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Introduction

The center-focus problem is the oldest and im-
portant problem of the qualitative theory of differen-
tial equations. It originates from the works of
H. Poincaré [1]. H. Poincaré put this problem and
evaluated its significance. A.M. Liapunov [2,
p- 136-252] suggested two methods for the solving
this problem. The methods are connected with an
infinite process of the calculating of so called
Liapunov numbers g,,g,,.... If one of the numbefs

g, 20 then the critical point under the considetra-

tion is focus. This point is center if and onlyif all
g, =0(keN).

The interest to the center-foeus| problem was
intensified in the Soviet Union and ‘China‘after pub-
lication the book [3, p. 77-86]. The new approach
appeared for the solving this*problem was given in
[4]. The algebraic insolvability of the problem in
general compels researchers, to, consider the problem
for the systems with’the polynomial right-hand side.
The summary of such investigation in the Soviet
Union was made in the'book [5].

The general consideration of the problem and
corresponding tesults was given by V.I. Arnold and
Iu.S. ljashenko in the work [6].

1, The center-focus problem
The center-focus problem arises when we con-
sider autonomous two dimension systems. The iso-
lated critical point (x,,y,) (the rest-point) of the
system is called center iff the point has a neighbor-
hood which entirely consists of closed trajectories.
In the polar coordinate two-dimension differen-
tial system goes to equation
dr _rP(o,r)

do  Q(e.r)’
with the rest point (equilibrium-point) » = 0.

(1.1)
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This point. »=0=1s a center iff all solutions
r=r(9,¢,,%,) of the equation (1.1) with sufficiently
small 7, are 2m-periodic. Therefore the point » =0
is center for (1.1) if and only if the reflecting func-
tion “ef'the (1.1) F(o,r) [7] is 2m-periodic with
respeet to @ [8, p. 13] for sufficiently small 7.

Thanks to that fact it is possible to look on the
center-focus problem from the point of view of the
reflecting function theory.

We put here some facts from the reflecting
function theory which are necessary for the under-
standing this work and comprehension of further use
the reflecting function for the problem. We set forth
the facts here in accordance with [7], [8].

The reflecting function F(¢,x) for the system

%:X(t,x),teR,xeR”, (1.2)
with the general solution o¢(#;¢,,x,) in the Cauchy
form can be defined by formula F(¢,x) = ¢(—¢;t, x).
The domain of the function consists of graphs of the
solutions x =@(#;0,x,) which exist on symmetric
intervals (—a ;o ).

We will assume that X(z,x) is continuously
differentiable function and mark the following prop-
erties of the reflecting function.

1°. For every extendible solution x(¢) of the sys-
tem (1.2) which exist on [-o;a] the identity
F(t,x(t)) = x(-t), Vt e[—a;a], is hold.

So the reflecting function connects the future
state x(¢) of the system with its past state x(—¢) and
vice versa. This property must serve as a definition
of the reflecting function (RF).

2° For all (z,x) from the domain of the reflect-

ing function F'(¢,x) the identities
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F(-t,F(t,x))=F(0,x)=x
are true.
3°. Differentiable function F(t,x) is the re-

flecting function of the system (1.2) if and only if
the function is the solution of the Cauchy problem

a—F+a—FX(t,x)+X(—t,F) =0, F(0,x)=x. (1.3)
ot Ox

We call this relation the main relation for the reflect-
ing function.
4°. If X(t,x) continually differentiable and
X(+2m) = X(t,x), then Poincaré map ¢o(®;—m, x)
of the system (1.2) over [, ®] is given by formula
F(-o,x), where F(t,x) is reflecting function of
the system. In this case the solution x = @(t;—®, x,)
of the system (1.2) will be 2w -periodic if and only
if the solution is extendible on [-®;®] and
F(-o,x,) = x,.
5°. The reflecting function F(¢,x) of the sys-
tem (0.2) for which X(—t,x)+ X(¢,x)=0 is given
by formula F(¢,x)=x. If in addition X(z,x) is
2® -periodic with respect to ¢ then every solution of
the system (1.2) which is extendible on [-®,®] is
2 -periodic.
6°. Every twice continuously differentiable
function F(¢t,x), F:D— R", where D contains
the hyperplane x=0 and F has the property
F(-t,F(t,x)) = F(0,x) = x is reflecting function“of
the system
-1
@:—l[a—Fj a—F=: S(t5x) (1.4)
dt 2\ 0x ) ot
and every system of the form
dc  1(oFY'oF (O
&%JE?%??)R“”‘ (0.5)
—R(—tF),

where R(f,x) is/any “eontinuously differentiable

a2

vector-function.

All such'systems form the class of equivalent
systems, which, is characterized by reflecting func-
tion F(Z,%).

The system (0.4) is called simple system of
the class. All autonomous systems are simple
systems.

d . .
7°. If system ?sz (t,x) is equivalent an
t

autonomous system, then this autonomous system is

dx
— = X(0,x).
dt
Sometimes it is very convenient to use the fol-

lowing
Statement 1.1. [9], [10, p. 171]. Suppose that
A, (t,x) (i=1;m) are solution of the system
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BLA vur-Xana=o.
ot Ox ox
Then all systems
% = X(t,x)+ Za,-(t)A,'(tsx)’
i=1

where o,(t) are scalar odd continuous functions,

are equivalent (i. e. they have the same reflecting
function which coincides with the reflecting function

of the system % = X (t,x)).

This statement and theorem from [11T\are very
important for the solvability of center-focus problem.

2 The main results
We consider the equation
dr  Ar+ A S A7
do 1+ Byr+By’ +o.+ B’
where A4 = A/(¢) and B, = B,(¢)
27 -periodic functions:
We assume that this equation obtained from the
two dimensional differential autonomous system for

which the center-focus problem is arising. Variables
¢ and » are coordinates of polar system. The point

@.1)

are continues

(x;») =(0,0) or =0 is the equilibrium point for
which the center-focus problem is arising. The func-
tion (@) =0 is the solution of (2.1). The solutions
r(9;0,7,) of the equation (1.1) for the sufficiently
small 7, are extendible on [—m;n].due to the theo-

rem of continuous dependence solutions on the ini-
tial conditions dates [3, p. 13].

Then in accordance with the property 4° the
equation (2.1) will have center at » =0 if and only
if for the reflecting function F(g,r) of the (2.1) the
identity F(m,r)=r or if and only if the reflecting
function will be 2 -periodic [8, p. 66].

Thus the center-focus problem for the equation

(2.1) reduces itself to the question: “When equation
(2.1) has 2m-periodic with respect to ¢ reflecting

function or when equation (2.1) is equivalent to any
different equation of the form (2.1) which has center
at r=0".

Theorem 2.1. Suppose

L. U=U(¢,r)=m,(@)r +m, (@)1 +...+m, ()"

is a polynomial with respect to r with continuously
differentiable — and  2m-periodic  coefficients

m, (@) (i Zm and m (@) # 0 for all o.

2. R(o,U) is polynomial with respect to U
with the continuous even 2m-periodic coefficients
and R(9;0)#0 VoeR.

3. S(o,U) is polynomial with respect to U

with continues 2w -periodic odd coefficients and
S(,0)=0.
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Then the reflecting function F(o,r) of the
equation
dr _ S(,U)-U R(e,U)
do  Ule.r)R(e,U)
is given by formula U(—o,F)=U(op,r) and point

2.2)

r =0 is a center for the equation (2.2).
Proof. We shall find the complete derivative of
U(o,r) along with the solutions of (2.2)

U _2u  ou dr _
dp 0Op Or do
S(e,U)-UR(p,U

U (9,U)-U,R(9,U) S(,U)

° R@U)  R@U)
d—U:M is odd function with respect to
do  R(e,U)

U. Therefore for every solution r(¢) of the equa-
tion (2.2) U(o,r(¢)) is even 2m-periodic function
[8, p. 13], [10, p. 65], that is

U(=9,7(=9)) =U(¢,7(9))

or U(—o,F ((p,r((p)));U (o,7(¢)) for every solution
Q,r
r(@). It means U(—o,F(p,r))=U(p,r). In this
identity U(¢,0)=0 and aa—U((p, 0)=m,(p)#0.
r

Therefore in accordance with the implicit function
theorem [12, p. 488] the reflecting function F(¢,r)
exist differentiable and 2 -periodic with respect to_o.
The theorem is proved. So point r=0 1is
a center. O
Now it is important to know when the'equation
(2.1) can be written in the form (2:2). First we con-
sider the case when R(op,r)=1 in(2:2). In this case
(2.2) has the form
dr
4y
_ S(@,U) = m{(@)r —my (@)r” —...— m; (@)1
T m () #2m, (@) + ...+ kmy (@)t
It follows from,this that to write the equation (2.1) in
the form (2.3)swe must multiply the numerator and

the denominator of the right hand-side of the equa-
tion (2.1) on the function

m (9) = exp(—jZ 4 (r)d‘c}.

2.3)

In such a way the equation (2.1) gets the form

dr _ D(@)r+Dy(@)r’ +...+ D, (¢)r" 2.4)
Ao m(Q)+2m, (Q)r +...+km, (@)~

where

m, (@) = exp[—if 4 (r)dtj. (2.5)

Here A4, (¢) is the function from the (2.1). In form
(2.4) we can rewrite every equation (2.1) and
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()
m,(¢) = exp[— j 4, (r)dr] £0.
0
In edition we will assume that function
%
(@) = exp(—f 4 (r)drj
0

is 27 -periodic function. If it is not 27 -periodic then
the Liapunov number

1 2n
g=5- ! A (t)dt#0

and the equilibrium r =0 is focus [5, p..7]hand the
center-focus problem is solved.

Theorem 2.2. Suppose that for-a~differentiable
function F(o,r), F(0,r)=r, thefollowing identities

2 m(—Q)F =y m(o)r'. (2.6)

k k
2 QI+ mi(@)r' +
- o (2.7)
+2.D.(@)r' + Y D, (-9)F' =0.
i=1 i=1
are correctsThen the reflecting function of the equa-
tion (2.4) isvgiven by formula (2.6) and the equilib-

rivm ¥.=0" for (2.4) is the center.
Proof. From the identity (2.6) we find

k
im, (o)r"”
o2

or

>

k
z im, (_(P)FH
=

k k
(@) (—Q)F'
oF 2@ 2 mi(-9)
op '

k
> im (—)F"
i=1

Then the main relation for the reflecting function
(1.3) we can write as follows

k k
>/ (@)r' + ) m/(-@)F
i=1 i=1

+

Zk: im, (_(P)FH

i=1
k n n
Mim(@r™  Y.D(e)y;  Y.D(-¢)F'
i=1 r=1 i=1

k X k + k. EO'
2 im(—@)F Yimy Y im (—p)F"
i=1 i=1 i=l

This identity is really true due to (2.7).

So the reflecting function of (2.4) is given by
(2.6) and all solutions of (2.4) are 2n-periodic. The
theorem 2.2 is true. O

We consider now the equation (1.1). Let

m(¢) = eXP(—T 4 (r)dr]

+

and
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U(@,r) =m, (@)r +m (P)B(@)r” +...+
+m, (¢)B, ()" = mr+myr’ + ..+ mkrk.
We suppose that there exists function
(@, r)=mr+mr’ +..+mr"
and even 2m-periodic continuous functions
1, (9), 1,(9),...,n, (@) such that
U(@,r) =v+n,(o)V +n, (@) +...+n (Q)'.

In this case if reflecting function F(¢@,r) of the
equation (2.1) is given by U(—o,F)=U(¢,r) then
this F(¢,r) is also determined by v(—o, F)) = v(o,r).
Therefore

OF  Vi(gr) OF v (@.r)+v (-, F)

o V(e.F) d  V(eF)
and the main relation for the reflecting function we
can write in the form

Vo (@, 7) + v, (-, F) .
v, (=0, F)
L)  A@R..+ 4, (o)r"
VL=, F) 14 B, (@)r +...+ B, (9)r"
LACOF+ A CQF +. 4 4,COF"
148, (—Q)F +...+ B, (o) F*
Thus we come to the

Corollary 2.1. If the relation v(—@,F) =v(Q,r)

induces (2.8), then the reflecting function of the
equation (2.1) is given by v(-,F) =v(o,r).

(1.8)

I
e

Example 2.1. We consider the equation

dr 2 (1—rsin @)’ sin @ +[1—2r(1—rsing)]cos ¢
do (1-2rsin@)[1-2r(1-rsing)cosp
For this equation 4,(¢) =0 and therefore
¢
m = exp[—j 4 (’C)d’tj =1.
0

So this equation has already. the form (2.3). Then the
function

tou
U(e,r)=|—dr=
(0,7 j o
=j(l—27:sin(p)[1—21(1—rsin(p)cosq>]d7::
0

[1-2t(t—1’sin@)cos@](t1—1° sing). dr =

O ey

= (r—r*sin@)’ cos Q.
It means that
U(p,r)=v—v’coso,
where v=r—7"sing. So we expect that reflecting
function of the equation will be given by relation
F + F*sin@ =r—r”sin ¢. Therefore
OF 1-2rsing OF —(r’+F’)cos@
o 1+2Fsing’ %_ 1+2Fsing

Problems of Physics, Mathematics and Technics, Ne 2 (43), 2020

We can rewrite the equation in the form

2 2
dr V" sin @ r-coso  dr
X

d_(p 1-2vcosp 1-2rsing d_(p

_ (1-rsing)’(1-2rsin @)sin @ N
(1-2vcos)(1-2rsin @)

L cosQ=2r(1-rsing) cos’ (p]
(1-2vcos)(1—-2rsin @)
We can write the main relation for the reflect
ing function F for which v(—o, F)=v(¢,r) asfol-
lows

2 2 :
(r+F )costp+1 2rs1nq)><

1+2Fsing 1+ 2F sing
2 L3 2
.| v sine r cosiq) A
1-2vcosep 1=2¥sin®

—v’sin@ E cos ¢

1-2vcos® \1+2F sing e
This relation is identity; as the reader can see. So the
function F = F((@,r) is reflecting function of the
equation under consideration and the point » =0 is
center.
The equation from example 2.1. is equivalent
to ‘any equation of the form
dr 1’ coso+S(¢,v)
do © 1-2rsin 10)
where S(—@,v) = S(o,v).
The next theorem allow us to replace the con-
sideration of one equation by another.
Theorem 2.3. Suppose the polynomial S(@,r)

with respect to r and with differentiable coefficients
satisfy the following identities

B, 520,35, P,
oo op oOr or
Then for every continuous and odd function o(Q)
the reflecting function of the equation dr = Po.r)
o O(e,r)

coincides with the reflecting function of the equation
dr P(¢,r)+o(@)S(¢,r)
do 0(¢.r) '
For the proof it is sufficient to use the property

70 with A = 5@
O(o,r)
Example 2.2. The equation
dr P (o)r’ + P (o)’
do  1+(cq(9)+c,)r+q(@)r*’

where P,,P,,q are continuous 2m-periodic func-

tions and c,c, — constants, is equivalent to the

equation
dr _ B(@)r’ +B(@)r’ +a@)[r” +cq(e)r’]
do 1+ (cq() +¢)r +q(o)r’
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where a(p) is odd continuous. So when

P(9)=-a(p) or when FA(@)=-ca(p)q(p) the
investigation of the first equation is very simple.
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