АЛЬДЕГИДЫ И КЕТОНЫ

Вопросы имеют один правильный вариант ответа

1. Бутана	аль и 2-метилпропаналь являются:
a)	гомологами;
б <u>)</u>	структурными изомерами;
в)	геометрическими изомерами;
r)	одним и тем же веществом.
,	
2. Форма	альдегиду соответствует формула:
a)	CH_2O ;
б <u>)</u>	$C_2H_4O_2$;
	CH_4O ;
	CO_2H_2 .
,	(D)
3. При г	идрировании ацетальдегида образуется:
a)	ацетилен;
б <u>)</u>	уксусная кислота;
в)	этанол;
г)	этиленгликоль.
,	
4. Этана.	ль образуется при взаимодействии воды с:
a)	этином;
б)	этеном;
в)	этаном;
г)	этандиолом.
,	
При в	заимодействии ацетальдегида с гидроксидом меди (II) образуется:
a)	этилацетат;
б <u>)</u>	этиловый спирт;
в)	уксусная кислота;
r)	этилат меди (II).

- 6. В результате реакции альдегида с водородом образуется:
 - а) спирт;
 - б) простой эфир;
 - в) сложный эфир;
 - г) кислота.
- 7. Муравьиный альдегид реагирует с каждым из двух веществ:

- a) $H_2 \text{ uC}_2 H_6$;
- б) Br₂ и FeCl₃;
- в) Cu(OH)₂ и O₂;
- г) СО₂ и Н₂О.
- 8. 3,3-диметилбутаналь образуется при окислении:
 - a) (CH₃)₃C-CH₂-CH₂OH;
 - б) CH₃CH₂C(CH₃)₂-CH₂OH;
 - B) CH₃CH(CH₃)CH(CH₃)CH₂OH;
 - Γ) CH₃-CH₂-CH(CH₃)-CH₂OH.
- 9. Метаналь и формальдегид являются:
 - а) гомологами;
 - б) структурными изомерами;
 - в) геометрическими изомерами;
 - г) одним и тем же веществом.
- 10. При окислении пропаналя образуется:
 - а) пропановая кислота;
 - б) пропанол-1;
 - в) пропен;
 - г) пропанол-2.
- 11. Уксусный альдегид реагирует с каждым из двух веществ:
 - а) аммиачным раствором оксида серебра (I) и кислородом;
 - б) гидроксидом меди (II) и оксидом кальция;
 - в) соляной кислотой и серебром;
 - г) гидроксидом натрия и водородом.
- 12. Верны ли утверждения о свойствах веществ, содержащих карбонильную группу?
 - А.Эти вещества вступают в реакцию присоединения с водородом.
 - Б. Эти вещества не могут окисляться.
 - а) верно только А;
 - б) верно только Б;
 - в) верно А и Б;
 - г) неверны оба утверждения.
- 13. Для альдегидов характерны реакции:
 - а) отщепления;

- б) окисления;
- в) обмена;
- г) гидролиза.
- 14. Реакция с аммиачным раствором оксида серебра характерна для:
 - а) пропанола-1;
 - б) пропаналя;
 - в) пропановой кислоты;
 - г) диметилового эфира.
- 15. При взаимодействии ацетилена с водой в присутствии солей ртути образуется:
 - a) C_2H_4 ;
 - б) C₂H₅OH;
 - в) CH₃COH;
 - г) CH₃COOH.
- 16. Бутаналь можно получить:
 - а) окислением бутанола-1;
 - б) гидратацией бутина;
 - в) гидролизом метилбутирата;
 - г) гидролизом 1-хлорбутана.
- 17. Среди утверждений:
 - А. В карбонильной группе альдегидов электронная плотность смещена к атому кислорода.
 - Б. Для предельных альдегидов характерна геометрическая (цис-транс-) изомерия.
 - а) верно только А;
 - б) верно только Б;
 - в) верны оба утверждения;
 - г) неверны оба утверждения.
- 18. Ацетальдегид НЕ реагирует с:
 - а) аммиачным раствором оксида серебра;
 - б) гидроксидом меди (II);
 - в) водородом;
 - г) гидроксидом натрия.
- 19. Гидратацией алкина может быть получен:

a)	формальдегид;
б)	ацетальдегид;
в)	пропионовый альдегид;
L)	масляный альдегид.
20. Прод	цуктом восстановления пропаналя является:
a)	пропанол;
б)	пропановая кислота;
в)	пропанон;
г)	пропан.
21. В цег	пи превращений $C_2H_5OH \longrightarrow X \longrightarrow CH_3COOH$ веществом X яв-
ляется:	
a)	этан;
б)	этанол;
в)	этаналь;
г)	этиленгликоль.
22. Для (формальдегида характерны реакции:
a)	диссоциации;
б)	окисления;
в)	обмена;
г)	гидролиза.
23. Форм	мальдегид НЕ реагирует с:
a)	C_6H_5 –OH;
	PCl ₅ ;
в)	H_2 ;
L)	NaOH.
24. Прод	дуктом окисления пропаналя является:
a)	пропанол;
б)	пропановая кислота;
в)	пропанон;
г)	пропан.
25. Всту	пают с водородом в реакцию присоединения:
a)	пропанол и бензол;
б)	пропен и ацетальдегид;
в)	ацетальдегид и пропан;

- г) пропан и метиламин.
- 26. С аммиачным раствором оксида серебра реагирует:
 - а) пропен;
 - б) уксусная кислота;
 - в) пропанол;
 - г) ацетальдегид.
- 27. Альдегиды нельзя получить:
 - а) окислением спиртов;
 - б) восстановлением спиртов;
 - в) гидратацией алкинов;
 - г) восстановлением карбоновых кислот.
- 28. Реакцией Кучерова можно получить:
 - а) этаналь;
 - б) этанол;
 - в) глицерин;
 - г) фенол.
- 29. При взаимодействии предельных альдегидов с водородом образуются:
 - а) карбоновые кислоты;
 - б) простые эфиры;
 - в) вторичные спирты;
 - г) первичные спирты.
- 30. При восстановлении пропаналя образуется:
 - а) пропановая кислота;
 - б) пропанол-2;
 - в) пропанол-1;
 - г) изопропиловый спирт.
- 31. Формалином называется:
 - а) 40%-ный раствор этанола в воде;
 - б) 40%-ный раствор метаналя в воде;
 - в) 75%-ный раствор метаналя в воде;
 - г) 100%-ный формальдегид.
- 32. Этаналь нельзя получить:
 - а) дегидрированием этанола;

- б) окислением этанола кислородом в присутствии катализатора;
- в) взаимодействием этилена с водой;
- г) взаимодействием ацетилена с водой.
- 33. Какое вещество является изомером 2-метилпропаналя?
 - а) 1-бутанол;
 - б) бутаналь;
 - в) валериановый альдегид;
 - г) пропаналь.
- 34. Как называется альдегид

- а) 2-метил-3-пропилбутаналь;
- б) 2,3-диметилгексаналь;
- в) 4,5-диметилгексаналь;
- г) 2-метил-2-пропилбутаналь.
- 35. Какой реакцией получают формальдегидные пластмассы?
 - а) окисления;
 - б) полимеризации;
 - в) гидратации;
 - г) поликонденсации.
- 36. При взаимодействии альдегидов с водородом в присутствии катализатора при нагревании образуются:
 - а) углеводороды;
 - б) карбоновые кислоты;
 - в) арены;
 - г) спирты.

АМИНЫ

Вопросы имеют один правильный вариант ответа

- 1. Формула вещества, относящегося к аминам:
 - a) $C_2H_5 NO_2$;

- 6) $C_6H_5 NH_2$;
- B) $C_6H_5 CH_3$;
- Γ) $C_6H_5 OH$.
- 2. В водном растворе метиламина среда раствора:
 - а) кислая;
 - б) нейтральная;
 - в) щелочная;
 - г) слабокислая;
- 3. Более сильные основные свойства проявляет:
 - а) анилин;
 - б) аммиак;
 - в) диметиламин;
 - г) метиламин.
- 4. Этиламин НЕ взаимодействует с веществом, формула которого
 - a) HCl;
 - б) CH₃Br;
 - B) H_2 ;
 - г) H₂O.
- 5. Амины получаются в результате:
 - а) нитрования алканов;
 - б) окисления альдегидов;
 - в) восстановления нитросоединений;
 - г) взаимодействия карбоновых кислот с аммиаком.
- 6. К аминам относится соединение, формула которого:
 - a) $C_2 H_5 NO_2$;
 - б) C₂H₅CN;
 - B) $C_2H_5ONO_2$;
 - Γ) $(C_2H_5)_2NH$.
- 7. Метиламин взаимодействует с:
 - а) толуолом;
 - б) серной кислотой;
 - в) гидроксидом натрия;
 - г) оксидом алюминия.

8. Водные растворы аминов окрасятся фенолфталеином в цвет:	
а) малиновый;	
б) желтый;	
в) фиолетовый;	
г) оранжевый.	
9. Более слабым основанием, чем аммиак, является	
а) этиламин;	
б) диметиламин;	
в) диэтиламин;	
г) дифениламин.	
10. Анилин образуется при:	
а) восстановлении нитробензола;	
б) нитровании бензола;	
в) окислении нитробензола;	
г) дегидрировании нитроциклогексана.	
11. При замещении водорода в аммиаке на органические радикалы получ	a-
ЮТ:	
а) амины;	
б) амиды;	
в) азиды;	
г) нитраты.	
12. К ароматическим аминам относится:	
а) метиламин;	
б) бутиламин;	
в) триэтиламин;	
г) дифениламин.	
13. К первичным аминам НЕ относится:	
а) изопропиламин;	
б) бутиламин;	
в) метилэтиламин;	
г) анилин.	
14. Вещество, относящееся к аминам, имеет формулу:	
a) C_6H_5 — NO_2 ;	
6) C_6H_5 — NH_2 ;	

- B) C_6H_5 — CH_3 ;
- Γ) C_6H_5 —OH.

15. К аминам относится

- a) $C_2H_5NO_2$;
- б) C_2H_5CN ;
- B) $C_2H_5ONO_2$;
- Γ) (C₂H₅)₂NH.

16. Вещество CH_3 -NH- $CH(CH_3)_2$ относится к ряду:

- а) амидов;
- б) ароматических аминов;
- в) алифатических аминов;
- г) нитросоединений.

17. Вещество, формула которого имеет вид C_6H_5 - $N(CH_3)_2$, называется

- а) анилином;
- б) диметилфениламином;
- в) диметилфенолом;
- г) диметилнитробензолом.

18. Метиламин можно получить по реакции

- а) окисления нитрометана;
- б) хлорметана с аммиаком;
- в) хлорида метиламмония с гидроксидом натрия;
- г) метанола с концентрированной азотной кислотой.

19. Амины получаются в результате:

- а) нитрования алканов;
- б) окисления альдегидов;
- в) (восстановления нитросоединений;
- г) взаимодействия карбоновых кислот с аммиаком.

20. Анилин образуется при:

- а) восстановлении нитробензола;
- б) окислении нитробензола;
- в) дегидрировании нитроциклогексана;
- г) нитровании бензола.

21. Водные растворы аминов окрасятся фенолфталеином в цвет:

- а) малиновый;
- б) желтый;
- в) фиолетовый;
- г) оранжевый.
- 22. В водном растворе метиламина среда раствора:
 - а) кислая;
 - б) щелочная;
 - в) нейтральная;
 - г) слабокислая.
- 23. Ароматические амины проявляют:
 - а) слабые кислотные свойства;
 - б) сильные кислотные свойства;
 - в) слабые основные свойства;
 - г) амфотерные свойства.
- 24. Более сильные основные свойства проявляет:
 - а) анилин;
 - б) аммиак;
 - в) диметиламин;
 - г) метиламин.
- 25. Более слабым основанием, чем аммиак, является:
 - а) этиламин;
 - б) диметиламин;
 - в) диэтиламин;
 - г) дифениламин.
- 26. Характерной химической реакцией аминов, обусловленной наличием в их молекулах аминогруппы, является:
 - а) радикальное замещение;
 - б) взаимодействие с кислотами с образованием солей;
 - в) электрофильное присоединение;
 - г) нуклеофильное присоединение;
- 27. Метиламин взаимодействует с:
 - а) серной кислотой;
 - б) гидроксидом натрия;
 - в) оксидом алюминия;

- г) толуолом.
- 28. Укажите верные утверждения:
 - А. анилин легче реагирует с бромом, чем бензол.
 - Б. анилин является более сильным основанием, чем аммиак.
 - а) верно только А;
 - б) верно только Б;
 - в) верны оба утверждения;
 - г) оба утверждения неверны.
- 29. В реакцию с анилином НЕ вступает:
 - a) $Br_2(p-p)$;
 - б) КОН;
 - в) HCl;
 - Γ) HNO₃.
- 30. При полном сгорании аминов образуются:
 - a) CO, NO и H₂O;
 - б) CO₂ и NO₂;
 - в) CO₂, N₂ и H₂O;
 - г) CO₂, NH₃ и H₂O.
- 31. При взаимодействии этиламина с водным раствором НВг образуется:
 - а) бромэтан;
 - б) бромид аммония;
 - в) бромид этиламмония;
 - г) аммиак.
- 32. Укажите реакции характерные для анилина:
- 1) $C_6H_5NH_2 + Br_2 \rightarrow$
- 2) $C_6H_5NH_2 + NaOH \rightarrow$
- 3) $C_6H_5NH_2 + HCl \rightarrow$
- 4) $C_6H_5NH_2 + C_6H_6 \rightarrow$
 - a) 2
 - б) 1, 3
 - в) 2, 4
 - r) 4
- 33. Анилин от бензола можно отличить с помощью:
 - а) раствора едкого натра;

- б) свежеосажденного гидроксида меди (II);
- в) бромной воды;
- г) аммиака.

34. Наличием неподелённой электронной пары у атома азота в диэтиламине можно объяснить его:

TALD

- а) основные свойства;
- б) способность к горению;
- в) способность к хлорированию;
- г) летучесть.

35. Метилэтиламин взаимодействует с:

- а) этаном;
- б) бромоводородной кислотой;
- в) гидроксидом калия;
- г) пропаном.

36. Анилин взаимодействует с:

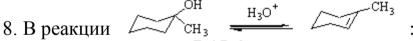
- а) гидроксидом натрия;
- б) хлором;
- в) толуолом;
- г) хлороводородом.

37. Пропиламин взаимодействует с:

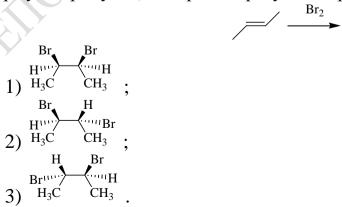
- а) водой;
- б) бензолом;
- в) бутаном;
- г) метаном.

38. Диметиламин взаимодействует с:

- а) (гидроксидом бария;
- б) кислородом;
- в) оксидом меди (П);
- г) пропаном.


ЗАДАНИЯ ПОВЫШЕННОЙ СЛОЖНОСТИ

- 1. Для получения реактива Гриньяра следует воспользоваться реакцией:
 - 1) хлорметан + Na \rightarrow ;
 - 2) хлорэтан $+ Ag_2O \rightarrow$;
 - 3) CH₃Cl + Mg $\xrightarrow{\ni \phi up}$;
 - 4) CH_3 - $CH_2Br + KOH \xrightarrow{cnupm.p-p}$.
- 2. Из метана и неорганических веществ нельзя в две стадии получить:
 - 1) бензол;
 - 2) метиловый спирт;
 - 3) этилен;
 - 4) пропан.
- 3. Из пропана и неорганических веществ нельзя в две стадии получить:
 - 1) ацетон;
 - 2) этан;
 - 3) 2,3-диметилбутан;
 - 4) пропанол-2.
- 4. Из этана и неорганических веществ нельзя в две стадии получить:
 - 1) бензол;
 - 2) бутан;
 - 3) пропан;
 - 4) этанол;
- 5. Справедливое утверждение, описывающее реакцию:


- 1) C* окисляется;
- $2) C^*$ восстанавливается;
- 3) бром окисляется;
- 4) бром восстанавливается;
- 5) это не окислительно-восстановительная реакция.
- 6. Неверное утверждение о реактиве Гриньяра:
- 1) Реактив Гриньяра и литийорганические соединения должны быть защищены от контакта с кислородом и водой;

- 2) Для получения реактива Гриньяра в качестве растворителя необходим диэтиловый эфир;
- 3) Как реактивы Гриньяра, так и литийорганические соединения могут быть получены из первичных, вторичных и третичных галогеналканов;
- 4) Спирты быстро реагируют с реактивом Гриньяра с образованием углеводородов;
- 5) Реактив Гриньяра высокоактивное вещество, применяемое в органическом синтезе;
- 6) Для получения конечных продуктов с использованием реактива Гриньяра нет необходимости в использовании водных растворов.
- 7. Продукт, образующийся в результате реакции HBr

5) эти вещества не реагируют.

- 1) равновесие сдвинуто вправо;
- 2) равновесие сдвинуто влево;
- 3) реакция протекает в обе стороны в равной степени;
- 4) эти молекулы не являются равновесными в указанных условиях.
- 9. Формула продукта, который образуется в результате следующей реакции:

ОТВЕТЫ:

№ во-	1	2	3	4	5	6	7	8	9
проса									
ответ	3	4	2	3	2	6	4	4	2

КАРБОНОВЫЕ КИСЛОТЫ

Вопросы имеют один правильный вариант ответа

- 1. Изомером пропановой кислоты является:
 - а) диэтиловый эфир;
 - б) пропилацетат;
 - в) бутаналь;
 - г) этилформиат;
- 2. Этановая и уксусная кислота являются:
 - а) гомологами;
 - б) структурными изомерами;
 - в) геометрическими изомерами;
 - г) одним и тем же веществом.
- 3. К классу предельных одноосновных карбоновых кислот относится:
 - а) глицин;
 - б) линолевая кислота;
 - в) стеариновая кислота;
 - г) олеиновая кислота.
- 4. При взаимодействии муравьиной кислоты с магнием образуются:
 - а) формиат магния и вода;
 - б) формиат магния и водород;
 - в) ацетат магния и вода;
 - г) ацетат магния и водород.
- 5. С уксусной кислотой взаимодействует:
 - а) хлорид калия;
 - б) гидросульфат калия;
 - в) гидрокарбонат калия;
 - г) нитрат калия.

- 6. Олеиновая кислота сочетает в себе свойства карбоновой кислоты и...
 - а) амина;
 - б) спирта;
 - в) альдегида;
 - г) алкена.
- 7. В отличие от уксусной, муравьиная кислота:
 - а) вступает в реакцию нейтрализации;
 - б) образует соли при реакции с основными оксидами;
 - в) вступает в реакцию "серебряного зеркала";
 - г) образует сложные эфиры со спиртами.
- 8. Кислотные свойства уксусной кислоты НЕ проявляются в реакции с:
 - а) натрием;
 - б) гидроксидом натрия;
 - в) этанолом;
 - г) оксидом меди (II).
- 9. Вещества СН₃СООН и НСООСН₃ являются:
 - а) структурными изомерами;
 - б) геометрическими изомерами;
 - в) гомологами;
 - г) одним и тем же веществом.
- 10. Этановую кислоту можно классифицировать как:
 - а) предельную одноосновную;
 - б) предельную двухосновную;
 - в) непредельную одноосновную;
 - г) непредельную двухосновную.
- 11. В порядке усиления кислотных свойств расположены кислоты:
 - а) хлоруксусная-пальмитиновая-уксусная;
 - б) уксусная-пальмитиновая-хлоруксусная;
 - в) хлоруксусная-уксусная-пальмитиновая;
 - г) пальмитиновая-уксусная-хлоруксусная.
- 12. Для предельных карбоновых кислот НЕ характерны реакции:
 - а) полимеризации;
 - б) горения;

- в) со щелочными металлами;
- г) с бромом.

13. Муравьиная кислота способна проявлять свойства:

- а) альдегида и спирта;
- б) карбоновой кислоты и спирта;
- в) карбоновой кислоты и альдегида;
- г) карбоновой кислоты и алкена.

14. Уксусная кислота может реагировать с:

- а) карбонатом калия;
- б) муравьиной кислотой;
- в) серебром;
- г) оксидом серы (IV).

15. Уксусная кислота НЕ реагирует с:

- а) карбонатом кальция;
- б) аммиачным раствором оксида серебра;
- в) гидроксидом калия;
- г) аммиаком.

16. Для получения уксусной кислоты в одну стадию используют:

- а) гидролиз карбида кальция;
- б) гидратацию этилена;
- в) окисление формальдегида;
- г) окисление ацетальдегида.

17. При взаимодействии карбоновых кислот со спиртами образуются:

- а) соли;
- б) алкоголяты;
- в) простые эфиры;
- г) сложные эфиры.

18. Формулой R — С=О можно выразить строение веществ, принадлежащих к классу:

- а) спиртов;
- б) карбоновых кислот;
- в) альдегидов;
- г) кетонов.

19.	Самую высокую	степень	диссоциации	имеет	вещество,	формула	которо-
го:							

- a) CH₃-COOH
- б) Cl-CH₂-COOH
- B) F-CH₂-COOH
- г) CF₃–COOH

20. Жидкое мыло имеет формулу:

- a) C₁₇H₃₅COONa;
- б) C₁₇H₃₅COOK;
- в) C₁₇H₃₅COOH;
- г) C₁₇H₃₃COOH.

21. В порядке усиления кислотных свойств расположены кислоты:

- а) стеариновая уксусная трихлоруксусная;
- б) уксусная стеариновая трихлоруксусная;
- в) трихлоруксусная уксусная стеариновая;
- г) стеариновая трихлоруксусная уксусная.

22. Жидкие растительные масла НЕ вступают в реакцию с:

- а) водородом;
- б) раствором перманганата калия;
- в) глицерином;
- г) раствором гидроксида натрия.

23. При кислотном гидролизе этилацетата образуются:

- а) этанол и муравьиная кислота;
- б) этанол и уксусная кислота;
- в) метанол и муравьиная кислота;
- г) метанол и уксусная кислота.

24. Формиат калия НЕ получится при действии на муравьиную кислоту:

- а) гидроксида калия;
- б) карбоната калия;
- в) сульфата калия;
- г) калия.

25. Твёрдые жиры можно получить из жидких масел:

а) гидролизом;

- б) взаимодействием с кислородом;
- в) гидратацией;
- г) гидрированием.

26. В порядке усиления кислотных свойств расположены кислоты:

- а) уксусная трихлоруксусная муравьиная;
- б) муравьиная уксусная трихлоруксусная;
- в) трихлоруксусная уксусная муравьиная;
- г) трихлоруксусная муравьиная уксусная.

27. Уксусная кислота НЕ реагирует с:

- а) пропанолом;
- б) магнием;
- в) хлоридом натрия;
- г) карбонатом калия.

28. В цепи превращений: $CH_3COOH + Na_2CO_3 \longrightarrow X_1$ $X_1 + H_2SO_4$ (конц.) $\longrightarrow X_2$,

веществами X_1 и X_2 являются соответственно:

- a) CO₂ и H₂CO₃;
- б) CH₃COONa и CH₃COOH;
- в) CH₃COONa и C₂H₅OH;
- Γ) CH₃CH=O и C₂H₅OH.

29. С гидрокарбонатом натрия реагирует каждое из веществ:

- a) HCOOH и CH₃COOH;
- б) CH_3COOH и C_2H_5OH ;
- в) C_2H_5OH и C_6H_5OH ;
- Γ) C_6H_5OH и CH_2OH — CH_2OH .

30. Муравьиная кислота реагирует с:

- а) хлоридом натрия;
- б) аммиачным раствором оксида серебра;
- в) медью;
- г) гексаном.

31. Ацетат натрия НЕ получится при действии на уксусную кислоту:

- а) натрия;
- б) гидроксида натрия;
- в) хлорида натрия;

- г) карбоната натрия. 32. Для муравьиной кислоты НЕ характерна реакция: а) этерификации; б) «серебряного зеркала»;

 - в) гидратации;
 - г) нейтрализации.
- 33. Уксусная кислота реагирует с:
 - а) хлором;
 - б) водородом;
 - в) медью;
 - г) хлоридом натрия.
- 34. К карбоновым кислотам относится вещество, формула которого:
 - a) CH₃COOH;
 - б) CH₃COH;
 - в) CH₃-O-CH₃;
 - г) CH₃COOCH₃.
- 35. Водородная связь образуется между молекулами:
 - а) альдегидов;
 - б) карбоновых кислот;
 - в) сложных эфиров;
 - L) жиров.
- 36. В природных жирах не содержится остаток кислоты:
 - а) муравьиной;
 - б) масляной;
 - в) олеиновой;
 - г) пальмитиновой.
- 37. Гомологом муравьиной кислоты является:
 - а) щавелевая кислота;
 - б) олеиновая кислота;
 - в) бензойная кислота:
 - г) стеариновая кислота.
- 38. С помощью какой реакции нельзя получить карбоновую кислоту:
 - а) окисление альдегида;
 - б) гидролиз сложного эфира;

- в) восстановление альдегида;
- г) окисление алкана.
- 39. С уксусной кислотой реагируют: гидроксид железа (III), пропанол-1, цинк, хлор (в присутствии катализатора), карбонат натрия, формальдегид (указать количество веществ):
 - а) три;
 - б) четыре;
 - в) пять;
 - г) шесть.
- 40. Мыло представляет собой:
 - а) натриевую соль высшей карбоновой кислоты;
 - б) сложный эфир глицерина;
 - в) сложный эфир высшей карбоновой кислоты;
 - г) смесь высших карбоновых кислот.
- 41. Жидкие жиры отличаются от твердых тем, что в их составе содержатся:
 - а) свободные гидроксильные группы;
 - б) остатки ароматических карбоновых кислот;
 - в) сложные эфиры высших карбоновых кислот и этиленгликоля;
 - г) остатки непредельных карбоновых кислот.
- 42. Сложные эфиры получают реакцией:
 - а) гидратации;
 - б) этерификации;
 - в) полимеризации;
 - г) омыления.
- 43. С пропановой кислотой НЕ реагируют: цинк, соляная кислота, метаналь, метанол, гидроксид натрия, хлорид алюминия (указать количество веществ):
 - а) три;
 - б) два;
 - в) четыре;
 - г) пять.
- 44. В основе получения маргарина лежит реакция:
 - а) гидролиза жиров;
 - б) этерификации;

- в) омыления жиров;
- г) гидрирования жидких жиров.

45. В отличие от других монокарбоновых кислот предельного ряда муравьиная кислота:

- а) реагирует с натрием;
- б) жидкость при обычных условиях;
- в) легко окисляется;
- г) имеет межмолекулярную водородную связь.

46. При растворении в воде 1 моль уксусного ангидрида образуется:

- а) 2 моль этаналя;
- б) 2 моль этанола;
- в) 2 моль уксусной кислоты;
- г) 1 моль метилацетата.

47. С какими веществами реагирует муравьиная кислота?

- а) хлорид меди (II);
- б) сульфат натрия;
- в) гидрокарбонат калия;
- г) хлорметан.

48. В отличие от стеариновой кислоты олеиновая кислота:

- а) высшая карбоновая кислота;
- б) растворима в воде;
- в) обесцвечивает бромную воду;
- г) реагирует со щелочами.

49. Какие вещества реагируют с водородом?

- а) линолевая кислота;
- б) этанол;
- в) пропановая кислота;
- г) пропан.

50. Какая реакция лежит в основе получения сложных эфиров?

- а) нейтрализации;
- б) полимеризации;
- в) этерификации;
- г) гидрирования.

- 51. Какая кислота получается при окислении изобутилового спирта:
 - а) бутановая;
 - б) масляная;
 - в) валериановая;
 - г) 2-метилпропановая.
- 52. Уксусную кислоту нельзя получить:
 - а) окислением ацетальдегида;
 - б) восстановлением этаналя;
 - в) гидрированием этаналя;
 - г) окислением метана.
- 53. Гомологи уксусной кислоты являются электролитами:
 - а) слабыми;
 - б) сильными;
 - в) амфотерными;
 - г) все предыдущие ответы неверны.
- 54. Функциональной группой карбоновых кислот является:
 - а) гидроксогруппа;
 - б) карбонильная группа;
 - в) карбоксильная группа;
 - г) аминогруппа.

КОМБИНИРОВАННЫЕ ВОПРОСЫ

Вопросы имеют несколько правильных варианта ответа

- 1. Пропанол-1 вступает в реакцию:
 - 1) внутримолекулярной дегидратации;
 - 2) с хлороводородом;
 - 3) с гидроксидом натрия;
 - 4) с подкисленным раствором перманганата калия;
 - 5) «серебряного зеркала»;
 - 6) гидролиза.
- 2. Пропанол-1 преимущественно получается в реакции:
 - 1) гидратации пропена;

- 2) взаимодействия пропена с раствором перманганата калия;
- 3) щелочного гидролиза 1-хлорпропана;
- 4) гидрирования пропаналя;
- 5) щелочного гидролиза пропилацетата;
- 6) взаимодействия пропина с раствором перманганата калия.

3. Пропанол-2 можно получить в реакции:

- 1) гидрирования пропанона;
- 2) окисления пропаналя;
- 3) гидратации пропена;
- 4) щелочного гидролиза 2-хлорпропана;
- 5) восстановления пропановой кислоты;
- 6) взаимодействия пропена с раствором перманганата калия.

4. Этандиол-1,2 может реагировать с:

- 1) гидроксидом меди(II);
- 2) оксидом железа (II);
- 3) хлороводородом;
- калием;
- 5) фосфором.

5. Для фенола характерны:

- 1) кислотные свойства;
- 2) sp-гибридизация атомов углерода в молекуле;
- 3) газообразное состояние при обычных условиях;
- 4) обесцвечивание бромной воды;
- 5) сопряженная электронная система, в которой участвует неподеленная пара электронов кислорода;
 - 6) токсичность.

6. Фенол реагирует с:

- 1) кислородом;
- 2) бензолом;
- 3) гидроксидом натрия;
- 4) хлороводородом;
- 5) натрием;
- 6) оксидом кремния (IV).

7. Метаналь может реагировать с:

1) HBr;

- 2) $[Ag(NH_3)_2]OH$;
- 3) C_6H_5OH ;
- 4) $C_6H_5CH_3$;
- 5) Na;
- 6) H₂.
- 8. Пропаналь может реагировать с:
 - 1) H₂;
 - 2) C₆H₅OH;
 - 3) $[Ag(NH_3)_2]OH$;
 - 4) Na;
 - 5) Cu(OH)₂ (реактив Фелинга).
- 9. Олеиновая кислота может реагировать с:
 - 1) сульфатом кальция;
 - 2) бромной водой;
 - 3) хлоридом серебра;
 - 4) бутанолом-2;
 - 5) ртутью;
 - 6) гидроксидом калия.
- 10. Уксусную кислоту можно получить в реакции:
 - 1) щелочного гидролиза метилацетата;
 - 2) окисления ацетальдегида;
 - 3) взаимодействия этилена с раствором перманганата калия;
 - 4) ацетата натрия с концентрированной серной кислотой;
 - 5) гидролиза 1,1,1-трихлорэтана;
 - 6) восстановления этанола.
- 11. Муравьиная кислота реагирует с:
 - 1) Аg₂О (аммиачный раствор);
 - 2) NaCl;
 - 3) CaCO₃;
 - 4) Cu;
 - 5) C₂H₆;
 - 6) CH₃OH.
- 12. Олеиновая кислота может вступать в реакции с:
 - 1) водородом;
 - 2) бромоводородом;

- 3) медью;
- 4) хлоридом хрома (III);
- 5) азотом;
- 6) карбонатом натрия.

13. Этиламин:

- 1) вторичный амин;
- 2) изменяет окраску лакмуса на синюю;
- 3) является донором электронной пары;
- 4) проявляет амфотерность;
- 5) реагирует с этанолом;
- 6) горит.

14. Анилин взаимодействует с:

- 1) хлором;
- 2) метаном;
- 3) толуолом;
- 4) хлороводородом;
- 5) гидроксидом натрия;
- 6) пропионовой кислотой.

15. Метиламин:

- 1) третичный амин;
- 2) газообразное вещество;
- 3) проявляет основные свойства;
- 4) реагирует с водородом;
- 5) реагирует с серной кислотой;
- 6) является менее сильным основанием, чем аммиак.

16. Пропиламин может взаимодействовать с:

- 1) водой;
- 2) аммиаком;
- 3) кислородом;
- 4) соляной кислотой;
- 5) гидроксидом калия;
- 6) хлоридом натрия.

17. Метиламин:

- 1) проявляет основные свойства;
- 2) является менее сильным основанием, чем аммиак;

- 3) реагирует с серной кислотой;
- 4) реагирует с водородом;
- 5) реагирует с азотистой кислотой.

18. Этиламин:

- 1) изменяет окраску лакмуса на синюю;
- 2) является донором электронной пары;
- 3) проявляет амфотерность;
- 4) горит;
- 5) реагирует с этаном.

19. Для предельных одноатомных спиртов характерны реакции:

- 1) этерификации;
- 2) взаимодействие с активными металлами;
- 3) окисления;
- 4) дегидратации;
- 5) гидратации;
- 6) полимеризации.

ОТВЕТЫ:

№ во-	1	2	3	4	5	6	7	8	9	10
проса					4					
ответ	124	345	134	134	1456	135	236	135	246	245
№ во-	11	12	13	14	15	16	17	18	19	
проса				Y						
ответ	136	126	236	146	235	134	135	124	1234	

СПИРТЫ И ФЕНОЛЫ

Вопросы имеют один правильный вариант ответа

1. Изомерами являются:

- а) бензол и толуол;
- б) пропанол и пропановая кислота;
- в) этанол и диметиловый эфир;
- г) этанол и фенол.

2. Бутанол-1 и 2- метилпропанол-2 являются:

- а) гомологами;
- б) структурными изомерами;

в)	пространственными изомерами;
r)	одним и тем же веществом.
3. Глице	рин относится к классу веществ:
a)	одноатомные спирты;
б)	арены;
	эфиры;
г)	
,	
4. Вернь	и ли следующие утверждения о строении молекулы этанола?
A.	Молекула этанола содержит атомы углерода только в sp ³ -
	бридном состоянии.
Б. 1	\dot{M} олекула этанола содержит только σ – связи.
	верно только А;
б)	верно только Б;
в)	верно А и Б;
г)	
5. Метан	пол НЕ взаимодействует с
a)	K;
б)	Ag;
в)	CuO;
г)	O_2 .
6. Внутр	имолекулярная дегидратация спиртов приводит к образованию
a)	альдегидов;
б)	алканов;
7)	O THEOLOGY

- в) алкенов;
- г) алкинов.
- 7. При окислении этанола оксидом меди (II) образуется:
 - а) формальдегид;
 - б) ацетальдегид;
 - в) муравьиная кислота;
 - диэтиловый эфир.
- 8. Характерной реакцией для многоатомных спиртов является взаимодействие с:
 - a) H_2 ;
 - б) Cu;
 - в) Ag₂O (NH₃ p-р);

- Γ) Cu(OH)₂.
- 9. Гомологами являются:
 - а) метанол и фенол;
 - б) бутин-2 и бутен-2;
 - в) глицерин и этилегликоль;
 - г) 2-метилпропанол и 2-метилпетанол.
- 10. К многоатомным спиртам относится:
 - a) CH₃COCH₃;
 - б) C₂H₅CHO;
 - в) CH₂OH-CH₂OH;
 - Γ) C₆H₅COOH;
- 11. Молекула вещества 2-метилпропен-2-ол-1 содержит:
 - а) три атома углерода и одну двойную связь;
 - б) четыре атома углерода и одну двойную связь;
 - в) три атома углерода и две двойные связи;
 - г) четыре атома углерода и две двойные связи;
- 12. Верны ли следующие утверждения о свойствах спиртов?

А Между их молекулами имеются водородные связи.

- Б Спирты проявляют кислотные свойства.
- а) верно только А;
- б) верно только Б;
- в) верно А и Б;
- г) неверны оба утверждения.
- 13. При окислении метанола образуется:
 - а) метан;
 - б) уксусная кислота;
 - в) метаналь;
 - г) хлорметан.
- 14. Этанол НЕ взаимодействует с:
 - a) NaOH;
 - б) Na;
 - в) HCl;
 - Γ) O_2 .

15. При д	цегидратации этилового спирта образуется:
a)	бутан;
б)	этен;
в)	этин;
г)	пропен.
16. Ярко	-синий раствор образуется при взаимодействии гидроксида меди
(II) c:	
a)	этанолом;
б)	глицерином;
в)	этаналем;
г)	толуолом.
17. К фен	нолам относится вещество, формула которого:
a)	C_6H_5 -O-CH ₃ ;
/	C_6H_{13} -OH;
/	C_6H_5 -OH;
,	C_6H_5 - CH_3 .
18. Атом	кислорода в молекуле фенола образует:
a)	одну о-связь;
б)	две о- связи;
в)	одну σ-связь и одну π-связь;
$\Gamma)$	две π -связи.
	л взаимодействует с:
a)	соляной кислотой;
б)	гидроксидом натрия;
в)	этиленом;
г)	метаном.
20 =	
	л в водном растворе является:
	сильной кислотой;
	слабой кислотой;
(слабым основанием;
г)	сильным основанием.
21. Кисл	отные свойства наиболее выражены у:
a)	фенола;
б)	метанола;

- в) этанола;
- г) глицерина.
- 22. При взаимодействии фенола с натрием образуются:
 - а) фенолят натрия и вода;
 - б) фенолят натрия и водород;
 - в) бензол и гидроксид натрия;
 - г) бензоат натрия и водород.
- 23. Фенол вступает в реакцию замещения в бензольном кольце с:
 - а) азотной кислотой и гидроксидом натрия;
 - б) гидроксидом натрия и серной кислотой;
 - в) серной кислотой и бромной водой;
 - г) бромной водой и азотной кислотой.
- 24. Сильными антисептическими свойствами обладает:
 - а) этановая кислота;
 - б) раствор фенола;
 - в) диметиловый эфир.
 - г) бензол.
- 25. К классу предельных одноатомных спиртов может относиться вещество состава:
 - a) C_3H_6O ;
 - б) C₆H₅OH;
 - B) C_3H_8O ;
 - Γ) $C_3H_6O_2$.
- - а) 2-метилбутанол-3;
 - б) 3-метилпрпанол-2;
 - в) 2-метилпропанол-2;
 - г) 3-метилбутанол-2.
- 27. Для этанола характерна изомерия:
 - а) углеродного скелета;
 - б) геометрическая;
 - в) межклассовая;

- г) положения функциональной группы.
- 28. Гомологом пропанола-2 является:
 - а) пропан;
 - б) пропанол-1;
 - в) метилэтиловый эфир;
 - г) бутанол-2.
- 29. Среди утверждений:
 - А. Многоатомные спирты хорошо растворимы в воде.
 - Б. Между молекулами спиртов и воды образуются водородные связи.
 - а) верно только А;
 - б) верно только Б;
 - в) верны оба утверждения;
 - г) оба утверждения неверны.
- 30. Температура кипения метанола выше, чем у этана, потому что:
 - а) у метанола выше молекулярная масса;
 - б) молекула метанола содержит атом кислорода;
 - в) между молекулами метанола есть водородные связи;
 - г) в молекуле этана есть неполярные ковалентные связи между атомами углерода.
- 31. Спирты проявляют слабые кислотные свойства по причине:
 - а) полярности связи О-Н;
 - б) хорошей растворимости в воде;
 - в) влияния углеводородного радикала на группу О-Н;
 - г) наличия неподелённой пары электронов у атома кислорода.
- 32. Кислотные свойства среди перечисленных ниже веществ наиболее выражены у:
 - а) пропанола-1;
 - б) фенола;
 - в) пропана;
 - г) воды.
- 33. Кислотные свойства этанола проявляются в реакции с:
 - а) натрием;
 - б) оксидом меди (II);
 - в) хлороводородом;
 - г) подкисленным раствором КМпО₄.

 34. Влияние бензольного кольца на гидроксильную группу в молекуле фенола доказывает реакция фенола с: а) бромной водой; б) гидроксидом натрия; в) азотной кислотой; г) формальдегидом.
35. Голубой осадок гидроксида меди (II) образует интенсивно-синий рас-
твор под действием:
а) бутилена;
б) бутанола;
в) бутандиола-1,2;
г) бутадиена-1,3.
36. При окислении пропанола-2 образуется:
а) алкен;
б) многоатомный спирт;
в) альдегид;
г) кетон.
37. Среди утверждений:
А. Реакции замещения в бензольном кольце у фенола протекают легче
чем у бензола.
Б. Фенол, в отличие от этанола, не реагирует со щелочами.
а) верно только A;б) запада по по
б) верно только Б;
в) верны оба утверждения;
г) оба утверждения неверны.
38. В цепи превращений CH_3 – CH_2 – OH \longrightarrow X \longrightarrow CH_2OH – CH_2OH
веществом X является:
a) CH ₂ Cl-CH ₂ Cl;
6) CH ₂ =CH ₂ ;
в) CH ₃ -CH ₂ Cl;
г) CH ₃ -CH=O.
,3
39. Метанол не взаимодействует с:
a) Na;
б) NaOH;

в)	CuO
г)	HCl.

40. Одним из продуктов реакции, протекающей при нагревании метанола с концентрированной серной кислотой при температуре НИЖЕ 140 °C, является:

- a) $CH_2=CH_2$;
- б) CH₃–Cl;
- в) CH₄;
- г) CH₃-O-CH₃.

41. В результате нагревания пропанола-1 с концентрированной серной кислотой при температуре СВЫШЕ 140° образуется преимущественно:

- а) простой эфир;
- б) оксид;
- в) альдегид;
- г) алкен.

42. Этиленгликоль реагирует с:

- a) NaCl;
- б) SOCl₂;
- в) CH₃COONa;
- r) CuSO₄.

43. Количество вещества кислорода, необходимого для полного сгорания 1 моль этилового спирта, равно:

- а) 1 моль;
- б) 2 моль;
- в) 3 моль;
- г) 5 моль.

44. Преимущественно вторичный спирт образуется при гидратации:

- a) CH₂=CH-CCl₃;
- 6) CH_3 —CH= $CH(CH_3)$ — CH_3 ;
- B) $CH_2=CH_2$;
- г) CH₂=CH-CH₃.

45. Пропандиол-1,2 может быть получен в реакции:

- а) 1,2-дихлорпропана со спиртовым раствором щёлочи;
- б) пропена с раствором перманганата калия;

- в) гидратации пропанола;
- г) гидратации пропина.

46. При взаимодействии бутена-1 с водой образуется преимущественно:

- а) бутанол-2;
- б) бутен-1-ол-2;
- в) бутанол-1;
- г) бутен-1ол-1.

47. Бутанол-2 можно получить:

- а) гидратацией бутена-1;
- б) восстановлением бутаналя;
- в) щелочным гидролизом 1-хлорбутана;
- г) восстановлением бутановой кислоты.

48. Метанол не может быть получен в реакции:

- а) угарного газа с водородом в присутствии катализатора;
- б) хлорметана с водным раствором щёлочи;
- в) окисление формальдегида;
- г) гидрирования формальдегида.

49. К способам получения спиртов НЕ относится:

- а) гидратация алкинов;
- б) гидратация алкенов;
- в) гидролиз алкилгалогенидов;
- г) восстановление карбонильных соединений.

50. Спирт может быть получен при взаимодействии альдегида:

- а) с гидроксидом меди (II);
- б) со щёлочью;
- в) с водородом на катализаторе;
- г) с хлороводородом.

51. С каким веществом взаимодействует гидроксид меди (II):

- a) CH₃OH;
- б) НО-СН₂-СН₂-ОН;
- в) CH₃-CH₂-CH₂-OH;
- Γ) C_2H_5OH .

52. Изомерами являются:

- а) метанол и этанол;
- б) фенол и гексанол-1;
- в) ацетон и уксусный альдегид;
- г) бутанол и 2-метилпропанол-2.
- 53. Образование ярко-синего комплексного соединения с гидроксидом меди (II) является качественной реакций на:
 - а) альдегиды;
 - б) многоатомные спирты;
 - в) фенолы;
 - г) кетоны.
- 54. Первичный спирт можно получить:
 - а) окислением пропаналя;
 - б) гидратацией пропена;
 - в) восстановлением бутаналя;
 - г) окислением бутана.
- 55. Сколько из перечисленных веществ (муравьиная кислота, водород, аммиачный раствор оксида серебра, магний, гидросульфит натрия) реагируют с этаналем:
 - а) три;
 - б) два;
 - в) четыре;
 - г) пять.
- 56. Водородная связь отсутствует между молекулами:
 - а) одноатомных спиртов;
 - б) альдегидов;
 - в) гликолей;
 - г) карбоновых кислот.
- 57. Укажите название вещества, формула которого: $CH_3 CH CH_2 CH CH_3$ | | | $CH_4 CH_5$
 - а) 2-этилпентанол-5;
 - б) 4-этилпентанол-2;
 - в) 3-метилгексанол-5;
 - г) 4-метилгексанол-2.

- 58. Гомологами являются:
 - а) метанол и глицерин;
 - б) метанол и бутанол-1;
 - в) уксусный альдегид и ацетон;
 - г) фенол и этанол;
- 59. Образование фиолетового комплексного соединения с хлоридом железа (III) является качественной реакций на:
 - а) фенол;
 - б) альдегид;
 - в) одноатомный спирт;
 - г) многоатомный спирт.
- 60. Сколько веществ из перечисленных (натрий, бром, азотная кислота, формальдегид) реагируют с фенолом:
 - а) одно;
 - б) два;
 - в) три;
 - г) четыре.
- 61. Различить пробирки с бензольными растворами фенола и этанола можно с помощью:
 - а) натрия;
 - б) гидроксида калия;
 - в) бромной воды;
 - г) хлороводорода.
- 62. Какие два органических вещества используются для получения фенола в промышленности по кумольному способу:
 - а) толуол и метанол;
 - б) бензол и пропилен;
 - в) этилен и бензойная кислота;
 - г) пропилен и анилин.
- 63. В отличие от этанола фенол реагирует с:
 - а) калием;
 - б) водным раствором гидроксида калия;
 - в) хлороводородом;
 - г) гидросульфатом калия.

64.	Назовите	ПО	системати	ическ	ой номе	енклатуре	е соедин	ение,	кот	opoe	пре-
иму	ищественно	ОП	олучается	при і	взаимод	ействии	водного	раств	opa	щело	чи с
2-x.	лорбутаном	м:									

- а) бутен-1;
- б) бутен-2;
- в) бутанол-2;
- г) 1-метилпропанол-1.

65. Какое соединение может получиться при дегидратации пропанола-1:

- а) пропилен;
- б) метилпропиловый эфир;
- в) дипропиловый альдегид;
- г) пропанол-2.

66. Этиленгликоль можно получать:

- а) взаимодействием ацетилена с водой;
- б) взаимодействием этилена с водным раствором КМпО₄;
- в) взаимодействием хлорэтана с водным раствором щелочи;
- г) взаимодействием этилена с водой.

67. С какими веществами НЕ реагирует глицерин?

- а) нитрат калия;
- б) азотная кислота;
- в) натрий;
- г) свежеприготовленный гидроксид меди.

68. При дегидратации этилового спирта образуется:

- а) этилен;
- б) ацетилен;
- в) пропилен;
- г) пропин.


69. Какой спирт образуется при восстановлении 3-метилбутаналя?

- а) третичный бутиловый спирт;
- б) 2-метилбуганол-1;
- в) 3-метилбуганол-1;
- г) 2-метилбутанол-4.

70. Для обнаружения фенола используют:

а) хлороводород;

- свежеприготовленный раствор меди (II);
- хлорид железа трехвалентный; в)
- аммиачный раствор серебра. L)

