-- МАТЕМАТИКА -

НЕОСЕСИММЕТРИЧНОЕ ТЕРМОСИЛОВОЕ ДЕФОРМИРОВАНИЕ КРУГОВОЙ ТРЕХСЛОЙНОЙ ПЛАСТИНЫ

А.В. Нестерович

Белорусский государственный университет транспорта, Гомель

THE NONAXISYMMETRIC TERMOFORCES DEFORMATION OF THE CIRCULAR SANDWICH PLATE IN THE PLANE

A.V. Nesterovich

Belarusian State University of Transport, Gomel

Приведена постановка краевой задачи о деформировании круговой трехслойной пластины при неосесимметричном термосиловом деформировании в своей плоскости. Кинематические соотношения соответствуют гипотезе ломаной линии. Получены аналитические решения при различных видах нагрузки, проведен их численный анализ.

Ключевые слова: трехслойная круговая пластина, термоупругость, неосесимметричная нагрузка.

The boundary value problem formulation and general solution for a circular sandwich plate deformed by nonaxisymmetric termoforces load in its plane are given. As an example, the nonaxisymmetric tension-compression plate cosine load is considered. Numerical testing of solution has been made.

Keywords: three-layer circular plate, thermoelasticity, axially symmetric load.

Введение

УДК 539.3

Широкое применение в авиа-, ракето-, машиностроении и строительстве многослойных конструкций приводит к необходимости разработки методов их расчета на различные виды и типы нагрузок. Стержни, пластины и оболочки, имеющие слоистую структуру, обычно набраны из материалов с существенно различными физико-механическими свойствами.

В последнее время значительное распространение получили трехслойные конструкции, которые состоят из двух несущих слоев и заполнителя, обеспечивающего их совместную работу. В условиях деформации изгиба трехслойные конструкции оказываются наиболее рациональными, то есть близкими к оптимальным с точки зрения обеспечения минимума весовых показателей при заданных ограничениях на прочность и жесткость. Несущие слои из материалов высокой прочности и жесткости предназначены для восприятия основной части механической нагрузки. Связующие слои, служащие для образования монолитной конструкции, обеспечивают перераспределение усилий между несущими слоями и защиту от внешних тепловых, радиационных и вибрационных воздействий.

Деформированию и колебаниям трехслойных элементов конструкций посвящено множество публикаций. Это обусловлено рядом их выдающихся качеств: прочностью и жесткостью при изгибе при минимуме весовых показателей, хорошей защитой от химических, тепловых и радиационных воздействий. Различные механико-математические модели упругих трехслойных

© Нестерович А.В., 2016 54 конструкций предложены в [1], [2]. Задачи квазистатического деформирования трехслойных стержней и пластин разобраны в работах [3]–[7]. Поведение элементов конструкций при импульсных воздействиях и терморадиационных ударах исследованы в [8]–[14]. Здесь рассмотрено деформирование круговой трехслойной пластины при неосесимметричном термосиловом деформировании в своей плоскости.

1 Постановка краевой задачи

Для описания кинематики пакета принята гипотеза «прямой нормали»: в несущих слоях выполняются гипотезы Кирхгофа, в заполнителе нормаль остается прямолинейной, не изменяет своей длины, но поворачивается на некоторый дополнительный угол (рисунок 1.1), составляющий с радиальной и тангенциальной осями величины $\psi_r(r, \phi)$ и $\psi_{\phi}(r, \phi)$. На границах склейки слоев перемещения непрерывны. На торце пластины ($r = r_0$) предполагается наличие жесткой диафрагмы, препятствующей относительному сдвигу слоев ($\psi_r = 0$), но не мешающих деформированию из своей плоскости. Деформации малые.

Постановка задачи проводится в цилиндрической системе координат r, φ , z. Срединную плоскость заполнителя примем за координатную, ось zнаправим ей перпендикулярно вверх, к слою 1. В этом случае перемещения в пластине выражаются через пять искомых функций u_r , u_{φ} , ψ_r , ψ_{φ} , w:

$$u_{r}^{(5)} = u_{r} + c \Psi_{r} - z w_{,r};$$

$$u_{\phi}^{(1)} = u_{\phi} + c \Psi_{\phi} - \frac{z}{r} w_{,\phi};$$

Рисунок 1.1 – Схема деформирования круговой пластины

$$c \le z \le c + h_{1};$$

$$u_{r}^{(2)} = u_{r} - c\psi_{r} - zw_{r};$$

$$u_{\phi}^{(2)} = u_{\phi} - c\psi_{\phi} - \frac{z}{r}w_{r\phi};$$

$$-c - h_{2} \le z \le -c;$$

$$u_{r}^{(3)} = u_{r} + z\psi_{r} - zw_{rr};$$

$$u_{\phi}^{(3)} = u_{\phi} + z\psi_{\phi} - \frac{z}{r}w_{r\phi};$$

$$-c \le z \le c;$$
(1.1)

где z — расстояние от рассматриваемого волокна до срединной плоскости заполнителя, запятая в нижнем индексе обозначает операцию дифференцирования по следующей за ней координате, индекс вверху — номер слоя.

Деформации в пластине следуют из перемещений (1.1) и соотношений Коши [5]. Введем обобщенные внутренние усилия и моменты в пластине:

$$T_{\alpha\beta} = \sum_{k=1}^{3} T_{\alpha\beta}^{(k)} = \sum_{k=1}^{3} \int_{h} \sigma_{\alpha\beta}^{(k)} dz,$$

$$M_{\alpha\beta} = \sum_{k=1}^{3} M_{\alpha\beta}^{(k)} = \sum_{k=1}^{3} \int_{h} \sigma_{\alpha\beta}^{(k)} z dz,$$

$$Q_{r} = \int_{h} \sigma_{rz}^{(3)} dz, \quad Q_{\varphi} = \int_{h} \sigma_{\varphi z}^{(3)} dz, \quad (1.2)$$

где $\sigma_{\alpha\beta}$ – компоненты тензора напряжений (α , $\beta = r, \phi$).

Закон Гука с учетом температуры принимаем в виде

$$\begin{split} s_x'^{(k)} &= 2G_k(T) \mathfrak{I}_x'^{(k)},\\ \sigma'^{(k)} &= 3K_k(T)(\varepsilon'^{(k)} - \alpha_{0k}T) \quad (k = 1, 2), \quad (1.3) \end{split}$$

Problems of Physics, Mathematics and Technics, № 2 (27), 2016

где $s'^{(k)}_{x}$, $\sigma'^{(k)}$ и $\mathfrak{I}'^{(k)}_{xx}$, $\varepsilon'^{(k)}$ – девиаторные и шаровые части тензоров напряжений и деформаций *k*-го слоя; α_{0k} – коэффициент линейного температурного расширения материала; $G_k(T)$, $K_k(T)$ – температурно-зависимые модули сдвига и объемного деформирования, зависимость которых от температуры описывает формула Белла [5].

Уравнения равновесия рассматриваемой платины в усилиях (1.2) получены с помощью принципа возможных перемещений Лагранжа:

$$T_{rr},_{r} + \frac{1}{r}(T_{rr} - T_{\varphi\varphi}) + \frac{1}{2r}T_{r\varphi},_{\varphi} = -p_{r};$$

$$H_{rr},_{r} + \frac{1}{r}(H_{rr} - H_{\varphi\varphi}) - Q_{r} - \frac{1}{2r}H_{r\varphi},_{\varphi} = 0;$$

$$M_{rr},_{rr} + \frac{1}{r}(2M_{rr},_{r} - M_{\varphi\varphi},_{r}) + \frac{1}{r^{2}}M_{\varphi\varphi},_{\varphi\varphi}$$

$$- -\frac{1}{2r}M_{r\varphi},_{\varphir} + \frac{1}{2r}M_{r\varphi},_{r\varphi} + \frac{1}{r^{2}}M_{r\varphi},_{\varphi\varphi} = -q;$$

$$T_{r\varphi},_{r} + \frac{2}{r}T_{\varphi\varphi},_{\varphi} + \frac{2}{r}T_{r\varphi} = -p_{\varphi};$$

$$H_{r\varphi},_{r} + \frac{2}{r}H_{\varphi\varphi},_{\varphi} + \frac{2}{r}H_{r\varphi} - 2Q_{\varphi} = 0. \quad (1.4)$$

Если в системе (1.4) выразить все внутренние усилия (1.2) через искомые функции и добавить к ней граничные условия, то получим замкнутую краевую задачу для нахождения перемещений. Поэтому, выразив напряжения через деформации и используя закон Гука (1.3), получим систему из пяти уравнений в частных производных, относительно искомых перемещений. Уравнения равновесия в частных производных рассматриваемой пластины при неосесимметричном деформировании в своей плоскости будут следовать из этой системы, если положить

$$\psi_r = \psi_{\varphi} = w = 0,$$

т. е. присутствуют только радиальные и тангенциальные перемещения u_r , u_{ϕ} . В результате

$$(a_{5} + a_{2})\frac{u_{r,\varphi r}}{r} + (a_{5} + a_{1})\frac{u_{r,\varphi}}{r^{2}} + a_{5}\left(u_{\varphi,rr} - \frac{u_{\varphi}}{r^{2}}\right) + a_{1}\frac{u_{\varphi,\varphi\varphi}}{r^{2}} = -p_{\varphi},$$

$$(a_{2} + a_{5})\frac{u_{\varphi,r\varphi}}{r} - (a_{1} + a_{5})\frac{u_{\varphi,\varphi}}{r^{2}} + a_{1}\left(u_{r,rr} + \frac{u_{r,r}}{r} - \frac{u_{r}}{r^{2}}\right) + a_{5}\frac{u_{r,\varphi\varphi}}{r^{2}} = -p_{r},$$
(1.5)

где запятая в нижнем индексе обозначает операцию дифференцирования по следующей за ней координате, коэффициенты a_i определяются интегральными соотношениями, т. к. модули упругости материалов в слоях изменяются по их толщине вместе с температурой:

+

$$a_{1} = \sum_{k=1}^{5} K_{k0}, \quad a_{2} = K_{32} + c^{2} (K_{10} + K_{20}),$$

$$a_{5} = \int_{h_{3}} G_{3} dz, \quad a_{6} = c (K_{10} - K_{20}),$$

$$K_{km} = \int_{h_{k}} \left[K_{k}(T) + \frac{4}{3} G_{k}(T) \right] z^{m} dz \quad (m = 0, 1, 2).$$

Задача отыскания перемещений замыкается присоединением к уравнениям (1.5) силовых или кинематических граничных условий. При заделке или шарнирном закреплении ее контура должны выполняться требования ($r = r_0$):

$$u_r = u_{\varphi} = 0. \tag{1.6}$$

2 Решение краевой задачи

Искомые функции $u_r(r, \varphi)$, $u_{\varphi}(r, \varphi)$ и нагрузки $p_r(r, \varphi)$, $p_{\varphi}(r, \varphi)$ раскладываем в тригонометрические ряды по окружной координате:

$$u_{r}(r,\phi) = u_{r}^{(0)}(r) +$$

+
$$\sum_{n=1}^{\infty} \left[u_{rn}^{(1)}(r) \cos(n\phi) + u_{rn}^{(2)}(r) \sin(n\phi) \right],$$

$$u_{\phi}(r,\phi) = u_{\phi}^{(0)}(r) +$$

+
$$\sum_{n=1}^{\infty} \left[u_{\phi n}^{(1)}(r) \cos(n\phi) + u_{\phi n}^{(2)}(r) \sin(n\phi) \right],$$

$$p_{r}(r,\phi) = p_{r}^{(0)}(r) +$$

+
$$\sum_{n=1}^{\infty} \left[p_{rn}^{(1)}(r) \cos(n\phi) + p_{rn}^{(2)}(r) \sin(n\phi) \right],$$

$$p_{\phi}(r,\phi) = p_{\phi}^{(0)}(r) + \sum_{n=1}^{\infty} \left[p_{\phi n}^{(1)}(r) \cos(n\phi) + p_{\phi n}^{(2)}(r) \sin(n\phi) \right].$$
(2.1)

Здесь перемещения $u_r^{(0)}(r)$, $u_{\phi}^{(0)}(r)$ соответствуют осесимметричному деформированию,

$$p_{\varphi n}^{(1)}(r) = \frac{1}{\pi} \int_{0}^{2\pi} p_{\varphi}(r,\varphi) \cos(n\varphi) d\varphi,$$
$$p_{\varphi n}^{(2)}(r) = \frac{1}{\pi} \int_{0}^{2\pi} p_{\varphi}(r,\varphi) \sin(n\varphi) d\varphi.$$

Подставив выражения (2.1) в систему (1.5) и приравняв коэффициенты при одинаковых тригонометрических функциях, получим систему из четырех обыкновенных дифференциальных уравнений для определения амплитудных функций $u_m^{(1)}(r), u_m^{(2)}(r), u_{on}^{(2)}(r)$;

$$\begin{aligned} a_{1}u_{m}^{(1)},_{rr}+a_{1}\frac{1}{r}u_{m}^{(1)},_{r}-a_{1}\frac{1}{r^{2}}u_{m}^{(1)}-a_{5}\frac{1}{r^{2}}n^{2}u_{m}^{(1)}+\\ +(a_{5}+a_{2})\frac{1}{r}nu_{\varphi^{n}}^{(2)},_{r}-(a_{5}+a_{1})\frac{1}{r^{2}}nu_{\varphi^{n}}^{(2)}=-p_{m}^{(1)};\\ -(a_{5}+a_{2})n\frac{u_{m}^{(1)},_{r}}{r}-(a_{5}+a_{1})\frac{nu_{m}^{(1)}}{r^{2}}+a_{5}u_{\varphi^{n}}^{(2)},_{rr}-\\ -a_{5}\frac{1}{r^{2}}u_{\varphi^{n}}^{(2)}-a_{1}\frac{1}{r^{2}}n^{2}u_{\varphi^{n}}^{(2)}=-p_{\varphi^{n}}^{(2)};\\ a_{1}u_{m}^{(2)},_{rr}+a_{1}\frac{1}{r}u_{m}^{(2)},_{r}-a_{1}\frac{1}{r^{2}}u_{m}^{(2)}-a_{5}\frac{1}{r^{2}}n^{2}u_{m}^{(2)}-\\ -(a_{5}+a_{2})\frac{1}{r}nu_{\varphi^{n}}^{(1)},_{r}+(a_{5}+a_{1})\frac{1}{r^{2}}nu_{\varphi^{n}}^{(1)}=-p_{m}^{(2)};\\ (a_{5}+a_{2})n\frac{u_{m}^{(2)},_{r}}{r}+(a_{5}+a_{1})n\frac{u_{m}^{(2)}}{r^{2}}+\\ +a_{5}u_{\varphi^{n}}^{(1)},_{rr}-a_{5}\frac{1}{r^{2}}u_{\varphi^{n}}^{(1)}-a_{1}\frac{1}{r^{2}}n^{2}u_{\varphi^{n}}^{(1)}=-p_{\varphi^{n}}^{(1)}. \end{aligned}$$

Общее решение полученной системы обыкновенных линейных дифференциальных уравнений можно выписать в виде суммы решений соответствующей однородной системы и частного решения $u_{rn}^{(1)*}$, $u_{rn}^{(2)*}$, $u_{\varphi n}^{(1)*}$, $u_{\varphi n}^{(2)*}$ системы (2.2):

$$u_{rn}^{(1)} = \sum_{k=1}^{4} C_{nk}^{(1)} h_{nk} r^{S_{nk}} + u_{rn}^{(1)*},$$

$$u_{\varphi n}^{(2)} = \sum_{k=1}^{4} C_{nk}^{(1)} r^{S_{nk}} + u_{\varphi n}^{(2)*},$$

$$u_{rn}^{(2)} = -\sum_{k=1}^{4} C_{nk}^{(2)} h_{nk} r^{S_{nk}} + u_{rn}^{(2)*},$$

$$u_{\varphi n}^{(1)} = \sum_{k=1}^{4} C_{nk}^{(2)} r^{S_{nk}} + u_{\varphi n}^{(1)*},$$

(2.3)

где
$$C_{nk}^{(1)}$$
, $C_{nk}^{(2)}$ – константы интегрирования,

$$h_{n1} = \frac{-n^2 a_1 a_2^2 - 2a_3^2 n^2 a_2 - a_3^3 n^2 + a_1 a_3^2 - 2n^2 a_1 a_2 a_3 + a_1^2 a_3 - a_3 n^2 a_2^2 - n^2 a_1 a_3^2 + a_1^2 n^2 a_3 + a_1^3 n^2}{n \left(a_1 a_2^2 + a_3^3 n^2 + 2a_1 a_2 a_3 - 2a_1^2 a_3 - a_1^3 + 2a_3^2 n^2 a_2 + a_3 n^2 a_2^2\right)},$$

$$h_{n2} = -S_{nk} \frac{-3n^2 a_3 a_2^2 - 3a_3^2 n^2 a_2 - a_3^3 n^2 + a_1 a_2 a_3 - n^2 a_2^3 + n^2 a_3 a_1^2 + a_1^2 a_3 n^2 + a_2 n^2 a_1^2 + a_1 a_3^2}{n \left(a_1 a_2^2 + a_3^3 n^2 + 2a_1 a_2 a_3 - 2a_1^2 a_3 - a_1^3 + 2a_3^2 n^2 a_2 + a_3 n^2 a_2^2\right)},$$

Проблемы физики, математики и техники, № 2 (27), 2016

Неосесимметричное термосиловое деформирование круговой трехслойной пластины

$$h_{n3} = -\left(S_{nk}^2 - S_{nk}\right) \frac{a_1 a_3 \left(a_1 - 2a_2 - a_3\right)}{n\left(a_1 a_2^2 + a_3^3 n^2 + 2a_1 a_2 a_3 - 2a_1^2 a_3 - a_1^3 + 2a_3^2 n^2 a_2 + a_3 n^2 a_2^2\right)},$$

$$h_{n4} = \left(S_{nk}^3 - 3S_{nk}^2 + 2S_{nk}\right) \frac{a_1 a_3 \left(a_2 + a_3\right)}{n\left(a_1 a_2^2 + a_3^3 n^2 + 2a_1 a_2 a_3 - 2a_1^2 a_3 - a_1^3 + 2a_3^2 n^2 a_2 + a_3 n^2 a_2^2\right)}$$

Таблица 2.1 – Корни уравнения

п	S_1	S_2	S_3	S_4
1	0	0.2926011498	2.435066524	-1.727667674
2	1.052979336	3.493652747	-0.9377547248	-2.608877359
3	1.967588593	4.562018430	-2.047758864	-3.481848160
4	2.891816913	5.630078984	-3.190795930	-4.331099966
5	3.821267962	6.696143009	-4.391946597	-5.125464374
6	4.754557422	7.759905638	-5.757231530 + 0.2380982754i	-5.757231530 - 0.2380982754i
7	5.690963802	8.821409789	-6.756186796 + 0.4982267022i	-6.756186796-0.4982267022 <i>i</i>
8	6.630018566	9.880795255	-7.755406911 + 0.6632999951i	-7.755406911-0.6632999951 <i>i</i>
9	7.571381535	10.93822285	-8.754802194 + 0.7948774943i	-8.754802194-0.7948774943 <i>i</i>

Здесь величины S_{nk} (k = 1, 2, 3, 4) являются корнями уравнения

$$a_{3}a_{1}S^{4} - a_{3}a_{1}S^{3} + + (-2a_{3}a_{1} + n^{2}a_{2}^{2} - n^{2}a_{1}^{2} + 2n^{2}a_{3}a_{2})S^{2} + + (n^{2}a_{3}^{2} + a_{3}a_{1})S - -2n^{2}a_{3}a_{1} + a_{3}a_{1} + n^{4}a_{3}a_{1} = 0, a_{3} = \frac{2}{3}c^{3}\left(K + \frac{4}{3}G\right).$$
(2.4)

Численные значения корней уравнения (2.4) получены для пластины со слоями: дюралюминий-фторопласт-дюралюминий [5]. Первые 10 из них приведены в таблице 2.1.

Следует отметить, что из условия ограниченности перемещений в начале координат для сплошных пластин в решении (2.3) необходимо полагать равными нулю константы интегрирования, стоящие перед фундаментальными функциями с отрицательными значениями корней S_{nk} . Остальные константы интегрирования определяются из условий закрепления пластины (1.6).

3 Частные решения при неосесимметричном деформировании

Рассмотрим некоторые частные решения $u_{rn}^{(1)*}$, $u_{qn}^{(2)*}$, $u_{qn}^{(2)*}$, $u_{qn}^{(2)*}$ системы дифференциальных уравнений (2.2), если правые части этих уравнений (нагрузки) являются степенными функциями от *радиальной координаты*.

При постоянных правых частях $(p_{m0}^{(1)}, p_{m0}^{(2)}, p_{m0}^{(2)}, p_{m0}^{(2)}, p_{m0}^{(2)})$

$$\begin{split} u_{rn}^{(1)*} &= -r^2 \left(\left(p_{\varphi n0}^{(2)} n - p_{rn0}^{(1)} \right) a_5 + \right. \\ &+ n \left(p_{rn0}^{(1)} n a_1 + p_{\varphi n0}^{(2)} \left(2a_2 - a_1 \right) \right) \right) \Big/ B_n , \\ u_{rn}^{(2)*} &= -r^2 \left(\left(-p_{\varphi n0}^{(1)} n - p_{rn0}^{(2)} \right) a_5 + \right. \\ &+ n \left(p_{rn0}^{(2)} n a_1 + p_{\varphi n0}^{(1)} \left(-2a_2 + a_1 \right) \right) \right) \Big/ B_n , \end{split}$$

Problems of Physics, Mathematics and Technics, № 2 (27), 2016

$$u_{\varphi n}^{(1)*} = r^{2} \left(3na_{5}p_{rn0}^{(2)} + p_{\varphi n0}^{(1)}n^{2}a_{5} - -3p_{\varphi n0}^{(1)}a_{1} + 2na_{2}p_{rn0}^{(2)} + p_{rn0}^{(2)}na_{1} \right) / D_{n},$$

$$u_{\varphi n}^{(2)*} = -r^{2} \left(-3p_{rn0}^{(1)}na_{5} + a_{5}p_{\varphi n0}^{(2)}n^{2} - -3a_{1}p_{\varphi n0}^{(2)} - 2p_{rn0}^{(1)}na_{2} - p_{rn0}^{(1)}na_{1} \right) / D_{n};$$

$$B_{n} = 2n^{2}a_{5}^{2} + \left(n^{4}a_{1} + (8a_{2} - 2a_{1})n^{2} + 3a_{1} \right)a_{5} + +4\left(a_{2}^{2} - a_{1}^{2}\right)n^{2},$$

$$D_{n} = 3a_{5}a_{1} - 4n^{2}a_{1}^{2} - 2n^{2}a_{5}a_{1} + 8n^{2}a_{5}a_{2} + +2n^{2}a_{5}^{2} + n^{4}a_{5}a_{1} + 4n^{2}a_{2}^{2}.$$
(3.1)

Если нагрузки в правых частях уравнений (2.2) линейно зависят от радиальной координаты

$$p_{rn}^{(1)} = p_{rn0}^{(1)}r, \quad p_{rn}^{(2)} = p_{rn0}^{(2)}r,$$
$$p_{\varphi n}^{(1)} = p_{\varphi n0}^{(1)}r, \quad p_{\varphi n}^{(2)} = p_{\varphi n0}^{(2)}r,$$

то частные решения следующие:

Ì

$$u_{rm}^{(1)*} = r^{3} \left(\left(-2p_{\varphi n0}^{(2)}n + 5p_{rm0}^{(1)} \right) a_{5} + + n \left(-p_{rm0}^{(1)}na_{1} + p_{\varphi n0}^{(2)} \left(-3a_{2} + a_{1} \right) \right) \right) / E_{n}, u_{rm}^{(2)*} = -r^{3} \left(\left(-2p_{\varphi n0}^{(1)}n - 5p_{rm0}^{(2)} \right) a_{5} + + n \left(p_{rm0}^{(2)}na_{1} + p_{\varphi n0}^{(1)} \left(-3a_{2} + a_{1} \right) \right) \right) / E_{n}, u_{\varphi n}^{(1)*} = -r^{3} \left(4na_{5}p_{rm0}^{(2)} + p_{\varphi n0}^{(1)}n^{2}a_{5} + + p_{rm0}^{(2)}na_{1} - 8p_{\varphi n0}^{(1)}a_{1} + 3na_{2}p_{rm0}^{(2)} \right) / G_{n}, u_{\varphi n}^{(2)*} = -r^{3} \left(-4p_{rm0}^{(1)}na_{5} + a_{5}p_{\varphi n0}^{(2)}n^{2} - - 3p_{rm0}^{(1)}na_{2} - p_{rm0}^{(1)}na_{1} - 8a_{1}p_{\varphi n0}^{(2)} \right) / G_{n}, E_{n} = 3n^{2}a_{5}^{2} + \left(a_{1}n^{4} + \left(18a_{2} - 2a_{1} \right)n^{2} + 40a_{1} \right) a_{5} + + 9\left(a_{2}^{2} - a_{1}^{2} \right)n^{2}, G_{n} = 40a_{5}a_{1} + n^{4}a_{5}a_{1} - 2n^{2}a_{5}a_{1} - - 9n^{2}a_{4}^{2} + 18n^{2}a_{7}a_{2} + 3n^{2}a_{7}^{2} + 9n^{2}a_{2}^{2},$$
(3.2)

При квадратичной зависимости нагрузок от радиальной координаты $(p_m^{(1)} = p_{m0}^{(1)}r^2, p_m^{(2)} = p_{m0}^{(2)}r^2,$ $p_{\phi n}^{(1)} = p_{\phi n0}^{(1)}r^2, p_{\phi n}^{(2)} = p_{\phi n0}^{(2)}r^2)$ частные решения $u_m^{(1)*} = r^4 \left(\left(-3p_{\phi n0}^{(2)}n + 11p_{m0}^{(1)} \right) a_5 + \right.$ $\left. + n \left(-p_{m0}^{(1)}na_1 + p_{\phi n0}^{(2)} \left(-4a_2 + a_1 \right) \right) \right) / Q_n,$ $u_m^{(2)*} = -r^4 \left(\left(-3p_{\phi n0}^{(1)}n - 11p_{m0}^{(2)} \right) a_5 + \right.$ $\left. + n \left(p_{m0}^{(2)}na_1 + p_{\phi n0}^{(1)} \left(-4a_2 + a_1 \right) \right) \right) / Q_n,$ $u_{\phi n}^{(1)*} = -r^4 \left(5na_5 p_{m0}^{(2)} + p_{\phi n0}^{(1)}n^2 a_5 + \right.$ $\left. + p_{m0}^{(2)}na_1 - 15p_{\phi n0}^{(1)}a_1 + 4na_2 p_{m0}^{(2)} \right) / R_n,$ $u_{\phi n}^{(2)*} = -r^4 \left(-4p_{m0}^{(1)}na_2 - 5p_{m0}^{(1)}na_5 + \right.$ $\left. + a_5 p_{\phi n0}^{(2)}n^2 - p_{m0}^{(1)}na_1 - 15a_1 p_{\phi n0}^{(2)} \right) / R_n;$ $Q_n = 4n^2 a_5^2 + \left(a_1n^4 + \left(32a_2 - 2a_1 \right)n^2 + 165a_1 \right) a_5 + \right.$ $\left. + 16 \left(a_2^2 - a_1^2 \right) n^2,$

$$R_n = -16n^2a_1^2 + 16n^2a_2^2 + 165a_5a_1 + +4n^2a_5^2 + n^4a_5a_1 + 32n^2a_5a_2 - 2n^2a_5a_1.$$

Другие частные решения можно получить комбинацией решений (3.1)–(3.3), либо разлагая нагрузку в степенной ряд и используя эти же решения.

Пример. Растяжение-сжатие пластины неосесимметричной косинусоидальной нагрузкой:

$$p_r(r, \varphi) = p_0 \cos \varphi,$$

$$p_{\varphi} = 0, \quad p_0 = \text{const.}$$
(3.4)

Коэффициенты разложения нагрузки (3.4) в ряд (2.1) будут

$$p_{m}^{(1)}(r) = \frac{p_0}{\pi} \int_0^{2\pi} \cos(\varphi) \cos(n\varphi) d\varphi = \begin{cases} 0, & n \neq 1, \\ p_0, & n = 1, \end{cases}$$

следовательно,

$$p_{r1}^{(1)}(r) = p_0, \quad p_{rm}^{(1)}(r) = 0, n > 1,$$

$$p_{rn}^{(2)}(r) = p_{\phi n}^{(1)}(r) = p_{\phi n}^{(2)}(r) \equiv 0.$$
 (3.5)

Составляющие перемещений (2.1) будут

$$u_{r1}^{(1)} = \sum_{k=1}^{4} C_{1k}^{(1)} h_{1k} r^{S_{1k}} + u_{r1}^{(1)*},$$

$$u_{\varphi 1}^{(2)} = \sum_{k=1}^{4} C_{1k}^{(1)} r^{S_{1k}} + u_{\varphi 1}^{(2)*},$$

$$u_{rn}^{(2)} = 0, \quad u_{\varphi n}^{(1)} = 0.$$
(3.6)

Частные решения $u_{r1}^{(1)*}$, $u_{\varphi 1}^{(2)*}$ следуют из решений (3.1) при n = 1 с учетом (3.5):

$$u_{r1}^{(1)*} = p_0 r^2 (a_5 - a_1) / B_1,$$

$$u_{\varphi 1}^{(2)*} = p_0 r^2 (a_1 + 2a_2 + 3a_5) / D_1;$$

$$B_1 = D_1 = (2a_1 + 8a_2) a_5 + 4(a_2^2 - a_1^2) + 2a_5^2.$$

(3.7)

 $B_1 = D_1 = (2a_1 + 8a_2)a_5 + 4(a_2^2 - a_1^2) + 2a_5^2$. Константы интегрирования $C_{1k}^{(1)}$, входящие в (3.6) получим из условия ограниченности решения в центре и граничных условий на контуре пластины, учитывая корни S_{1k} . В нашем случае (таблица 2.1) $S_{11} = 0$, $S_{12} = 0.2926011498$, $S_{13} = 2.435066524$, $S_{14} = -1.727667674$, поэтому необходимо положить $C_{12}^{(1)} = C_{14}^{(1)} = 0$ из условия ограниченности перемещений и *деформаций* в центре пластины. Константы $C_{11}^{(1)}$, $C_{13}^{(1)}$ получим из граничных условий (1.6):

$$u_{r1}^{(1)}(r_{0}) = C_{11}^{(1)}h_{11} + C_{13}^{(1)}h_{13}r_{0}^{S_{13}} + u_{r1}^{(1)*}(r_{0}) = 0,$$

$$u_{\phi1}^{(2)}(r_{0}) = C_{11}^{(1)} + C_{13}^{(1)}r_{0}^{S_{13}} + u_{\phi1}^{(2)*}(r_{0}) = 0;$$

$$C_{11}^{(1)} = \frac{u_{r1}^{(1)*}(r_{0}) - h_{13}u_{\phi1}^{(2)*}(r_{0})}{h_{13} - h_{11}},$$

$$C_{13}^{(1)} = \frac{h_{11}u_{\phi1}^{(2)*}(r_{0}) - u_{r1}^{(1)*}(r_{0})}{r_{0}^{S_{13}}(h_{13} - h_{11})},$$
(3.8)

где коэффициенты h_{1k} определяются из формул, приведенных в (2.3),

$$n_{11} =$$

$$= \frac{-a_1a_2^2 - 2a_2a_5^2 - 2a_1a_2a_5 + 2a_1^2a_5 - a_2^2a_5 + a_1^3 - a_5^3}{a_1a_2^2 + a_5^3 + 2a_1a_2a_5 - 2a_1^2a_5 - a_1^3 + 2a_5^2a_2 + a_5a_2^2} =$$

$$= -1,$$

$$h_{13} =$$

$$= -\frac{a_1a_5(a_1 - 2a_2 - a_5)}{a_1a_2^2 + a_5^3 + 2a_1a_2a_5 - 2a_1^2a_5 - a_1^3 + 2a_5^2a_2 + a_5a_2^2} \times$$

$$\times \sum_{k=1}^{4} \left(S_{1k}^2 - S_{1k}\right).$$

Полные перемещения в пластине следуют из соотношений (2.1), с учетом (3.7)–(3.8):

$$u_r(r,\varphi) = u_{r1}^{(1)}(r)\cos\varphi,$$

$$u_{\varphi}(r,\varphi) = u_{\varphi 1}^{(2)}(r)\sin\varphi.$$

Численные результаты получены для пластины радиуса $r_0 = 1$, с толщинами слоев $h_1 = h_2 = 0,02$, $h_3 = 0,08$ при нагрузке $p_0 = 5$ МПа.

На рисунке 3.1 показано изменение радиальных $u_r(r, \varphi_0) - a$ и тангенциальных $u_{\varphi}(r, \varphi_0) - \delta$ перемещений вдоль радиуса пластины при различных значениях угловой координаты: $1 - \varphi_0 = 0$, $2 - \varphi_0 = \pi/2$, $3 - \varphi_0 = \pi$, $4 - \varphi_0 = 3\pi/2$. Положительный знак радиальных перемещений показывает, что они направлены по радиусу, отрицательный – в противоположную сторону. Следовательно, правая половина пластины сжата, левая – растянута, т. е. материал пластины, включая ее центр, сдвинуты вправо. Картина изменения тангенциальных перемещений подобна. Экстремумы всех перемещений достигаются в центре пластины.

Изменение перемещений $u_r(r, \varphi) - a$, $u_{\varphi}(r, \varphi) - \delta$ в зависимости от координаты φ отражает рисунок 3.2: $1 - r = r_0/4$, $2 - r = r_0/2$, $3 - r = 2r_0/3$. Знаки перемещений соответствуют знакам тригонометрических функций в решении (3.7). Максимальные значения радиальные перемещения достигают в направлениях максимумов нагрузки, тангенциальные перемещения там равны нулю.

Проблемы физики, математики и техники, № 2 (27), 2016

Рисунок 3.1 – Изменение перемещений $u_r(r, \varphi_0) - a, u_{\varphi}(r, \varphi_0) - \delta$ вдоль радиуса пластины

Рисунок 3.2 – Изменение перемещений $u_r(r, \phi) - a, u_{\phi}(r, \phi) - \delta$ в зависимости от окружной координаты

Заключение

Полученные в работе аналитические решения позволяют исследовать напряженно-деформированное состояние круговой трехслойной пластины при любых неосесимметричных термосиловых нагрузках в ее плоскости.

ЛИТЕРАТУРА

1. Болотин, В.В. Механика многослойных конструкций / В.В. Болотин, Ю.Н. Новичков. – М.: Машиностроение, 1980. – 375 с.

2. Плескачевский, Ю.М. Динамика металлополимерных систем / Ю.М. Плескачевский, Э.И. Старовойтов, А.В. Яровая. – Минск: Бел. Навука, 2004. – 386 с.

3. Деформирование круговой трехслойной пластины на упругом основании / А.Г. Горшков, Э.И. Старовойтов, А.В. Яровая, Д.В. Леоненко // Экологический вестник научных центров Черноморского экономического сотрудничества. – 2005. – № 1. – С. 16–22.

4. Горшков, А.Г. Гармоническое нагружение слоистых вязкоупругопластических систем / А.Г. Горшков, Э.И. Старовойтов, А.В. Яровая //

Известия Российской академии наук. Механика твердого тела. – 2000. – № 6. – С. 91.

5. Старовойтов, Э.И. Изгиб прямоугольной трехслойной пластины на упругом основании / Э.И. Старовойтов, Е.П. Доровская // Проблемы машиностроения и автоматизации. – 2006. – № 3. – С. 45–50.

6. Старовойтов, Э.И. Термоупругий изгиб кольцевой трехслойной пластины на упругом основании / Э.И. Старовойтов, Д.В. Леоненко, М. Сулейман // Экологический вестник научных центров Черноморского экономического сотрудничества. – 2006. – № 4. – С. 55–62.

7. Leonenko, D.V. Thermoplastic strain of circular sandwich plates on an elastic base / D.V. Leonenko, E.I. Starovoitov // Mechanics of Solids. – 2009. – Vol. 44, N_{2} 5. – P. 744–755.

8. *Starovoitov*, *E.I.* Vibration of circular sandwich plates under resonance loads / E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya // International Applied Mechanics. – 2003. – T. 39, № 12. – C. 1458– 1463.

9. *Starovoitov, E.I.* Circular sandwich plates under local impulsive loads / E.I. Starovoitov, D.V. Leonenko,

A.V. Yarovaya // International Applied Mechanics. – 2003. – Vol. 39, № 8. – C. 945–952.

10. *Starovoitov, E.I.* Impact of thermal and ionizing radiation on a circular sandwich plate on an elastic foundation / E.I. Starovoitov, D.V. Leonenko // International Applied Mechanics. – 2011. – Vol. 47, $N_{\rm P}$ 5. – P. 580–589.

11. Leonenko, D.V. Thermal impact on a circular sandwich plate on an elastic foundation / D.V. Leonenko, E.I. Starovoitov // Mechanics of Solids. – 2012. – Vol. 47, N_{2} 1. – P. 111–118.

12. Viswanathan, K.K. Free vibration of multilayered circular cylindrical shell with cross-ply walls, including shear deformation by using spline function method / K.K. Viswanathan, K.S. Kim, J.H. Lee, H.S. Koh, J.B. Lee // Journal of Mechanical Science and Technology. – 2008. – Vol. 22, № 11. – P. 2062– 2075.

13. *Kuznetsova, E.L.* Natural vibrations of threelayer circular cylindrical shells in an elastic medium / E.L. Kuznetsova, D.V. Leonenko, E.I. Starovoitov // Mechanics of Solids. -2015. - Vol. 50, N_{2} 3. -P. 359–366.

14. *Могилевич*, *Л.И*. Гидроупругость виброопоры с трехслойной круглой упругой пластиной с несжимаемым заполнителем / Л.И. Могилевич, В.С. Попов, Э.И. Старовойтов // Наука и техника транспорта. – 2006. – № 2. – С. 56–63.

Поступила в редакцию 09.03.16.