = G$, что невозможно. Итак, $AN \neq G$.

Рассмотрим подгруппу $A^H \subseteq AN \neq G$. По тождеству Дедекинда

$$A^H = A^H \cap G = A^H \cap AB = A(A^H \cap B).$$

Покажем, что для подгруппы A^H условие теоремы выполнено. Действительно, так как \mathfrak{F} — наследственная формация, то из того, что $B \in \mathfrak{F}$ следует, что $A^H \cap B \in \mathfrak{F}$. Согласно лемме 1.1 $A-\mathfrak{F}$ -субнормальная подгруппа из A^H . Очевидно, что индексы $\left|A^H:A\right|$ и $\left|A^H:A^H\cap B\right|$ не делятся ни на одно простое число из π_2 . Так как A^H — собственные подгруппы группы G, то, по индукции, $A^H \in \mathfrak{F}$. Если $A^H \cap N = 1$, то отсюда следует, что $A^H \subseteq C_G(N) = 1$, тогда $A \subseteq A^H = 1$. Получили противоречие, а тогда $A^H \cap N \neq 1$. Так как A^H — нормальная подгруппа из AN, то $A^H \cap N$ — нормальная подгруппа из AN, но тогда $A^H \cap N$ — нормальная подгруппа из AN, но тогда $A^H \cap N$ — нормальная подгруппа из AN, но тогда

где N_{i_j} — изоморфные неабелевы простые группы, j=1,2,...,k. По доказанному выше $A^H\in \mathfrak{F}$. Так как \mathfrak{F} — наследственная формация, то $A^H\cap N\in \mathfrak{F}$. Отсюда следует, что $N_i\in \mathfrak{F}$, i=1,2,...,t.

$$N = N_1 \times N_2 \times ... \times N_t$$
,

то из того факта, что \mathfrak{F} — формация следует, что $N\in\mathfrak{F}=\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$. Если $N-\pi_1$ -группа, то из $G/N\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$ следует, что $G\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$ и теорема доказана.

Итак, порядок |N| делится по крайней мере на одно простое число $p \in \pi_2 \setminus \pi_1$.

Рассмотрим подгруппу $O_{\pi_1}(N)$. Очевидно, что $O_{\pi_1}(N)$ — собственная подгруппа из N. Если $O_{\pi_1}(N) \neq 1$, то, ввиду того, что $O_{\pi_1}(N)$ — нормальная подгруппа группы G, получаем противоречие с тем фактом, что N — минимальная нормальная подгруппа группы G. Итак, $O_{\pi_1}(N) = 1$. Теперь из того, что $N \in \mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$, следует, что $N \in \mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$. Если порядок |N| делится на некоторое простое число из π_1 , то N_{π_2} — собственная подгруппа из N. Так как N — π_2 -замкнутая

подгруппа, то N_{π_2} неединичная нормальная подгруппа группы G, что невозможно. Итак, $N-\pi_2$ -группа.

Так как индексы |G:A| и |G:B| не делятся ни на одно простое число из π_2 , то $N\subseteq A\cap B$.

Рассмотрим подгруппу $O_{\pi_1}(A)$. Допустим, что $O_{\pi_1}(A) \cap N \neq 1$. Поскольку $O_{\pi_1}(A) \cap N$ — нормальная подгруппа из N, то

$$O_{\pi_1}(A) \cap N = N_{j_1} \times N_{j_2} \times ... \times N_{j_t}$$

где N_{j_i} — изоморфные неабелевы простые группы, i=1,2,...,t. Отсюда следует, что $N_{j_i}\in G_{\pi_1}$, i=1,2,...,t. Так как $N=N_1\times N_2\times...\times N_t$, то $N\in\mathfrak{G}_{\pi_1}$. Поскольку $G/N\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$, то $G\in\mathfrak{G}_{\pi_1}\mathfrak{G}_{\pi_2}\mathfrak{G}_{\pi_1}$, и теорема доказана.

Пусть теперь $O_{\pi_1}(A)\cap N=1$, то отсюда следует, что $O_{\pi_1}(A)\subseteq C_A(N)\subseteq C_G(N)=1$.

Поскольку $A \in \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$, то $A \in \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1}$. Так как $\pi_2 \cap \pi_1 = \emptyset$, то $A - \pi_2$ -замкнутая группа. Аналогичным образом можно доказать, что $B - \pi_2$ -замкнутая группа. Поскольку индексы |G:A| и |G:B| есть π_1 -числа и G=AB, то $G - \pi_2$ -замкнутая группа. Отсюда следует, что $G \in \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1} \subset \mathfrak{G}_{\pi_1} \mathfrak{G}_{\pi_2} \mathfrak{G}_{\pi_1} = \mathfrak{F}$ и теорема доказана.

ЛИТЕРАТУРА

- 1. *Hall, P.* A note on soluble groups / P. Hall // Proc. London Math. Soc. 1928. Vol. 3. P. 98–105
- 2. *Hall, P*. On the Sylow systems of a soluble group / P. Hall // Proc. London Math. Soc. 1937. Vol. 43. P. 316–323.
- 3. *Чунихин, С.А.* Подгруппы конечных групп / С.А. Чунихин. Минск : Наука и техника, 1964. 158 с.
- 4. *Kegel, O.H.* Produkte nilpotenter Gruppen // Arch. Math. 1961. Vol. 12, № 2. P. 90–93.
- 5. *Wielandt, H.* Uber das Produkt von nilpotenten Gruppen / H. Wielandt // Illinois Journ. 1958. Vol. 2, № 4B. P. 611–618.
- 6. Тюмянов, В.Н. Факторизации π -нильпотентными сомножителями / В.Н. Тютянов // Математический сборник. 1996. Т. 187, № 9. С. 97—102.
- 7. Шеметков, Π .А. Формации конечных групп / Π .А. Шеметков // M.: Наука. 1978. 272 с.
- 8. *Монахов, В.С.* Введение в теорию конечных групп и их классов / В.С. Монахов // Мн. : Выш. шк., 2006.-207 с.

Поступила в редакцию 17.02.11.