УДК 512.542

— МАТЕМАТИКА

О σ-СВОЙСТВАХ КОНЕЧНЫХ ГРУПП ІІ

А.Н. Скиба

Гомельский государственный университет им. Ф. Скорины, Гомель, Беларусь

ON σ-PROPERTIES OF FINITE GROUPS II

A.N. Skiba

F. Scorina Gomel State University, Gomel, Belarus

Пусть G – конечная группа, $\sigma = \{\sigma_i | i \in I\}$ – некоторое разбиение множества всех простых чисел \mathbb{P} и Π – подмножество множества σ . Множество \mathcal{H} подгрупп из G называется *полным холловым* Π -*множеством* в G, если \mathcal{H} содержит в точности одну холлову σ_i -подгруппу из G для каждого такого $\sigma_i \in \Pi$, что $\sigma_i \cap \pi(G) \neq \emptyset$. Мы также говорим, что G является: Π -*полной*, если G обладает *полным холловым* Π -*множеством*; Π -*полной группой силовского типа*, если для всякого $\sigma_i \in \Pi$ каждая подгруппа E группы G является D_{σ_i} -группой, т. е. E содержит холлову σ_i -подгруппу

H и каждая σ_i -подгруппа из *E* содержится в некоторой сопряженной с *H* подгруппой H^x ($x \in E$). В данной работе мы исследуем свойства конечных П -полных групп. Работа продолжает исследования статьи [1].

Ключевые слова: конечная группа, П-полная группа, сразрешимая группа, с-нильпотентная группа, с-квазинильпотентная группа.

Let *G* be a finite group, $\sigma = \{\sigma_i | i \in I\}$ some partition of the set \mathbb{P} of all primes and Π a subset of the set σ . A set \mathcal{H} of subgroups of *G* is said to be a *complete Hall* Π -*set* of *G* if \mathcal{H} contains exact one Hall σ_i -subgroup of *G* for every $\sigma_i \in \Pi$ such that $\sigma_i \cap \pi(G) \neq \emptyset$. We say also that *G* is: Π -*full* if *G* possess a *complete Hall* Π -*set*; a Π -*full group of Sylow type* if for each $\sigma_i \in \Pi$, every subgroup *E* of *G* is a D_{σ_i} -group, that is, *E* has a Hall σ_i -subgroup *H* and every σ_i -subgroup of *E* is contained in some conjugate of H^* ($x \in E$). In this paper we study properties of finite Π -full groups. The work continues the research of the paper [1].

Keywords: finite group, Π -full group, σ -soluble group, σ -nilpotent group, σ -quasinilpotent group.

1 Basic concepts

Throughout this paper, all groups are finite and *G* always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi \subseteq P$ and $\pi' = \mathbb{P} \setminus \pi$. If *n* is an integer, then the symbol $\pi(n)$ denotes the set of all primes dividing |n|; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order |G| of *G*.

In what follows, $\sigma = \{\sigma_i \mid i \in I\}$ is some partition of \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$; Π is always supposed to be a subset of the set σ and $\Pi' = \sigma \setminus \Pi$.

We put $\sigma(n) = \{\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset\}$, $\sigma(G) = \sigma(|G|)$, and we say that *G* is: σ -*primary* if either G = 1 or $|\sigma(G)| = 1$; σ -*biprimary* if $|\sigma(G)| = 2$; a Π -*group* if $\sigma(G) \subseteq \Pi$.

A chief factor H/K of G is said to be σ -central (in G) if the semidirect product

$$(H/K) \rtimes (G/C_G(H/K))$$

is σ -primary, otherwise it is called σ -eccentric (in G).

Definition 1.1. We say that G is: (i) σ -soluble [2] if every chief factor of G is σ -primary; (ii) σ -nilpotent if every chief factor of G is σ -central. © Skiba A.N., 2015

70

Example 1.2. (i) Every σ -nilpotent group is also σ -soluble, and G is σ -soluble if and only if it is σ_i -separable for all $i \in I$; G is soluble (respectively nilpotent) if and only if it is σ -soluble (respectively σ -nilpotent), where $\sigma = \{\{2\}, \{3\}, \{5\}, ...\}$ is the *smallest* partition of \mathbb{P} , that is, for any $i \in I$, σ_i is a one-element set.

(ii) *G* is π -separable if and only if it is σ -soluble, where $\sigma = {\pi, \pi'}$.

(iii) Let $\pi = \{p_1, ..., p_t\}$. Then G is π -soluble if and only if it is σ -soluble, where $\sigma = \{\{p_1\}, ..., \{p_t\}, \pi'\}$.

(iv) In view of Theorem 4.1 in [1], $G \neq 1$ is σ -nilpotent if and only if $G = O_{\sigma_1}(G) \times \cdots \times O_{\sigma_t}(G)$, where $\{\sigma_1, \dots, \sigma_t\} = \sigma(G)$.

A set \mathcal{H} of subgroups of *G* is said to be a *complete Hall* Π -*set* of *G* if \mathcal{H} contains exact one Hall σ_i -subgroup of *G* for every $\sigma_i \in \Pi \cap \sigma(G)$.

Definition 1.3. We say that G is:

(i) Π -full if G possess a complete Hall Π -set;
(ii) a D_Π-group if for each σ_i ∈ Π, G is a D_σ -group.

(iii) a Π -full group of Sylow type if every subgroup of G is a D_{Π} -group.

Example 1.4. (i) If G is π -soluble, then G is a Π -full group of Sylow type for each $\Pi \subseteq \sigma$ such that $\bigcup_{\sigma_i \in \Pi} \sigma_i \subseteq \pi$. In particular, if G is soluble, then G is a σ -full group of Sylow type for every partition σ of \mathbb{P} .

(ii) In more general case, we say that *G* is Π -*soluble* if every chief factor of *G* is either a Π' -group or a σ_i -group for some $\sigma_i \in \Pi$. If $\Pi \cap \sigma(G) = \{\sigma_1, ..., \sigma_t\}, \quad \pi = \sigma_1 \cup \cdots \cup \sigma_t$ and $\sigma^* = \{\sigma_1, ..., \sigma_t, \pi'\}$, then *G* is Π -soluble if and only if *G* is σ^* -soluble. Therefore, in view of Theorem B in [3], a Π -soluble group is a Π -full group of Sylow type.

(iii) Let $G = A \times B$, where A = Ly is the Lyons group and *B* is a group of prime order p > 67. Let $\Pi = \{\sigma_1, \sigma_2\}$, where $\sigma_1 = \{11, 67\}$ and $\sigma_2 = \{2, p\}$. Then *G* is a Π -full group of Sylow type. It is also clear that *G* is not Π -soluble.

(iv) In view of Example 1.2 (iv), every σ -nilpotent group $G \neq 1$ is σ -full, and if $\sigma(G) = \{\sigma_1, ..., \sigma_t\}$, then $\{O_{\sigma_1}(G), ..., O_{\sigma_t}(G)\}$ is the unique complete Hall σ -set of *G*.

Recall that a group *G* is said to be *quasinilpotent* if for every its chief factor H/K and every $x \in G$, *x* induces an inner automorphism on H/K [4, X, Definition 13.2]. Note that since for every central chief factor H/K of *G*, an element of *G* induces the trivial automorphism on H/K, one can say that a group *G* is quasinilpotent if for every its *eccentric* chief factor H/K and for every $x \in G$, *x* induces an inner automorphism on H/K. This elementary observation allows us to consider the following analogue of quasinilpotency:

Definition 1.5. We say that G is σ -quasinilpotent if for every σ -eccentric chief factor H/Kof G, every automorphism of H/K induced by an element of G is inner.

Example 1.6. (i) G is quasinilpotent if and only if it is σ -quasinilpotent, where σ is the smallest partition of \mathbb{P} .

(ii) Let $G = (A_5 \wr A_5) \times (A_7 \times A_{11})$ and $\sigma = \{\{2,3,5\}, \{2,3,5\}'\}$. Then *G* is σ -quasinilpotent but *G* is neither σ -nilpotent nor quasinilpotent.

We use $G^{\mathfrak{N}_{\sigma}}$ to denote the σ -*nilpotent residual* of *G*, that is, the intersection of all normal subgroups *N* of G with σ -nilpotent quotient G/N.

Definition 1.7. (i) The product of all normal respectively σ -soluble, σ -nilpotent, σ -quasinilpotent subgroups of *G* is said to be respectively the σ -*radical*, the σ -*Fitting subgroup*, the *generalized* σ -*Fitting subgroup* of *G* and we denote it respectively by $R_{\sigma}(G)$, $F_{\sigma}(G)$, $F_{\sigma}^*(G)$.

(ii) We use $E_{\sigma}(G)$ to denote the σ -nilpotent residual of $F_{\sigma}^*(G)$, and we say that $E_{\sigma}(G)$ is the σ -layer of G.

Remark 1.8. It is clear that $F(G) \leq F_{\sigma}(G)$ and $F^*(G) \leq F^*_{\sigma}(G)$. Moreover, if σ is the *smallest* partition of \mathbb{P} , then $F_{\sigma}(G) = F(G)$ and $F^*_{\sigma}(G) = F^*(G)$ is the generalized Fitting subgroup of G. Note also that, in view of Example 1.2 (iv), $F_{\sigma}(G) = O_{\sigma_1}(G) \times \cdots \times O_{\sigma_t}(G)$, where $\{\sigma_1, ..., \sigma_t\} = \sigma(G)$.

Example 1.9. Let $G = (A_5 \times A_7) \wr \langle x \rangle = K \rtimes \langle x \rangle$, where |x| = p > 5 is a prime and K is the base group of the regular wreath product G. Let $R = A_5^{\ddagger}$ and $L = A_7^{\ddagger}$ (we use here the terminology in [5, Ch. A]). Finally, let $\sigma = \{\{2,3,5\},\{2,3,5\}'\}$. Then $K = R \times L$ and so, in view of Example 1.2 (iv), $F_{\sigma}(G) = R$. It is clear also that $K \leq F_{\sigma}^{*}(G)$ and the automorphism of R induced by x is not inner. Hence $F_{\sigma}^{*}(G) = K$. It is also clear that $E_{\sigma}(G) = L$ and E(G) = K.

In Sections 2–4 we study properties and some applications of Π -full, σ -soluble, σ -nilpotent, and σ -quasinilpotent groups and, in particular, the relationship between the subgroups $F_{\sigma}(G)$, $F_{\sigma}^{*}(G)$ and $E_{\sigma}(G)$. In Section 5 we analyze some applications of the results in Sections 2–4 in the theory of permutable subgroups. Finally, in Section 6 we discuss some open questions.

2 Π -soluble groups

We use \mathfrak{S}_{Π} to denote the class of all Π -soluble groups.

The direct calculations show that the following properties of Π -soluble groups are true.

Proposition 2.1. (i) The class \mathfrak{S}_{Π} is closed under taking products of normal subgroups, homomorphic images and subgroups. Moreover, any extension of the Π -soluble group by a Π -soluble group is a Π -soluble group as well.

(ii) $\mathfrak{S}_{\Pi} \subseteq \mathfrak{S}_{\Pi^*}$ for any partition $\sigma^* = \{\sigma_j^* \mid j \in J\}$

of \mathbb{P} such that $J \subseteq I$ and $\sigma_j \subseteq \sigma_j^*$ for all $j \in J$ and for $\Pi^* \subseteq \sigma^*$ such that

$$\bigcup_{\sigma_i^*\in\Pi^*}\sigma_j^*=\bigcup_{\sigma_i\in\Pi}\sigma_i.$$

Proposition 2.2. Let G be Π -soluble.

(i) If M is a maximal subgroup of G such that $\sigma(|G:M|) \cap \Pi \neq \emptyset$, then |G:M| is σ -primary.

(ii) For every $\sigma_i \in \sigma(G) \cap \Pi$, G has a maximal

subgroup *M* such that |G:M| is a σ_i -number. Let *A*, *B* and *R* be subgroups of *G*. Then *A* is said to *R*-permute with *B* [6] if for some $x \in R$ we have $AB^x = B^x A$.

Problems of Physics, Mathematics and Technics, № 3 (24), 2015

A subgroup *H* of *G* is said to be: a *Hall* Π -subgroup of *G* [2] if *H* is a Π -subgroup of *G* and |G:H| is a Π' -number; a σ -*Hall subgroup* of *G* if *H* is a Hall Π -subgroup of *G* for some $\Pi \subseteq \sigma$.

It is clear that every σ -Hall subgroup is also a Hall subgroup of the group. In the group $G = S_3 \times C_5$, S_3 is a Hall subgroup of G but it is not a σ -Hall subgroup of G, where $\sigma = \{\{3,5\},\{3,5\}'\}$.

If G has a complete Hall set $\mathcal{H} = \{H_1, ..., H_i\}$ of type σ such that $H_i H_j = H_j H_i$ for all *i*, *j*, then \mathcal{H} is said to be a σ -basis [3] of G.

By the classical Hall theorem, *G* is soluble if and only if it has a Sylow basis. The direct analogue of this result for σ -soluble groups is not true in general. Indeed, let $\sigma = \{\{2,3\},\{2,3\}'\}$. Then the alternating group A_5 of degree 5 has a σ -basis and it is not σ -soluble. Nevertheless, the following generalizations of the Hall result are true.

Theorem 2.3 (Skiba [3]). Let $R = R_{\sigma}(G)$ be the σ -radical of G. Then any two of the following conditions are equivalent:

(i) G is σ -soluble.

(ii) For any Π , G has a Hall Π -subgroup and every σ -Hall subgroup of G R-permutes with every Sylow subgroup of G.

(iii) G has a σ -basis $\{H_1, ..., H_i\}$ such that for each $i \neq j$ every Sylow subgroup of H_i R-permutes with every Sylow subgroup of H_i .

Theorem 2.4 (Skiba [3]). Let $R = R_{\sigma}(G)$ be the

σ-radical of *G*. Then *G* is σ-soluble if and only if for any Π the following hold: *G* has a Hall Π-subgroup *E*, every Π-subgroup of *G* is contained in some conjugate of *E* and *E R*-permutes with every Sylow subgroup of *G*.

Recall that $G^{\mathfrak{N}}$ is the nilpotent residual of *G*, that is, the smallest normal subgroup of *G* with nilpotent quotient.

As one of the steps in the proof of Theorem 2.3, the following useful fact can be used.

Proposition 2.5 (Skiba [7]). Suppose that $G = A_1A_2 = A_2A_3 = A_1A_3$, where A_1 , A_2 and A_3 are σ -soluble subgroups of G. If the three indices $|G:N_G(A_1^{\mathfrak{N}})|$, $|G:N_G(A_2^{\mathfrak{N}})|$, $|G:N_G(A_3^{\mathfrak{N}})|$ are pairwise σ -coprime, then G is σ -soluble.

From Theorems 2.3 and 2.4 we get the following characterizations of the π -separable groups.

Corollary 2.6. Let R be the product of all normal π -separable subgroups of G. Then G is π -separable if and only if G = AB, where A and B are a Hall π -subgroup and a Hall π' -subgroup of G, respectively, and every Sylow subgroup of A R-permutes with every Sylow subgroup of B.

Corollary 2.7. Let R be the product of all normal π -separable subgroups of G. Then G is π -separable

if and only if G = AB, where A and B are a Hall π -subgroup and a Hall π' -subgroup of G, respectively, and every Sylow subgroup of G R-permutes with A and with B.

Now we give a characterization of σ -soluble groups in the terms of the normalizers of Sylow subgroups.

Theorem 2.8 (Skiba [3]). Let G be a σ -full group and $\mathcal{H} = \{H_1, ..., H_t\}$ a complete Hall σ -set of G. Then any two of the following conditions are equivalent:

(i) G is σ -soluble.

(ii) Every σ -biprimary subgroup of G is σ -soluble and for every chief factor H/K of G and every $A \in \mathcal{H}$ the number $|G: N_G((A \cap H)K)|$ is σ -primary.

(iii) Every σ -biprimary subgroup of G is σ -soluble and for any $k \in \{1,...,t\}$ there is a normal series $1 = G_0 \leq G_1 \leq \cdots \leq G_n = G$ of G such that the number $|G: N_G((H_k \cap G_i)G_{i-1})|$ is σ -primary for all i = 1,...,n.

Definition 2.9 (sf. [8]). If G has a complete Hall Π -set $\mathcal{H} = \{H_1, ..., H_t\}$, where H_i is nilpotent (respectively supersoluble) for all i = 1, ..., t, then we say that \mathcal{H} is a *Wielandt* Π -set (respectively a generalized Wielandt Π -set) of G.

Example 2.10. (i) If σ is the smallest partition of \mathbb{P} , then every complete Hall σ -set of *G* is clearly a Wielandt σ -set of *G*.

(ii) Let $\sigma = \{\sigma_i \mid i \in I\}$ is such that $\sigma_1 = \{5,11\}$ and σ_i is a one-element set for all $i \neq 1$. Then the group *PSL*(2,11) possess a generalized complete Wielandt σ -set, and it does not possess a complete Wielandt Π -set for every Π containing σ_1 .

Corollary 2.11. Suppose that G has a complete Wielandt set $\mathcal{H} = \{H_1, ..., H_t\}$ of type σ . Then any two of the following conditions are equivalent:

(i) G is soluble.

(ii) For every chief factor H/K of G and every $A \in H$ the number $|G: N_G((A \cap H)K)|$ is σ -primary.

(iii) For any $k \in \{1,...,t\}$ there is a normal series $1 = G_0 \le G_1 \le \cdots \le G_n = G$ of G such that the number $|G: N_G((H_k \cap G_i)G_{i-1})|$ is σ -primary for all i = 1,...,n.

We say that an integer *n* is *primary* if $n = p^m$ is a power of some prime *p*.

Corollary 2.12 (Guo and Skiba [8]). Let $S = \{P_1, ..., P_t\}$ be a complete Sylow set of G. Then any two of the following conditions are equivalent: (i) G is soluble.

(ii) For every chief factor H / K of G and every $P \in S$ the number $|G: N_G((P \cap H)K)|$ is primary.

(iii) For any $k \in \{1,...,t\}$ there is a normal series $1 = G_0 \le G_1 \le \cdots \le G_n = G$ of G such that the number $|G: N_G((P_k \cap G_i)G_{i-1})|$ is primary for all i = 1,...,n.

Corollary 2.13. If for every Sylow subgroup P of G and for every chief factor H/K of G, $|(G/K): N_{G/K}((P \cap H)K/K)|$ is a prime power, then G is soluble.

From Corollary 2.13 we get the following known result.

Corollary 2.14 (See Zhang [9] or Guo [10]). If for every Sylow subgroup P of G the number $|G: N_G(P)|$ is a prime power, then G is soluble.

The σ -system normalizers of σ -soluble groups. If $\mathcal{H} = \{H_1, ..., H_i\}$ is a σ -basis of G and $\mathcal{H}^* = \{Q_1, ..., Q_i\}$, where $Q_i = H_1 ... H_{i-1} H_{i+1} ... H_i$, then we say that \mathcal{H}^* is a *Hall* σ -system of G (corresponding \mathcal{H}).

Now, let $\sigma(G) = \{\sigma_1, ..., \sigma_i\}$ and Q_i be a Hall σ_i -subgroup of G (we say that Q_i is a σ_i -complement of G). Then $H_i = \bigcap_{j \neq i} Q_j$ is a Hall σ_i -subgroup of G and $\mathcal{H} = \{H_1, ..., H_i\}$ is a σ -basis of G such that $\mathcal{H}^* = \{Q_1, ..., Q_i\}$ is a Hall σ -system of G corresponding \mathcal{H} (see [11, VI, Section 2]).

Theorem 2.15. If G is σ -soluble, then any two σ -basis of G are conjugate, as are any two Hall σ -systems.

Proof. See the proof of Theorem 2.4 in [11, VI].

Definition 2.16. Let $\mathcal{H} = \{H_1, ..., H_t\}$ is a σ -basis of G and $\mathcal{H}^* = \{Q_1, ..., Q_t\}$ is a Hall σ -system of G corresponding \mathcal{H} . Then

 $N = N_G(H_1) \cap \cdots \cap N_G(H_t) = N_G(Q_1) \cap \cdots \cap N_G(Q_t)$ (see Section 11 in [11, VI]). We say that N is a σ -system normalizer of G (corresponding \mathcal{H}).

Example 2.17. Let p < q < r be primes, where p divides q-1. Let $A = Q \rtimes P$ be a non-abelian group of order pq and B a group of order r. Let $G = A \wr B = K \rtimes B$, where K is the base group of the regular wreath product G. Let $R = Q^{\natural}$ (we again use here the terminology in [5, A]) and $Z = \{(a, ..., a) \in K \mid a \in A\}$. Then R is a minimal normal subgroup of G by [5, A, 18.5]. It is clear that $C_G(R) = R$ and [Z, B] = 1. Let $\sigma\{\{p, q\}, \{p, q\}'\}$. Then $\{K, B\}$ is a σ -basis of G, $D = N_G(B)$ is a σ -system normalizer of G and R/1 is a σ -eccentric chief factor of G. Hence D does not cover R/1 by Theorem 2.19 below. It is also clear that $R \cap D \neq 1$. Hence D does not avoid R/1. Therefore in view of Theorem 3.2 in [5, V] and Corollary 3.4 below, a σ -system normalizer of a soluble group G in general is not a system \mathfrak{N}_{σ} -normalizer of G, where \mathfrak{N}_{σ} is the class of all σ -nilpotent groups, in the sense of Definition 1.2 in [5, V].

Problems of Physics, Mathematics and Technics, № 3 (24), 2015

Nevertheless, the following result shows that the σ -system normalizers of a σ -soluble group partially inherits the properties of the system normalizers of a soluble group.

Theorem 2.18. Let G be σ -soluble and D a σ -system normalizer of G.

(i) Any σ -system normalizer of G is σ -nilpotent and any two are conjugate.

(ii) *D* covers every σ -central chief factor of *G* and it does not cover every σ -eccentric chief factor of *G*; *D* avoids every σ -eccentric chief p-factor H/K of *G* such that $p \in \sigma_i$, a Hall σ_i -subgroup of *G* is nilpotent and *G* is p-soluble.

(iii) $D^G = G$ and $D_G = Z_{\sigma}(G)$.

Proof. (i) See the proof of Theorem 11.2 in [11, VI].

(ii) Let H/K be a chief factor of G and $C = C_G(H/K)$. Since G is σ -soluble by hypothesis, H/K is a σ_i -group for some $\sigma_i \in \sigma(G)$. Let the σ -system normalizer D of G arises from a σ -basis $\mathcal{H} = \{H_1, ..., H_t\}$ of G. Without loss of generality we can assume that i = 1. Let $\pi = \sigma_1$ and $S = H_2 ... H_t$ of G. Then S is a σ_1 -complement of G.

First assume that H/K is σ -central in G, that is, $(H/K) \rtimes (G/C)$ is a σ_1 -group. Then G/C is a π' -group. Hence $S \leq C$, which implies that $SK/K \leq N_{G/K}(H/K)$. Hence

 $SH / K = (SK / K)(H / K) = (SK / K) \times (H / K).$

Then *SK* is normal in *SH* and |SH:SK| is a π -number. Applying the Frattini argument to the σ_1 -complement *S* of *SH*, we have $SH = SKN_{SH}(S) \leq N_G(S)K$. Therefore the normal π -subgroup H/K of G/K is contained in every Hall σ_1 -subgroup of NK/K, where $N = N_G(S)$. Let $H_0 = H_1 \cap N$. Since $G = H_1S = H_1N$, $N = (H_1 \cap N)S = H_0S$. Therefore $|H_0| = |N:S|$, so H_0 is a Hall σ_1 -subgroup of *N*. Now, let $\mathcal{H}^* = \{Q_1, ..., Q_t\} = \{S, Q_2, ..., Q_t\}$ be a Hall σ_1 -subgroup of *R* and hence $H_0 \leq N_G(Q_2) \cap \cdots \cap N_G(Q_t)$, so $H_0 \leq D$ since $H_0 \leq H_1$. Hence H_0K/K is a Hall σ_1 -subgroup of *NK/K*, and so we have $H/K \leq H_0K/K \leq DK/K$. Hence $H = H \cap DK = K(H \cap D)$, so *D* covers H/K.

Now, suppose that H/K is σ -eccentric in G. Then H/K is σ -eccentric in G/K. Without loss of generality we can assume that $\sigma(G) = \sigma(G/K)$. Then $\mathcal{H}K/K = \{H_1K/K, ..., H_tK/K\}$ is a σ -basis of G/K. Moreover, if D^*/K is a σ -system normalizer of G/K corresponding $\mathcal{H}K/K$, then $DK/K \le D^*/K$. If $K \ne 1$, then D^*/K does not cover $(D^*/K$ avoids, respectively) H/K by induction and so DK/K does not cover (avoids, respectively) H/K. But then D does not cover (avoids, respectively) H/K.

Now assume that K = 1. Suppose that $H \le D$. Then $HH_i = H \times H_i$ for all i > 1, so G/C is a σ_1 -group and hence H/K is σ -central in G. This contradiction completes the proof of the first assertion of (ii). Finally, suppose that H is a p-group, where $p \in \sigma_1$, a Hall σ_1 -subgroup of G is nilpotent and G is p-soluble. Suppose that $D \cap H \neq 1$. Then $N_G(S) \cap R \neq 1$ and hence by Lemma 1.4 in [5, Ch. 5] we have $M \le C_G(H)$, which implies that G/C is a σ_1 -group and hence H/1 is σ -central in G. This contradiction completes the proof of Assertion (ii).

(iii) Assume that $D^G < G$. Then, since G/D^G is σ -soluble, $G^{\mathfrak{N}_{\sigma}}D^G/D^G = (G/D^G)^{\mathfrak{N}_{\sigma}} < G/D^G$ and hence $G^{\mathfrak{N}_{\sigma}}D < G$, contrary to Assertion (ii). Hence $D^G = G$. The second assertion of the result is a corollary of Assertion (ii) and Proposition 3.5 (i) below. The theorem is proved.

Corollary 2.19. Assume that G has a σ -basis which is a Wielandt σ -set of G. Then a σ -system normalizer of G covers the σ -central chief factors of G and avoids the σ -eccentric chief factor of G.

Corollary 2.20 (P. Hall). A system normalizer of a soluble group G covers the central chief factors of G and avoids the eccentric chief factor of G.

3 General properties of the σ -nilpotent and σ -quasinilpotent groups

Recall that a subgroup A of G is σ -subnormal in G [2] if there is a subgroup chain $A = A_0 \le \le A_1 \le \cdots \le A_n = G$ such that either A_{i-1} is normal in A_i or $A_i / (A_{i-1})_{A_i}$ is σ -primary for all i = 1, ..., n.

The following theorem collects the main properties of σ -subnormal subgroups.

Theorem 3.1 (Skiba [2]). Let A, K and N be subgroups of G. Suppose that A is σ -subnormal in G and N is normal in G.

(1) $A \cap K$ is σ -subnormal in K.

(2) If K is a σ -subnormal subgroup of A, then K is σ -subnormal in G.

(3) If K is σ -subnormal in G, then $A \cap K$ and $\langle A, K \rangle$ are σ -subnormal in G.

(4) AN / N is σ -subnormal in G / N.

(5) If $N \le K$ and K / N is σ -subnormal in G / N, then K is σ -subnormal in G.

(6) If $K \le A$ and A is σ -nilpotent, then K is σ -subnormal in G.

(7) If $H \neq 1$ is a Hall Π -subgroup of G and A is not a Π' -group, then $A \cap H \neq 1$ is a Hall Π -subgroup of A.

(8) If |G:A| is a Π -number, then $O^{\Pi}(A) = O^{\Pi}(G)$.

(9) If N is a Π -group of G, then $N \leq N_G(O^{\Pi}(A))$.

(10) If A is a σ -Hall subgroup of G, then A is normal in G.

(11) If G is a σ -group and A is σ -nilpotent, then A is contained in $F_{\sigma}(G)$.

In this theorem $O^{\Pi}(G)$ denotes the subgroup of G generated by all its Π' -subgroups. Instead of $O^{\{\sigma_i\}}(G)$ we write $O^{\sigma_i}(G)$.

Before continuing, let's consider the following elementary example.

Example 3.2. Let p, q, r be different primes, where q divide p-1. Let $P \rtimes Q$ be a non-abelian group of order pq and R a group of order r. Let $G = (P \rtimes Q) \wr R$ be the regular wreath product of the group $P \rtimes Q$ with R and $H = Q^{\ddagger}$. If $\sigma = \{\{p,q\}, \{p,q\}'\}$, then the subgroup H is σ -subnormal in Gby Theorem 3.1(6) but it is not subnormal in G.

The following result indicates the importance of the concept of σ -subnormality.

Theorem 3.3. Any two of the following conditions are equivalent:

(i) *G* is σ -nilpotent.

(ii) Every chief factor of G is σ -central.

(iii) *G* has a complete Hall σ -set $\mathcal{H} = \{H_1, ..., H_t\}$ such that $G = H_1 \times \cdots \times H_t$.

(iv) *G* has a complete Hall σ -set $\mathcal{H} = \{H_1, ..., H_t\}$ such that every member of *H* is σ -sub-normal in *G*.

(v) Every subgroup of G is σ -subnormal in G.

(vi) Every maximal subgroup of G is σ -subnormal in G.

Proof. See the proof of Theorem 4.1 in [1].

We use \mathfrak{N}_{σ} and \mathfrak{N}_{σ}^* to denote the classes of all σ -nilpotent groups and of all σ -quasinilpotent groups, respectively.

Corollary 3.4. The class \mathfrak{N}_{σ} is closed under taking products of normal subgroups, homomorphic images and subgroups. Moreover, if *E* is a normal subgroup of *G* and $E/\Phi(G) \cap E$ is σ -nilpotent, then *E* is σ -nilpotent.

A normal subgroup *E* of *G* is said to be σ -*hypercentral* (in *G*) if either E = 1 or every chief factor of *G* below *E* is σ -central (in *G*). We use $Z_{\sigma}(G)$ to denote the product of all normal σ -hypercentral subgroups of *G*. It is not difficult to show (see Proposition 3.5 (i) below) that $Z_{\sigma}(G)$ is also σ -hypercentral in *G*. We call the subgroup $Z_{\sigma}(G)$ the σ -hypercentre of *G*.

The next proposition collects the main properties of the σ -hypercentre.

Proposition 3.5 (Skiba [7]). Let G be a σ -full group and $Z = Z_{\sigma}(G)$. Let A, B and N be subgroups of G, where N is normal in G.

Проблемы физики, математики и техники, № 3 (24), 2015

(i) Every chief factor of G below Z is σ -central in G.

(ii) $ZN / N \le Z_{\sigma}(G / N)$.

(iii) $Z_{\sigma}(A)N / N \le Z_{\sigma}(AN / N)$.

(iv) For every subgroup H of G we have $Z_{\sigma}(H) \cap A \leq Z_{\sigma}(H \cap A)$.

(v) $G/C_G(Z)$ and Z are σ -nilpotent.

(vi) If G/Z is σ -nilpotent, then G is also σ -nilpotent.

(vii) If $N \leq Z$, then $Z / N = Z_{\sigma}(G / N)$.

(viii) If A is σ -nilpotent, then ZA is also σ -nilpotent.

(ix) If $G = A \times B$, then $Z = Z_{\sigma}(A) \times Z_{\sigma}(B)$. Moreover, if a subgroup U of G is subdirectly contained in G, then $Z_{\sigma}(U) = U \cap Z_{\sigma}(G)$.

(x) If $N \leq Z$, then A is σ -subnormal in NA.

(xi) If $N \le Z$, then A is σ -subnormal in G if and only if NA / N is σ -subnormal in G / N.

Corollary 3.6. $[G^{\mathfrak{N}_{\sigma}}, Z_{\sigma}(G)] = 1.$

A subgroup H of G is said to be a maximal σ -nilpotent subgroup of G if H is σ -nilpotent subgroup but every subgroup E of G such that H < E is not σ -nilpotent.

We have already known (see Theorem 2.18 (iii)) that if *G* is σ -soluble, then the σ -hypercentre $Z_{\sigma}(G)$ of *G* coincides with the intersection of all conjugates of *H*, where *H* is a σ -system normalizer of *G*. In the general case, we have

Theorem 3.7 (Skiba [7]). $Z_{\sigma}(G)$ coincides with the intersection of all maximal σ -nilpotent subgroups of G.

Corollary 3.8 (Baer). The hypercentre $Z_{\infty}(G)$ of G coincides with the intersection of all maximal nilpotent subgroups of G.

Lemma 3.9. (i) If G is σ -quasinilpotent group and N a normal subgroup of G, then N and G/Nare σ -quasinilpotent.

(ii) If G/N and G/L are σ -quasinilpotent, then $G/(N \cap L)$ is σ -quasinilpotent.

Proof. (i), (ii) See the proof of Lemma 13.2 in [4, X]. Lemma 3.10. Let H/K be a chief factor of

G. Then every automorphism of H/K induced by an element of G is inner if and only if

 $G = (H / K)C_G(H / K).$

Proof. See the proof of Lemma 13.4 in [4].

Definition 3.11. We say that G is: σ -perfect if $G^{\mathfrak{N}_{\sigma}} = G$; σ -semisimple if either G = 1 or $G = A_1 \times \cdots \times A_t$ is the direct product of non-abelian simple non- σ -primary groups A_1, \dots, A_t .

Note that if $\sigma = \{\{2,3,5\},\{2,3,5\}'\}$ and $G = A_7 \times A_{11}$, then *G* is σ -semisimple and σ -perfect.

Lemma 3.12. Let N be a normal σ_i -subgroup of G. Then $N \leq Z_{\sigma}(G)$ if and only if $O^{\sigma_i}(G) \leq C_G(N)$.

Problems of Physics, Mathematics and Technics, № 3 (24), 2015

Proof. If $O^{\sigma_i}(G) \leq C_G(N)$, then for every chief factor H/K of G below N both groups H/K and $G/C_G(H/K)$ are σ_i -group since $G/O^{\sigma_i}(G)$ is a σ_i -group, so $N \leq Z_{\sigma}(G)$.

Now assume that $N \leq Z_{\sigma}(G)$. Let $1 = Z_0 < Z_1 < ... < Z_t = N$ be a chief series of G below N and $C_i = C_G(Z_i / Z_{i-1})$. Let $C = C_1 \cap \cdots C_t$. Then G/C is a σ_i -group. On the other hand, $C/C_G(N) \approx A \leq Aut(N)$ stabilizes the series $1 = Z_0 < Z_1 <$

so $O^{\sigma_i}(G) \leq C_G(N)$. The lemma is proved.

Theorem 3.13. Given group G the following are equivalent:

(i) G is σ -quasinilpotent.

(ii) $G/Z_{\sigma}(G)$ is σ -semisimple.

(iii) $G/F_{\sigma}(G)$ is σ -semisimple and

$$G = F_{\sigma}(G)C_{G}(F_{\sigma}(G)).$$

Proof. Let $Z = Z_{\sigma}(G)$. (i) \Rightarrow (ii) Assume that this is false and let G be a counterexample of minimal order. Then the hypothesis holds for G/R by Lemma 3.9 (i). On the other hand, $Z_{\sigma}(G/Z) = 1$ by Proposition 3.5 (vii). Hence in the case when $Z \neq 1$, $G/Z_{\sigma}(G)$ is σ -semisimple by the choice of G.

Now assume that Z = 1 and let R be any minimal normal subgroup of G. Then R/1 is σ -eccentric since $Z(G) \le Z = 1$. Hence R is non-abelian and $G = R \times C_G(R)$ by Lemma 3.10. Therefore

$$Z_{\sigma}(R) \times Z_{\sigma}(C_{G}(R)) = Z_{\sigma}(G) = 1$$

by Proposition 3.5 (ix). Hence the choice of G implies that R and $C_G(R)$ are σ -semisimple, so G is σ -semisimple, a contradiction. Hence G/Z is σ -semisimple.

(ii) \Rightarrow (iiii) First note that $Z \leq F_{\sigma}(G)$ by Proposition 3.5 (v), so $Z = F_{\sigma}(G)$ since G/Z is σ -semisimple by hypothesis. But then $G/C_G(F_{\sigma}(G))$ is σ -nilpotent by Proposition 3.5(v). Hence G = $= F_{\sigma}(G)C_G(F_{\sigma}(G))$ since $G/F_{\sigma}(G) = G/Z$ is σ -semisimple.

(iii) \Rightarrow (i) Let H/K be a chief factor of G. If $F_{\sigma}(G) \leq K$, then every automorphism of H/K induced by an element of G is inner by Lemma 3.10 since $G/F_{\sigma}(G)$ is σ -semisimple by hypothesis. Now suppose that $H \leq F_{\sigma}(G)$. Then

$$C_G(H / K) = C_G(H / K) \cap F_{\sigma}(G)C_G(F_{\sigma}(G)) =$$

= $C_G(F_{\sigma}(G))C_{F_{\sigma}(G)}(H / K),$

so

$$G / C_G(H / K) =$$

= $F_{\sigma}(G)C_G(F_{\sigma}(G)) / C_G(F_{\sigma}(G))C_{F_{\sigma}(G)}(H / K) \simeq$

$$\begin{split} F_{\sigma}(G) / F_{\sigma}(G) &\cap C_{G}(F_{\sigma}(G))C_{F_{\sigma}(G)}(H/K) = \\ &= F_{\sigma}(G) / C_{F_{\sigma}(G)}(H/K)Z(F_{\sigma}(G)) \simeq \\ &\simeq (F_{\sigma}(G) / C_{F_{\sigma}(G)}(H/K)) / (C_{F_{\sigma}(G)}(H/K) \times \\ &\times Z(F_{\sigma}(G)) / C_{F_{\sigma}(G)}(H/K)) \end{split}$$

is σ -primary by Lemma 3.12. Therefore H/K is σ -central in *G*. Now applying the Jordan-Hölder theorem for the chief series [5] we get that for every σ -eccentric chief factor H/K of *G*, every automorphism of H/K induced by an element of *G* is inner. The theorem is proved.

Corollary 3.14. Let G be σ -quasinilpotent. (i) If G is σ -perfect, then $Z_{\sigma}(G) = Z(G)$.

(ii) If H is a normal σ -soluble subgroup of G, then $H \leq Z_{\sigma}(G)$.

Proof. (i) This assertion follows from Proposition 3.5 (v) and Theorem 3.13.

(ii) This directly follows from Theorem 3.13.

Corollary 3.15. If a σ -quasinilpotent group $G \neq 1$ is σ -soluble, then $G = O_{\sigma_1}(G) \times \cdots \times O_{\sigma_t}(G)$,

where $\{\sigma_1, ..., \sigma_t\} = \sigma(G)$.

Corollary 3.16. *Let* $\pi = \bigcup_{\sigma_i \in \Pi} \sigma_i$. *If a* σ *-quasi*nilpotent group $G \neq 1$ is π *-separable, then*

 $G = O_{\pi}(G) \times O_{\pi'}(G).$

Corollary 3.17. If a quasinilpotent group G is π -separable, then $G = O_{\pi}(G) \times O_{\pi'}(G)$.

A *formation* is a class \mathcal{F} of groups with the following properties:

(i) Every homomorphic image of an \mathcal{F} -group is an \mathcal{F} -group.

(ii) If G/M and G/N are \mathfrak{F} -groups, then also $G/(M \cap N)$ belongs to \mathfrak{F} .

The formation \mathfrak{F} is said to be: (solubly) saturated if $G \in \mathfrak{F}$ whenever $G/\Phi(N) \in \mathfrak{F}$ for some (soluble) normal subgroup N of G; (normally) hereditary if $H \in \mathfrak{F}$ whenever $G \in \mathfrak{F}$ and H is a (normal) subgroup of G.

A class \mathfrak{F} of groups is called a *Fitting class* if it is closed under taking normal subgroups and products of normal subgroups.

From Corollary 3.4 we get at once the following fact.

Theorem 3.18 The class \mathfrak{N}_{σ} is a hereditary saturated formation. Moreover, \mathfrak{N}_{σ} is a Fitting class.

We write Com(G) to denote the class of all groups *L* such that *L* is isomorphic to some abelian composition factor of *G*; R(G) denotes the largest normal soluble subgroup of *G*.

For a formation function of the form

 $f : \mathbb{P} \cup \{0\} \rightarrow \{\text{formations of groups}\}$ (3.1) we put, following [13],

 $CLF(f) = \{G \text{ is a group} | G / R(G) \in f(0) \}$

and

 $G/C^{p}(G) \in f(p)$ for any prime $p \in \pi(Com(G))$.

If $\mathfrak{F} = CLF(f)$ for some formation function *f*, then we say that *f* is a *composition* satellite of the formation \mathfrak{F} .

From [14, I, 3.2] and Baer's Theorem [5, IV, 3.17], the following result follows.

Lemma 3.19. (i) For any function f of the form (3.1), the class CLF(f) is a solubly saturated formation.

(ii) For any non-empty solubly saturated formation \mathfrak{F} , there is a unique function F of the form (3.1) such that $\mathfrak{F} = CLF(F)$, $F(p) = \mathfrak{G}_pF(p) \subseteq \mathfrak{F}$ for all primes p, and $F(0) = \mathfrak{F}$.

The function F in Lemma 3.19 (ii) is called the *canonical* composition satellite of \mathfrak{F} .

Now, being based on Theorem 3.13 and Lemma 3.19, we prove the following useful fact.

Theorem 3.20. The class \mathfrak{N}^*_{σ} is a normally hereditary solubly saturated formation. Moreover, \mathfrak{N}^*_{σ} is a Fitting class.

Proof. In order to prove the first assertion of the theorem, it is enough to prove, in view of Lemma 3.9, that \mathfrak{N}^*_{σ} is a solubly saturated formation. Let $\mathfrak{M} = CLF(f)$, where $f(p) = \mathfrak{G}_{\mathfrak{a}}$ is the class of all σ_i -groups for all $p \in \sigma_i$, and $f(0) = \mathfrak{N}_{\sigma}^*$. We show that $\mathfrak{M} = \mathfrak{N}_{\sigma}^*$. Let G be a group of minimal order in $\mathfrak{M}\setminus\mathfrak{N}^*_\sigma$ and *R* a minimal normal subgroup of G. Then, in view of Lemma 3.9, R is the unique minimal normal subgroup of G and G/R is σ -quasinilpotent. Therefore, in view of Theorem 3.13, R is not σ -central in G. Hence R is But then R(G) = 1non-abelian. and so $G \simeq G / R(G) \in f(0) = \mathfrak{N}_{\sigma}^*$, a contradiction. Thus $\mathfrak{M} \subseteq \mathfrak{N}_{\sigma}^*$. Now, assume that $\mathfrak{N}_{\sigma}^* \nsubseteq \mathfrak{M}$ and G be a group of minimal order in $\mathfrak{N}^*_{\sigma} \setminus \mathfrak{M}$ with a minimal normal subgroup R. Then $R = G^{\mathfrak{M}}$ is the unique minimal normal subgroup of G. If R is non-abelian, then R(G) = 1 and therefore $G \simeq G / R(G) \in f(0) = \mathfrak{N}_{\sigma}^*$. Moreover, in this case we have $R \leq C^{p}(G)$ and

$$G/C^{p}(G) \simeq (G/R)/(C^{p}(G)/R) =$$
$$= (G/R)/C^{p}(G/R) \in f(p)$$

for all $p \in \pi(Com(G))$ since $G/R \in \mathfrak{M}$ and so $G \in \mathfrak{M}$, a contradiction. Hence *R* is a *p*-group for some prime $p \in \sigma_i$. But $G \in \mathfrak{N}^*_{\sigma}$, so $R \rtimes (G/C_G(R))$ is a σ_i -group. But then $G/C^p(G)$ is a σ_i -group and so $G \in \mathfrak{M}$. Hence $\mathfrak{M} = \mathfrak{N}^*_{\sigma}$. Therefore \mathfrak{N}^*_{σ} is a solubly saturated formation by Lemma 3.19.

Since the class \mathfrak{N}_{σ}^* is normally hereditary by Lemma 3.9, in order to prove the second assertion of

the theorem it is enough to show that if G = AB, where A and B are normal σ -quasinilpotent subgroups of G, then G is σ -quasinilpotent. Let R be a minimal normal subgroup of G and $C = C_G(R)$. By Lemma 2.9 (i), the hypothesis holds for G/R, so the choice of G implies that G/R is σ -quasinilpotent. Therefore in view of Lemma 2.9 (ii), R is the unique minimal normal subgroup of G.

Let $Z_1 = Z_{\sigma}(A)$ and $Z_2 = Z_{\sigma}(B)$. If $A \cap B = 1$, then $Z_{\sigma}(G) = Z_1 \times Z_2$ by Proposition 3.5 (ix). On the other hand, A/Z_1 and B/Z_2 are σ -semisimple by Theorem 3.13, so

 $G/Z = (A \times B)/(Z_1 \times Z_2) \simeq (A/Z_1) \times (B/Z_2)$

is σ -semisimple. Hence *G* is σ -quasinilpotent by Theorem 3.13.

Now suppose that $A \cap B \neq 1$. Then $R \leq A \cap B$. First assume that *R* is σ -primary, say *R* is a σ_i -group. Then by Proposition 3.5, $R \leq F(A) \cap F(B) \leq Z_1 \cap Z_2$. Then $AC/C \approx A/A \cap C$ and $BC/C \approx B/B \cap C$ are σ_i -groups and hence G/C = (AC/C)(BC/C)is a σ_i -group. Hence *R* is σ -central in *G*. Therefore $R \leq Z_{\sigma}(G)$ and so $Z_{\sigma}(G/R) = Z_{\sigma}(G)/R$ by Proposition 3.5 (vii). Thus *G* is σ -quasinilpotent by Theorem 3.13.

Therefore *R* is not σ -primary. Hence *R* is nonabelian, so C = 1. Then $R = R_1 \times \cdots \times R_t$, where R_1, \dots, R_t are minimal normal subgroups of *A*. Let $C_i = C_A(R_i)$ $(i = 1, \dots, t)$. Then $C = 1 = C_1 \cap \cdots \cap C_t$. Since *A* is σ -quasinilpotent by hypothesis, $A = R_i C_i$ for all $i = 1, \dots, t$ by Lemma 3.9. Hence

$$R = RC = R_1 \dots R_t (C_t \cap \dots \cap C_1) =$$
$$= R_1 \dots R_{t-1} (R_t C_t \cap C_{t-1} \cap \dots \cap C_1) =$$
$$= R_1 \dots R_{t-1} (A \cap C_{t-1} \cap \dots \cap C_1) = \dots = R_1 C_1 = A.$$

Similarly we can get that B = R, so G = R is σ -semisimple. Hence G is σ -quasinilpotent. The theorem is proved.

4 The subgroups $F_{\sigma}(G)$, $F_{\sigma}^{*}(G)$, and $E_{\sigma}(G)$

We use the symbol $\Phi^*(G)$ to denote the subgroup $\Phi(R(G))$ [15].

The following result collect basic properties of the $F_{\sigma}(G)$, $F_{\sigma}^{*}(G)$ and $E_{\sigma}(G)$, and describes the main relations between them.

Theorem 4.1 (Skiba [7]). Let G be a σ -full group. Let $F_{\sigma} = F_{\sigma}(G)$, $F_{\sigma}^* = F_{\sigma}^*(G)$ and $E_{\sigma} = E_{\sigma}(G)$.

(i) F_{σ}^{*} is σ -quasinilpotent and $F_{\sigma} = Z_{\sigma}(F_{\sigma}^{*})$. Hence $F_{\sigma}^{*}/F_{\sigma}$ is σ -semisimple and $F_{\sigma}^{*}/F_{\sigma}$ is the product of all minimal normal subgroups of G/F_{σ} contained in $F_{\sigma}C_{G}(F_{\sigma})/F_{\sigma}$. Also $F_{\sigma}/Z_{\sigma}(G) =$ $= F_{\sigma}(G/Z_{\sigma}(G))$ and $F_{\sigma}^{*}/Z_{\sigma}(G) = F_{\sigma}^{*}(G/Z_{\sigma}(G))$.

Problems of Physics, Mathematics and Technics, № 3 (24), 2015

(ii) $F_{\sigma}^* = E_{\sigma}F_{\sigma} = C_{F_{\sigma}^*}(F_{\sigma})F_{\sigma}$ and $F_{\sigma} = C_{F_{\sigma}^*}(E_{\sigma})$. Also E_{σ} is a σ -perfect characteristic subgroup of F_{σ}^* and $E_{\sigma}/Z(E_{\sigma})$ is σ -semisimple. Hence $E_{\sigma}(G) = = E_{\sigma}(E_{\sigma}(G))$.

(iii) A σ -subnormal subgroup H of G is contained in F_{σ}^* (respectively in F_{σ}) if and only if it is σ -quasinilpotent (respectively σ -nilpotent). Moreover, if H also is σ -quasinilpotent σ -perfect, then $H \leq E_{\sigma}$.

(iv)
$$C_G(F_{\sigma}^*) \le Z(F_{\sigma}^*)$$
.
(v) $F_{\sigma}(G / \Phi(G)) = F_{\sigma} / \Phi(G)$ and

 $F_{\sigma}^*(G / \Phi^*(G)) = F_{\sigma}^* / \Phi^*(G).$

Corollary 4.2. If G is σ -full, then for every σ -subnormal subgroup V of G we have $F_{\sigma}(G) \cap V =$

 $=F_{\sigma}(V)$ and $F_{\sigma}^{*}(G) \cap V = F_{\sigma}^{*}(V).$

It is clear that if $R \le E \le G$, where *R* is a nonabelian minimal normal subgroup of *G* and *E* is normal in *G*, then *R* is the product of some minimal normal subgroups of *E* [5, A, 4.13]. Hence we get from Theorem 4.1 (i) the following

Corollary 4.3. If G is σ -full, then $F_{\sigma}^*(G)/F_{\sigma}(G)$ is the group generated by all minimal normal subgroup of

 $C_G(F_{\sigma}(G))F_{\sigma}(G)/F_{\sigma}(G).$

From Theorem 4.1 (iv) we get

Corollary 4.4 (Skiba [1]). If G is σ -soluble, then $C_G(F_{\sigma}(G)) \leq F_{\sigma}(G)$.

Note that in view of Example 1.2 (ii) in the special case, when $\sigma = \{\pi, \pi'\}$, we get from Corollary 4.3 the following fact.

Corollary **4.5.** *If G is* π *-separable, then*

 $C_G(O_{\pi}(G) \times O_{\pi'}(G)) \le O_{\pi}(G) \times O_{\pi'}(G).$

Theorem 4.6. Let G be a σ -full group and H a σ -soluble subgroup of G. If $E_{\sigma}(G) \leq N_G(H)$, then $E_{\sigma}(G) \leq N_G(H)$.

Proof. Since $E_{\sigma}(G) \leq N_G(H)$, $[E_{\sigma}(G), H = 1] \leq \leq E_{\sigma}(G) \cap H$ and $E_{\sigma}(G) \cap H$ is a σ -soluble normal of $E_{\sigma}(G)$. Hence $E_{\sigma}(G) \cap H \leq Z(E_{\sigma}(G))$ since $E_{\sigma}(G)/Z(E_{\sigma}(G))$ is σ -semisimple by Theorem 4.1 (ii). Hence $[E_{\sigma}(G), H, E_{\sigma}(G)] = 1$, so $[E_{\sigma}(G), H] = = [E_{\sigma}(G), E_{\sigma}(G), H] = 1$ by the lemma on three subgroups [11, III, 1.10]. The theorem is proved.

Definition 4.7. A σ -component of $E_{\sigma}(G)$ (sf. [4, Definition 13.17]) is a σ -perfect normal subgroup H of $E_{\sigma}(G)$ such that that H/Z(H) is simple.

Theorem 4.1 makes possible to prove the following two results.

Theorem 4.8 (Skiba [7]). Suppose that G is σ -full and let $Z = Z(E_{\sigma}(G))$.

(i) $E_{\sigma}(G)$ is the product of its σ -components but is not the product of any proper subset of them.

(ii) If H is a σ -component of $E_{\sigma}(G)$, then HZ/Z is a simple direct factor of $E_{\sigma}(G)$ and $Z(H) = H \cap Z$.

(iii) If H_1 and H_2 are distinct σ -components of $E_{\sigma}(G)$, then $[H_1, H_2] = 1$.

(iv) If R is a σ -subnormal subgroup of $E_{\sigma}(G)$, then R is the product of $R \cap Z$ and certain σ -component of $E_{\sigma}(G)$. In particular, R is normal in $E_{\sigma}(G)$. Also $Z(E_{\sigma}(G)) = ZR / R$ and $E_{\sigma}(G) = RC_{E_{\sigma}(G)}(R)$.

(v) If H is a σ -component of $E_{\sigma}(G)$ and $A \leq G$, then either $H \leq [H, A]$ or [H, A] = 1. If, further, $H \leq N_G(A)$, then either $H \leq E_{\sigma}(A)$ or [H, A] = 1.

Theorem 4.9 (Skiba [7]). Let G be a σ -full group and a Hall σ_1 -subgroup of G is nilpotent. Suppose that S is a σ_1 -subgroup of G. Then

 $O^{\sigma_1}(F^*_{\sigma}(N_G(S))) = O^{\sigma_1}(F^*_{\sigma}(C_G(S))) \le C_G(O_{\sigma}(G)).$

Corollary 4.10 (Bender [16]). If S is a p-subgroup of G, then

 $O^{p}(F^{*}(N_{G}(S))) = O^{p}(F^{*}(C_{G}(S))) \le C_{G}(O_{\sigma}(G)).$

Some other applications of Theorem **4.1.** Theorem 4.1 not only covers a large number of known results, but it also allows you to establish a link between some of these results. Note for example that the following known results are special cases of Corollary 4.3.

Corollary 4.11 (See [17, Ch. 6, 1.3]). If G is soluble, then $C_G(F(G)) \leq F(G)$.

Corollary **4.12** (See [17, Ch. 6, 3.2]). *If G is* π *-separable, then the following inclusion holds:*

 $C_{G/O_{\pi'}(G)}(O_{\pi}(G/O_{\pi'}(G)) \le O_{\pi}(G/O_{\pi'}(G)).$

In view of Example 1.2 (iii) and Remark 1.6, we get from Corollary 4.3 also the following

Corollary 4.13 (Monakhov and Shpyrko [18]). Let G be a π -soluble group.

(1)
$$C_G(O_{\pi}(G) \times O_{\pi'}(G)) \le F(O_{\pi}(G)) \times O_{\pi'}(G)$$

(2) If
$$O_{\pi'}(G) = 1$$
, then $C_G(F(G)) \le F(G)$.

In the case, when σ is the smallest partition of \mathbb{P} , we get from Theorem 4.1 and Corollaries 4.2 and 4.3 the following known results.

Corollary 4.14 (See [4, X, 13.13]). $F^*(G)/F(G)$ is the group generated by all minimal normal subgroup of $C_G(F(G))F(G)/F(G)$.

Corollary 4.15 (See [4, X, 13.10]). $F^*(G)$ is quasinilpotent and every subnormal quasinilpotent subgroup of G is contained in $F^*(G)$.

Corollary 4.17 (See [5, A, 8.8]). F(G) is generated by all subnormal nilpotent subgroup of G. Corollary 4.18 (See [4, X, 13.15]). $F(G) = C_{F^*(G)}(E(G)).$

5 Further applications

Let \mathcal{L} be some non-empty set of subgroups of G and E a subgroup of G. Then a subgroup A of G is called \mathcal{L} -*permutable* if AH = HA for all $H \in \mathcal{L}$; \mathcal{L}^{E} -*permutable* if $AH^{x} = H^{x}A$ for all $H \in \mathcal{L}$ and $x \in E$.

If \mathcal{L} is a *complete Sylow* π -*set* of G (that is, \mathcal{L} contains exact one Sylow *p*-subgroup for every $p \in \pi$ such that p divides |G|), then an \mathcal{L}^{G} -permutable subgroup is called π -*permutable* or π -*quasinormal* [19] in G. Recall also that $\pi(G)$ -permutable subgroups are also called *S*-*permutable* or *S*-*quasinormal* in G.

In this section we deal with the following generalization of these concepts.

Definition 5.1. We say that a subgroup H of G is Π -*permutable* in G if G possess a complete Hall Π -set \mathcal{H} such that H is \mathcal{H}^{G} -permutable.

Example 5.2. (i) If G is nilpotent, then Sylow subgroups of G are normal in G, so every subgroup of G is σ -permutable in G for every partition σ of \mathbb{P} .

In more general case, when G is σ -nilpotent, every subgroup of G is Π -permutable in G for every $\Pi \subseteq \sigma$.

(ii) Now let p,q,r be different primes, where q divides p-1. Let $H = Q \rtimes R$ be a non-abelian group of order qr, P a simple $\mathbb{F}_p H$ -module which is faithful for H, and $G = P \rtimes H$.

Let $\sigma = \{\sigma_1, \sigma_2\}$, where $\sigma_1 = \{p, r\}$ and $\sigma_2 = \{p, r\}'$. Then *G* is not σ -nilpotent and |P| > p. Since *q* divides p-1, *PQ* is supersoluble and hence for some normal subgroup *L* of *PQ* we have 1 < L < P. Then for every Hall σ_1 -subgroup *V* of *G* we have $L \le P \le V$, so QV = V = VQ. On the other hand, for every Hall σ_2 -subgroup *W* of *G* we have $W \le PQ$, so QW = WQ. Hence *Q* is σ -permutable in *G*. It is also clear that *L* is not normal in *G*, so $LR \ne RL$, which implies that *L* is not *S*-permutable in *G*.

Theorem 5.3 (Skiba [20]). Let H be a Π -subgroup of G.

(i) If G is a Π -full group and H is Π -permutable in G, then H is σ -subnormal in G and H^G is a Π -group.

(iii) If G is a Π' -full group and H is Π' -permutable in G, then H^G has a σ -nilpotent Hall Π' -subgroup.

Corollary 5.4 (Kegel [19]). If a π -subgroup H of G is π -permutable in G, then H is subnormal in G.

A subgroup *H* of *G* is called a *S*-semipermutable in *G* if *H* permutes with all Sylow subgroups *P* of *G* such that (|H|, |P|) = 1.

Corollary 5.5 (Isaacs [21]). If a π -subgroup H of G is S-semipermutable in G, then the normal

closure H^G of H in G possess a nilpotent π -complement.

Theorem 5.3 was applied in the proofs of many results about Π -permutable subgroups. In particular, on the basis of this result the following fact can be proved.

Theorem 5.6 (Skiba [2]). Let G be a σ -full group and $D = G^{\mathfrak{N}_{\sigma}}$. If a subgroup H of G is σ -permutable in G, then H^G / H_G is σ -nilpotent and $D \leq N_G(H)$.

Corollary 5.7 (Deskins [22]). If a subgroup H of G is S-permutable in G, then H/H_G is nilpotent.

As a direct consequence of Theorem 5.6, we also have

Corollary 5.8. Suppose that G is a σ -full group of Sylow type. If $G^{\mathfrak{N}_{\sigma}} = G$, then every σ -permutable subgroup of G is normal.

It is not difficult to show that if H/N is Π -permutable in G/N and G is a Π -full group of Sylow type, then H is Π -permutable in G as well. On the other hand, in view of Example 5.2 (i), every subgroup of every σ -nilpotent group is σ -permutable. Hence we also get from Theorem 5.6 the following facts.

Corollary 5.9. Suppose that G is a σ -full group of Sylow type and let H be a subgroup of G. If H is σ -permutable in G, then $N_G(H)$ is also σ -permutable in G.

Corollary 5.10 (Schmid [23]). If a subgroup H of G is S-permutable in G, then $N_G(H)$ is also S-permutable.

A group *G* is said to be a π -decomposable if $G = O_{\pi}(G) \times O_{\pi'}(G)$, that is, *G* is the direct product of its Hall π -subgroup and Hall π' -subgroup.

Taking in Theorem 5.6 $\sigma = \{\pi, \pi'\}$, we get

Corollary 5.11. Assume that $G = A_1A_2$, where A_1 are A_2 are Hall π -subgroup and Hall π' -subgroup of G, respectively. If a subgroup H of G permutes with A_i^x for all $x \in G$ and i = 1, 2, then

 H^G / H_G is π -decomposable.

Corollary 5.12. Assume that G has a p-complement. If a subgroup H of G permutes with every Sylow p-subgroup of G and every p-complement of G, then H^G / H_G is p-decomposable.

It is well-known that in general the set of all quasinormal subgroups of G is not a sublattice of the lattice of all subgroups of G (Ito). Nevertheless, as another application of Theorem 5.3, the following result is proved.

Theorem 5.13 (Skiba [20]). Let G be a Π -full group of Sylow type. Then the set of all σ -subnormal Π -permutable subgroups of G forms a sublattice of the lattice of all σ -subnormal subgroups of G. **Corollary 5.14** (Kegel [19]). The set of all subnormal π -permutable subgroups of G forms a sublattice of the lattice of all subnormal subgroups of G.

In view of Theorem 5.6, we get from Theorem 5.13 the following result.

Corollary 5.15 (Skiba [2]). Let G be a σ -full group of Sylow type. Then the set of all σ -permutable subgroups of G forms a sublattice of the lattice of all subgroups of G.

Corollary 5.16 (Kegel [19]). The set of all $\pi(G)$ -permutable subgroups of G forms a sublattice of the lattice of all subgroups of G.

Note that Corollary 5.15 not only generalizes Corollary 5.16 but also gives a shorter proof of it.

Groups in which σ -permutability is a transitive relation. A group G is called a *PST-group* if S-permutability is a transitive relation on G, that is, every S-permutable subgroup of an S-permutable subgroup of G is S-permutable in G. In view of the Corollary 5.14 the class of all *PST*-groups coincides with the class of all groups, in which every subnormal subgroup is S-permutable.

The description of *PST*-groups was first obtained by Agrawal [24], for the soluble case, and by Robinson in [25], for the general case. In the further publications, authors (see, for example, the recent papers [26]–[35]) have found out and described many other interesting characterizations of soluble *PST*-groups.

The results of such kind are the motivations for the following

Question 5.17. Let G be a σ -full group. What is the structure of G provided that every σ -sub-normal subgroup of G is σ -permutable?

The answer to this question for the case of an arbitrary σ -full group *G* is not known now. But a complete classification of such groups in the universe of all σ -soluble groups is known.

Theorem 5.18 (Skiba [2]). Let G be a σ -soluble group. Then every σ -subnormal subgroup of G is σ -permutable if and only if $G = D \rtimes M$, where $D = G^{\mathfrak{N}_{\sigma}}$ is an abelian σ -Hall subgroup of odd order of G such that every element of M induces a power automorphism of D.

Corollary 5.19 (Agrawal [24]). Let G be a soluble group. Then G is a PST -group if and only if $G = D \rtimes M$, where $D = G^{\mathfrak{N}}$ is an abelian Hall subgroup of odd order of G such that every element of M induces a power automorphism of D.

Two characterizations of σ *-permutability.* Now we give two characterizations of the σ -permutable subgroups. The first of them uses the idea of description of the quasinormal subgroups which dates back to Theorem 5.1.1 in [36].

Theorem 5.20 (Skiba [20]). Let G be a σ -full group of Sylow type. Then a subgroup A of G is σ -permutable in G if and only if A is σ -subnormal and, for each $i \in I$, the equality

Problems of Physics, Mathematics and Technics, № 3 (24), 2015

$E \cap \left\langle A, H \right\rangle = \left\langle A, E \cap H \right\rangle$

holds for every Hall σ_i -subgroup H of G and every subgroup E of G containing A.

Theorem 5.20 remains to be new also in the case when $\sigma = \{\{2\}, \{3\}, \{5\}, ...\}$.

Corollary 5.21. A subgroup A of G is S-permutable in G if and only if A is subnormal in G and the equality $E \cap \langle A, P \rangle = \langle A, E \cap P \rangle$ holds for every Sylow subgroup P of G and every subgroup E of G containing A.

By making some small changes in the proof of Theorem 4.1 in [2], one can prove the following result.

Theorem 5.22. Let G be a Π -full group of Sylow type. Then a subgroup A of G is Π -permutable in G if and only if A is σ -subnormal in G and A is Π -permutable in $\langle A, x \rangle$ for all $x \in G$.

In the case when σ is the smallest partition of \mathbb{P} we get from Theorem 5.22 the following fact.

Corollary 5.23. A π -subgroup A of G is π -permutable in G if and only if A is subnormal in G and A is π -permutable in $\langle A, x \rangle$ for all $x \in G$.

Since a subgroup A of G is subnormal in G if and only if A is subnormal in $\langle A, x \rangle$ for all $x \in G$ (Wielandt), from Theorem 5.22 we get also the following known result.

Corollary 5.24 (Ballester-Bolinches and Esteban-Romero [37]). A subgroup A of G is S-permutable in G if and only if A is S-permutable in $\langle A, x \rangle$ for all $x \in G$.

The σ -permutable closure and the σ -core of subgroups. Let H be a subgroup of a Π -full group G. Then we use $H_{\Pi G}$ to denote the Π -core of H, that is, the subgroup of H generated by all those subgroups of H which are Π -permutable in G. We use $H^{\Pi G}$ to denote the Π -permutable closure of H in G, that is, the intersection of all Π -permutable subgroups of G containing H.

In the case, when $\Pi = \sigma$ and σ is the smallest partition of \mathbb{P} , these two constructions proved useful in the analysis of many aspects of the theory of groups (see, for example, [38]–[41]).

A subgroup *H* of *G* is called respectively *Hall* normally embedded, *Hall* subnormally embedded [42], *Hall S*-qusinormally embedded [43] in *G* if *H* is a Hall subgroup of respectively the normal closure H^G , the subnormal closure $H^{.G}$ [5, A], the *S*-permutable closure H^{sG} [40] of *H* in *G*.

By analogy with it we say that a subgroup H of a σ -full group G is called *Hall* σ -permutable embedded in G if H is a σ -Hall subgroup of the σ -permutable closure $H^{\sigma G}$ of H in G. We say also that a subgroup H of a group G is called *Hall* σ -subnormally embedded in G if H is a σ -Hall subgroup of the σ -subnormal closure $H^{sub\sigma G}$ of H in G. **Theorem 5.25** (Skiba [44]). Let G be a σ -full group. Then every subgroup of G is Hall σ -subnormally embedded in G if and only if every σ -subnormal subgroup E of G is a σ -soluble group of the form $E = D \rtimes M$, where $D = E^{\mathfrak{N}_{\sigma}}$ is a σ -Hall subgroup of E with $|\sigma(D)| = |\pi(D)|$, M is a σ -Carter subgroup of E and for every chief factor H/K of E below D there is a Sylow subgroup P of D such that $H = K \rtimes P$, so M acts irreducibly on every M-invariant Sylow subgroup of D.

On the basis of Theorem 5.25 can be proved the following useful result.

Theorem 5.26. Let G be a σ -full group of Sylow type. Then every subgroup of G is Hall σ -quasinormally embedded in G if and only if $G = D \rtimes M$, where $D = G^{\mathfrak{N}_{\sigma}}$ is a σ -Hall cyclic subgroup of G of square-free order.

Corollary 5.27 (Li and Liu [42]). Every subgroup of G is Hall normally embedded in G if and only if $G = D \rtimes M$ is a split extension of a cyclic subgroup D of square-free order by a Dedekind group M, where D and M are both Hall subgroups of G.

Proof. First assume that every subgroup of G is Hall normally embedded in G. Then by Theorem 5.26, $G = D \rtimes M$, where $D = G^{\mathfrak{N}}$ is a Hall cyclic subgroup of G of square-free order. On the other hand, G is clearly a T-group, so $M \simeq G/D$ is a Dedekind group [45, Ch. 2, 2.1.11].

Conversely, if $H \le G$, then $H^G \le DH$ since G/D is a Dedekind group. Hence H is a Hall subgroup of DH, so H is a Hall subgroup of $H^{\sigma G}$. The corollary is proved.

Groups with given σ -cofactors of subgroups. Recall that the *cofactor* of the subgroup $H \le G$ is the factor group H/H_G . By analogy with it, we say that $H/H_{\Pi G}$ is a Π -cofactor of H.

The structure of groups with given restrictions on the cofactors of subgroups were studied by many authors (see, for example, [46]–[51]).

Recall that G is said to be an A-group provided all Sylow subgroups of G are abelian. The class of all A-groups is a formation. We denote this formation by the symbol \mathfrak{A}^* .

Theorem 5.28 (Skiba [44]). If the σ -cofactor of every subgroup of G is a cyclic σ -primary group, then G is σ -soluble and $G^{\mathfrak{A}^*} \leq Z_{\sigma}(G)$.

From Theorem 5.28 we get

Corollary 5.29 (Poland [48]). If the cofactor of every subgroup of G is a cyclic primary group, then G is soluble and $G^{\mathfrak{A}^*} \leq Z_{\infty}(G)$.

Groups with maximal subgroups of Hall subgroups σ -permutably embedded. We say that a subgroup H of G is said to be σ -permutably embedded in G if, for every $\sigma_i \in \sigma(H)$, every Hall σ_i -subgroup of *H* is also a Hall σ_i -subgroup of some σ -permutable subgroup of *G*. In particular, *H* of *G* is said to be *S*-permutably embedded in *G* [52] if, for every $p \in \pi(H)$, every Sylow *p*-subgroup of *H* is also a Sylow *p*-subgroup of some *S*-permutable subgroup of *G*.

Srinivasan proved [53] that G is supersoluble if every maximal subgroup of every Sylow subgroup of G is S-permutable in G. In the paper [54], Walls obtained a description of groups in which every maximal subgroup of every Sylow subgroup is normal. In the other direction, this result was amplified in the paper [52] where the authors have proved that G is supersoluble provided that every maximal subgroup of every Sylow subgroup is S-permutably embedded. These results are motivations for our two next results.

Theorem 5.30 (Skiba [20]). Let G be a σ -full group of Sylow type and $\mathcal{H} = \{H_1, ..., H_t\}$ be a complete Hall σ -set of G such that $H_i^{\mathfrak{N}}$ is a Hall subgroup of H_i . Every maximal subgroup of every member of \mathcal{H} is σ -permutably embedded in G if and only if $G = D \rtimes M$, where D and M are σ -Hall subgroups of G, $D = G^{\mathfrak{N}_{\sigma}}$ is nilpotent of odd order and every element of M induces a power automorphism on $D / \Phi(D)$.

Corollary 5.31. Every maximal subgroup of every Sylow subgroup of G is S-permutably embedded in G if and only if $G = D \rtimes M$, where D and M are Hall nilpotent subgroups of G, D is of odd order and every element of M induces a power automorphism on $D/\Phi(D)$.

On the basis of Theorem 3.30 the following generalization of the Walls result was obtained in [20].

Theorem 5.32. Let G be a σ -full group and $\mathcal{H} = \{H_1, ..., H_i\}$ a complete Hall σ -set of G such that $H_i^{\mathfrak{N}}$ is a Hall subgroup of H_i . Every maximal subgroup of every member of \mathcal{H} is σ -per-mutable in G if and only if $G = (A \times B) \rtimes C$, where (i) A, B and C are σ -Hall subgroups of G, (ii) A is a normal nilpotent subgroup of G of odd order, B is a normal σ -nilpotent subgroup of G and C is a cyclic subgroup of G such that $\pi(C) = \sigma(C)$ and [B, C] = 1, (iii) the generators of Sylow subgroups of C induce power automorphisms on $A/\Phi(A)$ and automorphisms of order dividing a prime on A.

Corollary 5.33 (Srinivasan [53]). If every maximal subgroup of every Sylow subgroup of G is S-permutable in G, then G is supersoluble.

Corollary 5.34 (Walls [54]). Every maximal subgroup of every Sylow subgroup of G is normal in G if and only if $G = H \rtimes \langle x \rangle$, where (i) H is a normal nilpotent Hall subgroup of G, (ii) the generators of

Sylow subgroups of $\langle x \rangle$ induce power automorphisms

on $H / \Phi(H)$ and automorphisms of order dividing a prime on H.

Corollary 5.35 (Ballester-Bolinches and Pedraza-Aguilera [52]). *If every maximal subgroup of every Sylow subgroup of G is S-permutable in G, then G is supersoluble.*

6 Final remarks and some open questions

1. In the case, when G is σ -soluble, Theorem 5.6 can be improved [20].

Theorem 6.1 (See [23, Theorem C]). Let G be a σ -soluble group and H is a σ -permutable subgroup of G. If H permutes also with some σ -system normalizer of G, then $H^G / H_G \leq Z_{\sigma}(G / H_G)$.

2. One of the key properties of σ -subnormal subgroups we get from the following (see Theorem 3.1 (7)).

Lemma 6.2. If A is σ -subnormal in G, then $A \cap H$ is a Hall Π -subgroup of A for every Hall Π -subgroup H of G.

Moreover, the following fact is true.

Proposition 6.3 (Skiba [3]). If G is a σ -soluble, then a subgroup A of G is σ -subnormal in G if and only if $A \cap H$ is a Hall σ_i -subgroup of A for every Hall σ_i -subgroup H of G and every $i \in I$.

In view of these observations, it seems natural to ask:

Question 6.4. Is it true that a subgroup A of the σ -full group G is a σ -subnormal in G if and only if $H \cap A$ is a Hall σ_i -subgroup of A for every Hall σ_i -subgroup H of G and every $i \in I$?

The answer to this question in the case when σ is the smallest partition of \mathbb{P} is positive [55].

The remarks before Corollary 5.24 make natural the following question.

Question 6.5. Suppose that for every $x \in G$, the subgroup H of G is σ -subnormal in $\langle H, x \rangle$. Is it true then that H is σ -subnormal in G?

Recall that the well-known Wielandt theorem states that

Theorem 6.6 (See [56, Ch. 4, 4.1.2]). If H and K are subnormal subgroups of G such that $\pi(H/H^{\mathfrak{N}}) \cap \pi(K/K^{\mathfrak{N}})$ is empty, then HK = KH.

In this theorem $H^{\mathfrak{N}}$ denotes the nilpotent residual of H.

Theorem 6.6 allows us to hope that the answer to the following question is positive.

Question 6.7. Let H and K be σ -subnormal subgroups of G such that $\pi(H / H^{\mathfrak{N}_{\sigma}}) \cap \pi(K / K^{\mathfrak{N}_{\sigma}})$ is empty. Is it true then that HK = KH?

3. It is known [57] that if a subgroup H of G is subnormal and H permutes with all members of some complete set of Sylow subgroups of G, then H/H_G is nilpotent. Nevertheless, we do not know the answer to the following question.

Question 6.8. Let G be a σ -full group and H a subgroup of G. Suppose that H is σ -subnormal in G and it permutes with all members of some complete Hall σ -set of G. Is it true then that H/H_G is σ -nilpotent?

4. Theorem 2.8 is a motivation for the following

Question 6.9. Let G be a σ -full group and $\mathcal{H} = \{H_1, ..., H_t\}$ a complete Hall σ -set of G. What is the structure of G provided that for every chief factor H/K of G and every $A \in \mathcal{H}$ the number $|G: N_G((A \cap H)K)|$ is σ -primary?

Note that the answer to this question in the case when σ is the smallest partition of \mathbb{P} is known [10].

5. The final stage in the proof of Theorem 5.3 (ii) is based on two useful observations.

The first of them is a σ -generalization of Wielandt's theorem on groups with a nilpotent Hall subgroup.

Proposition 6.10 (Skiba [7]). If G possess a σ -nilpotent Hall Π -subgroup H, then every Π -subgroup of G is contained in a conjugate of H.

In its turn, Proposition 6.10 has required the use of the following interesting result.

Proposition 6.11 (Skiba [7]). Let G be σ -soluble and $\pi = \sigma_i$. If G is not π' -closed but every proper subgroup of G is π' -closed, then G is a Schmidt group.

6. In the paper [58], V.A. Vedernikov proved the following important result.

Theorem 6.12 (Vedernikov [58]). Let G be a D_{π} -group. If G is not π -decomposable but every proper subgroup of G is π -decomposable, then G is a Schmidt group.

Corollary 6.13. Let G be a D_{σ} -group. If G is not σ -nilpotent but every proper subgroup of G is σ -nilpotent, then G is a Schmidt group.

REFERENCES

1. Skiba, A.N. On σ -properties of finite groups I / A.N. Skiba // Problems of Physics, Mathematics and Technics. – 2014. – Vol. 4, No 21. – P. 89–96.

2. *Skiba*, *A.N.* On σ -subnormal and σ -permutable subgroups of finite groups / A.N. Skiba // J. Algebra. – 2015. – Vol. 436. – P. 1–16.

3. *Skiba*, *A.N.* A generalization of a Hall theorem / A.N. Skiba // J. Algebra and its Application. – 2015 (in Press).

4. *Huppert, B.* Finite Groups III / B. Huppert, N. Blackburn. – Berlin, New York: Springer-Verlag, 1982.

5. *Doerk*, *K*. Finite Soluble Groups / K. Doerk, T. Hawkes. – Berlin, New York: Walter de Gruyter, 1992.

6. *Guo, W. X*-semipermutable subgroups of finite groups / W. Guo, K.P. Shum, A.N. Skiba // J. Algebra. – 2007. – Vol. 315. – P. 31–41.

7. Skiba, A.N. On some properties of finite σ -soluble and σ -nilpotent groups / A.N. Skiba. – Preprint, 2014.

8. *Guo*, *W*. Finite groups with permutable complete Wielandt sets of subgroups / W. Guo, A.N. Skiba // J. Group Theory. – 2015. – Vol. 18. – P. 191–200.

9. *Zhang*, J. Sylow numbers of finite groups / J. Zhang // J. Algebra. – 1995. – Vol. 176. – P. 111–123.

10. *Guo*, *W*. Finite groups with given indices of normalizers of Sylow subgroups / W. Guo // Siberian Math. J. – 1996. – Vol. 37. – P. 207–214.

11. *Huppert*, *B*. Endliche Gruppen I / B. Huppert. – Berlin, Heidelberg, New York: Springer-Verlag, 1967.

12. *Gagen*, *T.M.* Topics in finite groups / T.M. Gagen. – London: Cambridge University press, London Math. Soc. Lectures Note Series 16, Cambridge Univ. Press, 1976.

13. Skiba, A.N. Multiply \mathcal{L} -Composition Formations of Finite Groups / A.N. Skiba, L.A. Shemetkov // Ukrainsk. Math. Z. – 2000. – Vol. 52, Nº 6. – P. 783–797.

14. *Shemetkov*, *L.A.* Formations of finite groups / L.A. Shemetkov. – Moscow: Nauka, Main Editorial Board for Physical and Mathematical Literature, 1978.

15. *Guo*, *W*. On $\mathcal{F}\phi^*$ -hypercentral subgroups of finite groups / W. Guo, A.N. Skiba // J. Algebra. – 2012. – Vol. 372. – P. 275–292.

16. Bender, H. On groups with abelian Sylow 2-subgroups / H. Bender // Math. Z. -1970. - Vol. 117. - P. 164–176.

17. *Gorenstein*, *D*. Finite Groups / D. Gorenstein. – New York, Evanston, London: Harper & Row Publishers, 1968.

18. *Monakhov*, *V.S.* The nilpotent π -length of maximal Subgroups in finite π -soluble groups / V.S. Monakhov, O.A. Shpyrko // Moscow University Mathematics Bulletin. – 2009. – Vol. 64, N = 6. – P. 229–234.

19. *Kegel, O.H.* Sylow-Gruppen und Subnormalteiler endlicher Gruppen / O.H. Kegel // Math. Z. – 1962. – Vol. 78. – P. 205–221.

20. *Skiba*, *A.N.* On Π -permutable subgroups of finite groups / A.N. Skiba. – Preprint, 2015.

21. *Isaacs*, *I.M.* Semipermutable π -subgroups / I.M. Isaacs // Arch. Math. – 2014. – Vol. 102. – P. 1–6.

22. *Deskins, W.E.* On quasinormal subgroups of finite groups / W.E. Deskins // Math. Z. – 1963. – Vol. 82. – P. 125–132.

23. *Schmid*, *P*. Subgroups permutable with all Sylow subgroups / P. Schmid // J. Algebra. – 1998. – Vol. 207. – P. 285–293.

24. *Agrawal*, *R.K.* Finite groups whose subnormal subgroups permute with all Sylow subgroups / R.K. Agrawal // Proc. Amer. Math. Soc. – 1975. – Vol. 47. – P. 77–83.

25. *Robinson*, *D.J.S.* The structure of finite groups in which permutability is a transitive relation / D.J.S. Robinson // J. Austral. Math. Soc. -2001. - Vol. 70. -P. 143–159.

26. *Brice*, *R.A.* The Wielandt subgroup of a finite soluble groups / R.A. Brice, J. Cossey // J. London Math. Soc. – 1989. – Vol. 40. – P. 244–256.

27. *Beidleman, J.C.* Criteria for permutability to be transitive in finite groups / J.C. Beidleman, B. Brewster, D.J.S. Robinson // J. Algebra. – 1999. – Vol. 222. – P. 400–412.

28. *Ballester-Bolinches*, *A*. Sylow permutable subnormal subgroups / A. Ballester-Bolinches, R. Esteban-Romero // J. Algebra. – 2002. – Vol. 251. – P. 727–738.

29. *Ballester-Bolinches*, *A*. Groups in which Sylow subgroups and subnormal subgroups permute / A. Ballester-Bolinches, J.C. Beidleman, H. Heineken // Illinois J. Math. – 2003. – Vol. 47. – P. 63–69.

30. *Ballester-Bolinches*, *A*. A local approach to certain classes of finite groups / A. Ballester-Bolinches, J.C. Beidleman, H. Heineken // Comm. Algebra. – 2003. – Vol. 31. – P. 5931–5942.

31. Asaad, M. Finite groups in which normality or quasinormality is transitive / M. Asaad // Arch. Math. -2004. - Vol. 83, No 4. - P. 289-296.

32. *Ballester-Bolinches*, *A*. Totally permutable products of finite groups satisfying *SC* or *PST* / A. Ballester-Bolinches, J. Cossey // Monatsh. Math. – 2005. – Vol. 145. – P. 89–93.

33. Some characterizations of finite groups in which semipermutability is a transitive relation / K. Al-Sharo [et al.] // Forum Math. – 2010. – Vol. 22. – P. 855–862.

34. *Beidleman, J.C.* Subnormal, permutable, and embedded subgroups in finite groups / J.C. Beidleman, M.F. Ragland // Central Eur. J. Math. – 2011. – Vol. 9, № 4. – P. 915–921.

35. Yi, X. Some new characterizations of *PST*-groups / X. Yi, A.N. Skiba // J. Algebra. – 2014. – Vol. 399. – P. 39–54.

36. *Schmidt*, *R*. Subgroup lattices of groups / R. Schmidt. – Berlin, New York: Walter de Gruyter, 1994.

37. *Ballester-Bolinches*, *A*. On finite soluble groups in which Sylow permutability is a transitive relation / A. Ballester-Bolinches, R. Esteban-Romero // Acta Math. Hungar. – 2003. – Vol. 101. – P. 193–202.

38. *Skiba*, *A.N.* On weakly *s*-permutable subgroups of finite groups / A.N. Skiba // J. Algebra. – 2007. – Vol. 315. – P. 192–209.

39. *Shemetkov*, *L.A.* On the *X*Φ-hypercentre of finite groups / L.A. Shemetkov, A.N. Skiba // J. Algebra. – 2009. – Vol. 322. – P. 2106–2117.

40. *Guo*, *W*. Finite groups with given *s*-embedded and *n*-embedded subgroups / W. Guo, A.N. Skiba // J. Algebra. – 2009. – Vol. 321. – P. 2843–2860.

41. Yi, X. Finite groups with cyclic S-cofactors of subgroups / X. Yi // J. Algebra Appl. – 2015. – Vol. 14. – P. 1–9.

42. *Li*, *S*. On Hall subnormally embedded and generalized nilpotent groups / S. Li, J. Liu // J. Algebra. – 2013. – Vol. 388. – P. 1–9.

43. *Liu*, *J. CLT*-groups with Hall *S*-quasinormally embedded subgroups / J. Liu, S. Li // Ukrainian Math. J. -2015. - Vol. 66, N 8. - P. 1281–1288.

44. *Skiba*, *A.N.* The σ -permutable closure and the σ -core of subgroups / A.N. Skiba. – Preprint, 2015.

45. *Ballester-Bolinches*, *A*. Products of Finite Groups / A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad. – Berlin, New York: Walter de Gruyter, 2010.

46. *Berkovich*, *Ya.G.* Finite groups with big kernels of maximal subgroups / Ya.G. Berkovich // Siberian Math. J. – 1968. – Vol. 9. – P. 606–610.

47. *Cutolo*, *G*. Finite core-*p*-groups / G. Cutolo, E.I. Khukhro, J.C. Lennoks, J. Wiegold, S. Rinauro, H. Smith // J. Algebra. – 1997. – Vol. 188, \mathbb{N}_2 . – P. 701–719.

48. *Poland*, *J*. On finite groups whose subgroups have simple core factors / J. Poland // Proc. Japan Acad. – 1971. – Vol. 47. – P. 606–610.

49. Avdashkova, L.P. On a class of groups with given cofactors of maximal subgroups / L.P. Avdashkova, S.F. Kamornikov // Mathematical Notes. -2010. - Vol. 87, No 5/6. - P. 643-649.

50. *Lemeshev*, *I.V.* The solvability criteria for finite groups with restrictions on cofactors of maximal sugroups / I.V. Lemeshev, V.S. Monakhov // Problems of Physics, Mathematics and Technics. – 2012. – Vol. 2, N_{0} 11. – P. 88–94.

51. *Liu*, *Y*. Finite groups in which primary subgroups have cyclic cofactors / Y. Liu, X. Yi // Bull. Malaysian Math. Sciences Soc. -2011. - Vol. 34, $N \ge 2. - P. 337-344.$

52. *Ballester-Bolinches*, *A*. Sufficient conditions for supersolvebility of finite groups / A. Ballester-Bolinches, M.C. Pedraza-Aguilera // J. Pure Appl. Algebra. – 1998. – Vol. 127. – P. 113–118.

53. *Srinivasan*, *S*. Two sufficient conditions for supersolvability of finite groups / S. Srinivasan // Israel J. Math. – 1980. – Vol. 35, № 3. – P. 210–214.

54. *Walls*, *G.L.* Groups with maximal subgroups of Sylow subgroups normal / G.L. Walls // Israel J. Math. -1982. - Vol. 43, N 2. - P. 166–168.

55. *Kleidman*, *P.B.* A proof of the Kegel – Wielandt conjecture on subnormal subgroups / P.B. Kleidman // Ann. Math. – 1977. – Vol. 133. – P. 369–428.

56. *Lennox*, *J.C.* Subnormal Subgroups of Groups / J.C. Lennox, S.E. Stonehewer. – Oxford: Clarendon Press, 1987.

57. *Ballester-Bolinches*, *A.* Z -permutable subgroups of finite groups / A. Ballester-Bolinches, R. Esteban-Romero, A.A. Heliel, M.O. Almestadi. – Preprint.

58. *Vedernikov*, *V.A.* On π -properties of finite groups / V.A. Vedernikov // Arithmetic and Subgroup Structure of Finite Groups. – Mn.: Nauka i Tehnika, 1986. – P. 13–19.

Поступила в редакцию 14.07.15.

Problems of Physics, Mathematics and Technics, № 3 (24), 2015