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Пусть G – конечная группа, { }i i Iσ = σ | ∈  – некоторое разбиение множества всех простых чисел P  и Π  – подмноже-
ство множества σ. Множество H  подгрупп из G называется полным холловым Π -множеством в G, если H  содер-
жит в точности одну холлову iσ -подгруппу из G для каждого такого iσ ∈Π,  что ( ) .i Gσ ∩π ≠ ∅  Мы также говорим, 
что G является: Π -полной, если G обладает полным холловым Π -множеством; Π -полной группой силовского типа, 
если для всякого iσ ∈Π  каждая подгруппа E группы G является 

i
Dσ -группой, т. е. E содержит холлову iσ -подгруппу 

H и каждая iσ -подгруппа из E содержится в некоторой сопряженной с H подгруппой xH  ( ).x E∈  В данной работе мы 
исследуем свойства конечных Π -полных групп. Работа продолжает исследования статьи [1]. 
 
Ключевые слова: конечная группа, Π -полная группа, σ-разрешимая группа, σ-нильпотентная группа, σ-квазиниль-
потентная группа. 
 
Let G be a finite group, { }i i Iσ = σ | ∈  some partition of the set P  of all primes and Π  a subset of the set σ.  A set H  of sub-

groups of G is said to be a complete Hall Π -set of G if H  contains exact one Hall iσ -subgroup of G for every iσ ∈Π  such 

that ( )i Gσ ∩π ≠ ∅.  We say also that G is: Π -full if G possess a complete Hall Π -set; a Π -full group of Sylow type if for 

each iσ ∈Π,  every subgroup E of G is a 
i

Dσ -group, that is, E has a Hall iσ -subgroup H and every iσ -subgroup of E is con-

tained in some conjugate of xH  ( ).x E∈  In this paper we study properties of finite Π -full groups. The work continues the re-
search of the paper [1]. 
 
Keywords: finite group, Π -full group, σ-soluble group, σ-nilpotent group, σ-quasinilpotent group. 

 
 

1 Basic concepts  
Throughout this paper, all groups are finite and 

G always denotes a finite group. Moreover, P  is the 
set of all primes, Pπ ⊆  and ′π = π.P\  If n  is an 
integer, then the symbol ( )nπ  denotes the set of all 
primes dividing n| |;  as usual, ( ) ( )G Gπ = π | | ,  the 
set of all primes dividing the order G| |  of G.   

In what follows, { }i i Iσ = σ | ∈  is some parti-
tion of ,P  that is, i I i∈= ∪ σP  and i jσ ∩σ = ∅  for 
all i j≠ ;  Π  is always supposed to be a subset of 
the set σ and \′Π = σ Π.   

We put ( ) { ( ) }i in nσ = σ | σ ∩π ≠∅ , ( ) ( )G Gσ =σ | | ,  
and we say that G is: σ-primary if either 1G =  or 

( ) 1G| σ |= ;  σ-biprimary if ( ) 2G| σ |= ;  a Π -group if 
( )Gσ ⊆ Π.   

A chief factor H K/  of G is said to be σ-cent-
ral (in G) if the semidirect product 

( ) ( ( ))GH K G C H K/ / /  
is σ-primary, otherwise it is called σ-eccentric (in G).  

Definition 1.1. We say that G is: (i) σ-soluble 
[2] if every chief factor of G is σ-primary; (ii) σ-nil-
potent if every chief factor of G is σ-central.  

Example 1.2. (i) Every σ-nilpotent group is 
also σ-soluble, and G is σ-soluble if and only if it is 

iσ -separable for all i I∈ ;  G is soluble (respectively 
nilpotent) if and only if it is σ-soluble (respectively 
σ-nilpotent), where {{2} {3} {5} }…σ = , , ,  is the 
smallest partition of ,P  that is, for any i I∈ ,  iσ  is a 
one-element set.  

(ii) G is π -separable if and only if it is σ-so-
luble, where { }′σ = π,π .   

(iii) Let 1{ }tp … pπ = , , .  Then G is π -soluble if 
and only if it is σ-soluble, where 1{{ } { } }tp … p ′σ = , , ,π .   

(iv) In view of Theorem 4.1 in [1], 1G ≠  is 
σ-nilpotent if and only if 

1
( ) ( )

t
G O G O Gσ σ= × × ,  

where 1{ } ( )t… Gσ , ,σ = σ .   
A set H  of subgroups of G is said to be a  

complete Hall Π -set of G if H  contains exact one 
Hall iσ -subgroup of G for every ( )i Gσ ∈Π∩σ .   

Definition 1.3. We say that G is:  
(i) Π -full if G possess a complete Hall Π -set;  
(ii) a DΠ -group if for each iσ ∈Π,  G is a 

i
Dσ -group.  

МАТЕМАТИКА
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(iii) a Π -full group of Sylow type if every sub-
group of G is a DΠ -group.  

Example 1.4. (i) If G is π -soluble, then G is a 
Π -full group of Sylow type for each Π ⊆ σ  such 
that 

i iσ ∈Π∪ σ ⊆ π.  In particular, if G is soluble, then 

G is a σ-full group of Sylow type for every partition 
σ of .P   

(ii) In more general case, we say that G is 
Π -soluble if every chief factor of G is either a 
′Π -group or a iσ -group for some iσ ∈Π.  If 

1( ) { }tG …Π∩σ = σ , ,σ ,  1 tπ = σ ∪ ∪σ  and 

1{ }t…∗ ′σ = σ , ,σ ,π ,  then G is Π -soluble if and only 
if G is ∗σ -soluble. Therefore, in view of Theorem B 
in [3], a Π -soluble group is a Π -full group of Sy-
low type.  

(iii) Let G A B= × ,  where A Ly=  is the Lyons 
group and B  is a group of prime order 67p > .  Let 

1 2{ }Π = σ ,σ ,  where 1 {11 67}σ = ,  and 2 {2 }pσ = , .  
Then G is a Π -full group of Sylow type. It is also 
clear that G is not Π -soluble.  

(iv) In view of Example 1.2 (iv), every σ-nil-
potent group 1G ≠  is σ-full, and if ( )Gσ =  

1{ }t…= σ , ,σ ,  then 
1

{ ( ) ( )}
t

O G … O Gσ σ, ,  is the unique 

complete Hall σ-set of G.   
Recall that a group G is said to be quasinilpo-

tent if for every its chief factor H K/  and every 
x G∈ ,  x  induces an inner automorphism on H K/  
[4, Х, Definition 13.2]. Note that since for every 
central chief factor H K/  of G,  an element of G 
induces the trivial automorphism on H K/ ,  one can 
say that a group G is quasinilpotent if for every its 
eccentric chief factor H K/  and for every x G∈ ,  
x  induces an inner automorphism on H K/ .  This 
elementary observation allows us to consider the 
following analogue of quasinilpotency:  

Definition 1.5. We say that G is σ-quasi-
nilpotent if for every σ-eccentric chief factor H K/  
of G,  every automorphism of H K/  induced by an 
element of G is inner.  

Example 1.6. (i) G is quasinilpotent if and only 
if it is σ-quasinilpotent, where σ is the smallest par-
tition of .P   

(ii) Let 5 5 7 11( ) ( )G A A A A= × ×  and {{2 3 5}σ = , , ,  
{2 3 5} }′, , .  Then G is σ-quasinilpotent but G is nei-
ther σ-nilpotent nor quasinilpotent.  

We use G σN  to denote the σ-nilpotent residual 
of G, that is, the intersection of all normal subgroups 
N  of G with σ-nilpotent quotient G N/ .   

Definition 1.7. (i) The product of all normal re-
spectively σ-soluble, σ-nilpotent, σ-quasinilpotent sub-
groups of G is said to be respectively the σ-radical, 
the σ-Fitting subgroup, the generalized σ-Fitting 
subgroup of G and we denote it respectively by 

( )R Gσ ,  ( )F Gσ ,  ( )F G∗
σ .   

(ii) We use ( )E Gσ  to denote the σ-nilpotent 
residual of ( )F G∗

σ ,  and we say that ( )E Gσ  is the 
σ-layer of G.  

Remark 1.8. It is clear that ( ) ( )F G F Gσ≤  and 
( ) ( )F G F G∗ ∗

σ≤ .  Moreover, if σ is the smallest par-
tition of ,P  then ( ) ( )F G F Gσ =  and ( ) ( )F G F G∗ ∗

σ =  
is the generalized Fitting subgroup of G. Note also 
that, in view of Example 1.2 (iv), ( )F Gσ =  

1
( ) ( )

t
O G O Gσ σ= × × ,  where 1{ } ( )t… Gσ , ,σ = σ .   

Example 1.9. Let 5 7( )G A A x K x= × = ,  
where 5x p| |= >  is a prime and K  is the base 
group of the regular wreath product G.  Let 5R A=  
and 7L A=  (we use here the terminology in [5, Ch. A]). 
Finally, let {{2 3 5} {2 3 5} }′σ = , , , , , .  Then K R L= ×  
and so, in view of Example 1.2 (iv), ( )F G Rσ = .  It is 
clear also that ( )K F G∗

σ≤  and the automorphism of 
R  induced by x  is not inner. Hence ( )F G K∗

σ = .  It 
is also clear that ( )E G Lσ =  and ( )E G K= .   

In Sections 2–4 we study properties and some 
applications of Π -full, σ-soluble, σ-nilpotent, and 
σ-quasinilpotent groups and, in particular, the rela-
tionship between the subgroups ( )F Gσ ,  ( )F G∗

σ  and 
( )E Gσ .  In Section 5 we analyze some applications 

of the results in Sections 2–4 in the theory of permu-
table subgroups. Finally, in Section 6 we discuss 
some open questions.  
 

2 Π -soluble groups  
We use ΠS  to denote the class of all Π -so-

luble groups.  
The direct calculations show that the following 

properties of Π -soluble groups are true.  
Proposition 2.1. (i) The class ΠS  is closed un-

der taking products of normal subgroups, homomor-
phic images and subgroups. Moreover, any exten-
sion of the Π -soluble group by a Π -soluble group 
is a Π -soluble group as well.   

(ii) ∗Π Π
⊆S S  for any partition { }j j J∗ ∗σ = σ | ∈  

of P  such that J I⊆  and j j
∗σ ⊆ σ  for all j J∈  

and for ∗ ∗Π ⊆ σ  such that  

ij
j i∗ ∗
∗

σ ∈Πσ ∈Π
∪ σ = ∪ σ .  

Proposition 2.2. Let G be Π -soluble.  
(i) If M is a maximal subgroup of G such that 

( )G Mσ | : | ∩Π ≠ ∅,  then G M| : |  is σ-primary.  
(ii) For every ( )i Gσ ∈σ ∩Π,  G has a maximal 

subgroup M  such that G M| : |  is a iσ -number.  
Let A,  B  and R  be subgroups of G.  Then A  

is said to R-permute with B  [6] if for some x R∈  
we have x xAB B A= .   
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A subgroup H of G is said to be: a Hall Π -sub-
group of G [2] if H is a Π -subgroup of G and 

G H| : |  is a ′Π -number; a σ-Hall subgroup of G if 
H is a Hall Π -subgroup of G for some Π ⊆ σ.   

It is clear that every σ-Hall subgroup is also a 
Hall subgroup of the group. In the group 

3 5G S C= × ,  3S  is a Hall subgroup of G but it is not 
a σ-Hall subgroup of G,  where {{3 5} {3 5} }′σ = , , , .   

If G has a complete Hall set 1{ }tH … H= , ,H  
of type σ  such that i j j iH H H H=  for all i j, ,  then 
H  is said to be a σ-basis [3] of G.   

By the classical Hall theorem, G is soluble if 
and only if it has a Sylow basis. The direct analogue 
of this result for σ-soluble groups is not true in gen-
eral. Indeed, let {{2 3} {2 3} }′σ = , , , .  Then the alter-
nating group 5A  of degree 5 has a σ-basis and it is 
not σ-soluble. Nevertheless, the following generali-
zations of the Hall result are true.  

Theorem 2.3 (Skiba [3]). Let ( )R R Gσ=  be the 
σ-radical of G. Then any two of the following condi-
tions are equivalent:   

(i) G is σ-soluble.  
(ii) For any Π,  G has a Hall Π -subgroup and 

every σ-Hall subgroup of G R-permutes with every 
Sylow subgroup of G.  

(iii) G has a σ-basis 1{ }tH … H, ,  such that for 
each i j≠  every Sylow subgroup of iH  R-permutes 
with every Sylow subgroup of jH .    

Theorem 2.4 (Skiba [3]). Let ( )R R Gσ=  be the 
σ-radical of G. Then G is σ-soluble if and only if for 
any Π  the following hold: G has a Hall Π -sub-
group E, every Π -subgroup of G is contained in 
some conjugate of E and E R-permutes with every 
Sylow subgroup of G. 

Recall that GN  is the nilpotent residual of G,  
that is, the smallest normal subgroup of G with nil-
potent quotient.  

As one of the steps in the proof of Theorem 
2.3, the following useful fact can be used.  

Proposition 2.5 (Skiba [7]). Suppose that 
1 2 2 3 1 3G A A A A A A= = = ,  where 1A ,  2A  and 3A  are 

σ-soluble subgroups of G. If the three indices 
1( )GG N A| : |,N  2( )GG N A| : |,N  3( )GG N A| : |N  are 

pairwise σ-coprime, then G is σ-soluble.   
From Theorems 2.3 and 2.4 we get the follow-

ing characterizations of the π -separable groups.  
Corollary 2.6. Let R be the product of all nor-

mal π -separable subgroups of G.  Then G is π -se-
parable if and only if G AB= ,  where A  and B  are 
a Hall π -subgroup and a Hall ′π -subgroup of G,  
respectively, and every Sylow subgroup of A R-per-
mutes with every Sylow subgroup of B.  

Corollary 2.7. Let R be the product of all normal 
π -separable subgroups of G. Then G is π -separable 

if and only if G AB= ,  where A  and B  are a Hall 
π -subgroup and a Hall ′π -subgroup of G,  respec-
tively, and every Sylow subgroup of G R-permutes 
with A and with B.  

Now we give a characterization of σ-soluble 
groups in the terms of the normalizers of Sylow sub-
groups.  

Theorem 2.8 (Skiba [3]). Let G be a σ-full 
group and 1{ }tH … H= , ,H  a complete Hall σ-set of 
G. Then any two of the following conditions are 
equivalent:   

(i) G is σ-soluble.  
(ii) Every σ-biprimary subgroup of G is σ-so-

luble and for every chief factor H K/  of G and 
every A∈H  the number (( ) )GG N A H K| : ∩ |  is 
σ-primary.  

(iii) Every σ-biprimary subgroup of G is σ-so-
luble and for any {1 }k … t∈ , ,  there is a normal se-
ries 0 11 nG G G G= ≤ ≤ ≤ =  of G such that the 
number 1(( ) )G k i iG N H G G −| : ∩ |  is σ-primary for 
all 1i … n= , , .    

Definition 2.9 (sf. [8]). If G has a complete 
Hall Π -set 1{ }tH … H= , , ,H  where iH  is nilpotent 
(respectively supersoluble) for all 1i … t= , , ,  then we 
say that H  is a Wielandt Π -set (respectively a  
generalized Wielandt Π -set) of G.   

Example 2.10. (i) If σ  is the smallest partition 
of ,P  then every complete Hall σ-set of G is clearly 
a Wielandt σ-set of G.  

(ii) Let { }i i Iσ = σ | ∈  is such that 1 {5 11}σ = ,  
and iσ  is a one-element set for all 1i ≠ .  Then the 
group (2 11)PSL ,  possess a generalized complete 
Wielandt σ-set, and it does not possess a complete 
Wielandt Π -set for every Π  containing 1σ .   

Corollary 2.11. Suppose that G has a complete 
Wielandt set 1{ }tH … H= , ,H  of type σ.  Then any 
two of the following conditions are equivalent:   

(i) G is soluble.  
(ii) For every chief factor H K/  of G and 

every A H∈  the number (( ) )GG N A H K| : ∩ |  is 
σ-primary.  

(iii) For any {1 }k … t∈ , ,  there is a normal se-
ries 0 11 nG G G G= ≤ ≤ ≤ =  of G such that the 
number 1(( ) )G k i iG N H G G −| : ∩ |  is σ-primary for 
all 1i … n= , , .    

We say that an integer n is primary if mn p=  
is a power of some prime p. 

Corollary 2.12 (Guo and Skiba [8]). Let 
1{ }tS P … P= , ,  be a complete Sylow set of G.  Then 

any two of the following conditions are equivalent:   
(i) G is soluble.  
(ii) For every chief factor H K/  of G and every 

P S∈  the number (( ) )GG N P H K| : ∩ |  is primary.  



On σ-properties of finite groups II 
 

Problems of Physics, Mathematics and Technics, № 3 (24), 2015 73

(iii) For any {1 }k … t∈ , ,  there is a normal se-
ries 0 11 nG G G G= ≤ ≤ ≤ =  of G such that the 
number 1(( ) )G k i iG N P G G −| : ∩ |  is primary for all 

1i … n= , , .    
Corollary 2.13. If for every Sylow subgroup P 

of G and for every chief factor H K/  of G,  
( ) (( ) )G KG K N P H K K/| / : ∩ / |  is a prime power, 

then G is soluble.  
From Corollary 2.13 we get the following 

known result.  
Corollary 2.14 (See Zhang [9] or Guo [10]). If 

for every Sylow subgroup P of G the number 
( )GG N P| : |  is a prime power, then G is soluble.  

The σ-system normalizers of σ-soluble groups. 
If 1{ }tH … H= , ,H  is a σ-basis of G and 1{ }tQ … Q∗ = , , ,H  
where 1 1 1i i i tQ H …H H …H− += ,  then we say that ∗H  
is a Hall σ-system of G (corresponding ).H  

Now, let 1( ) { }tG …σ = σ , ,σ  and iQ  be a Hall 

iσ -subgroup of G (we say that iQ  is a iσ -comple-
ment of G). Then i j i jH Q≠= ∩  is a Hall iσ -sub-
group of G and 1{ }tH … H= , ,H  is a σ-basis of G 
such that 1{ }tQ … Q∗ = , ,H  is a Hall σ-system of G 
corresponding H  (see [11, VI, Section 2]).  

Theorem 2.15. If G is σ-soluble, then any two 
σ-basis of G are conjugate, as are any two Hall 
σ-systems.   

Proof. See the proof of Theorem 2.4 in [11, VI].  
Definition 2.16. Let 1{ }tH … H= , ,H  is a σ-ba-

sis of G and 1{ }tQ … Q∗ = , ,H  is a Hall σ-system of 
G corresponding .H  Then  

1 1( ) ( ) ( ) ( )G G t G G tN N H N H N Q N Q= ∩ ∩ = ∩ ∩  
(see Section 11 in [11, VI]). We say that N is a 
σ-system normalizer of G (corresponding ).H  

Example 2.17. Let p q r< <  be primes, where 
p divides 1q − .  Let A Q P=  be a non-abelian 
group of order pq and B a group of order r. Let 
G A B K B= = ,  where K  is the base group of 
the regular wreath product G.  Let R Q=  (we again 
use here the terminology in [5, A]) and 

{( ) }Z a … a K a A= , , ∈ | ∈ .  Then R  is a minimal 
normal subgroup of G by [5, A, 18.5]. It is clear that 

( )GC R R=  and [ ] 1Z B, = .  Let {{ } { } }p q p q ′σ , , , .  
Then { }K B,  is a σ-basis of G,  ( )GD N B=  is a 
σ-system normalizer of G and 1R /  is a σ-eccentric 
chief factor of G. Hence D does not cover 1R /  by 
Theorem 2.19 below. It is also clear that 1R D∩ ≠ .  
Hence D does not avoid 1R / .  Therefore in view of 
Theorem 3.2 in [5, V] and Corollary 3.4 below, a 
σ-system normalizer of a soluble group G in general 
is not a system σN -normalizer of G,  where σN  is 
the class of all σ-nilpotent groups, in the sense of 
Definition 1.2 in [5, V].  

Nevertheless, the following result shows that 
the σ-system normalizers of a σ-soluble group par-
tially inherits the properties of the system normaliz-
ers of a soluble group.  

Theorem 2.18. Let G be σ-soluble and D a 
σ-system normalizer of G.  

(i) Any σ-system normalizer of G is σ-nilpotent 
and any two are conjugate.  

(ii) D covers every σ-central chief factor of G 
and it does not cover every σ-eccentric chief factor 
of G;  D avoids every σ-eccentric chief p-factor 
H K/  of G such that ip∈σ ,  a Hall iσ -subgroup 
of G is nilpotent and G is p-soluble.  

(iii) GD G=  and ( )GD Z Gσ= .   
Proof. (i) See the proof of Theorem 11.2 in [11, VI]. 
(ii) Let H K/  be a chief factor of G and 

( )GC C H K= / .  Since G is σ-soluble by hypothesis, 
H K/  is a iσ -group for some ( )i Gσ ∈σ .  Let the 
σ-system normalizer D of G arises from a σ-basis 

1{ }tH … H= , ,H  of G. Without loss of generality we 
can assume that 1i = .  Let 1π = σ  and 2 tS H …H=  
of G.  Then S  is a 1σ -complement of G.   

First assume that H K/  is σ-central in G,  that 
is, ( ) ( )H K G C/ /  is a 1σ -group. Then G C/  is a 
′π -group. Hence S C≤ ,  which implies that 

( )G KSK K N H K// ≤ / .  Hence 
( )( ) ( ) ( )SH K SK K H K SK K H K/ = / / = / × / .  

Then SK  is normal in SH  and SH SK| : |  is a 
π -number. Applying the Frattini argument to the 

1σ -complement S  of SH ,  we have SH =  
( ) ( )SH GSKN S N S K= ≤ .  Therefore the normal π -sub-

group H K/  of G K/  is contained in every Hall 
1σ -subgroup of NK K/ ,  where ( )GN N S= .  Let 

0 1H H N= ∩ .  Since 1 1G H S H N= = ,  1( )N H N S= ∩ =  

0H S= .  Therefore 0H N S| |=| : |,  so 0H  is a Hall 

1σ -subgroup of N .  Now, let 1{ }tQ … Q∗ = , , =H  

2{ }tS Q … Q= , , ,  be a Hall σ-system of G correspond-
ing .H  Then 1 2 tH Q Q≤ ∩ ∩  and hence 0H ≤  

2( ) ( )G G tN Q N Q≤ ∩ ∩ ,  so 0H D≤  since 0 1H H≤ .  
Hence 0H K K/  is a Hall 1σ -subgroup of NK K/ ,  
and so we have 0H K H K K DK K/ ≤ / ≤ / .  Hence 

( )H H DK K H D= ∩ = ∩ ,  so D covers H K/ .   
Now, suppose that H K/  is σ-eccentric in G.  

Then H K/  is σ-eccentric in G K/ .  Without loss 
of generality we can assume that ( ) ( )G G Kσ = σ / .  
Then 1{ }tK K H K K … H K K/ = / , , /H  is a σ-basis 
of G K/ .  Moreover, if D K∗ /  is a σ-system nor-
malizer of G K/  corresponding K K/ ,H  then 
DK K D K∗/ ≤ / .  If 1K ≠ ,  then D K∗ /  does not 
cover (D K∗ /  avoids, respectively) H K/  by 
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induction and so DK K/  does not cover (avoids, 
respectively) H K/ .  But then D does not cover 
(avoids, respectively) H K/ .   

Now assume that 1K = .  Suppose that H D≤ .  
Then i iHH H H= ×  for all 1i > ,  so G C/  is a 

1σ -group and hence H K/  is σ-central in G.  This 
contradiction completes the proof of the first asser-
tion of (ii). Finally, suppose that H is a p-group, 
where 1p∈σ ,  a Hall 1σ -subgroup of G is nilpotent 
and G is p-soluble. Suppose that 1D H∩ ≠ .  Then 

( ) 1GN S R∩ ≠  and hence by Lemma 1.4 in [5, Ch. 5] 
we have ( )GM C H≤ ,  which implies that G C/  is a 

1σ -group and hence 1H /  is σ-central in G.  This 
contradiction completes the proof of Assertion (ii).  

(iii) Assume that GD G< .  Then, since GG D/  
is σ -soluble, ( )G G G GG D D G D G Dσ σ/ = / < /N N  

and hence G D Gσ < ,N  contrary to Assertion (ii). 
Hence GD G= .  The second assertion of the result is 
a corollary of Assertion (ii) and Proposition 3.5 (i) 
below. The theorem is proved.  

Corollary 2.19. Assume that G has a σ-basis 
which is a Wielandt σ-set of G. Then a σ-system 
normalizer of G covers the σ-central chief factors of 
G and avoids the σ-eccentric chief factor of G.  

Corollary 2.20 (P. Hall). A system normalizer 
of a soluble group G covers the central chief factors 
of G and avoids the eccentric chief factor of G.  

 
3 General properties of the σ-nilpotent and 

σ-quasinilpotent groups  
Recall that a subgroup A  of G is σ-subnormal 

in G [2] if there is a subgroup chain 0A A= ≤  

1 nA A G≤ ≤ ≤ =  such that either 1iA −  is normal in 

iA  or 1( )
ii i AA A −/  is σ-primary for all 1i … n= , , .   

The following theorem collects the main prop-
erties of σ-subnormal subgroups.  

Theorem 3.1 (Skiba [2]). Let A, K and N be 
subgroups of G. Suppose that A is σ-subnormal in G 
and N is normal in G.  

(1) A K∩  is σ-subnormal in K .  
(2) If K  is a σ-subnormal subgroup of A,  

then K  is σ-subnormal in G.  
(3) If K  is σ-subnormal in G,  then A K∩  

and A K,  are σ-subnormal in G.   
(4) AN N/  is σ-subnormal in G N/ .    
(5) If N K≤  and K N/  is σ-subnormal in 

G N/ ,  then K  is σ -subnormal in G.  
(6) If K A≤  and A  is σ-nilpotent, then K  is 

σ-subnormal in G.   
(7) If 1H ≠  is a Hall Π -subgroup of G and A 

is not a ′Π -group, then 1A H∩ ≠  is a Hall Π -sub-
group of A.  

(8) If G A| : | is a Π-number, then ( ) ( )O A O GΠ Π= .   

(9) If N is a Π -group of G, then ( ( ))GN N O AΠ≤ .   
(10) If A is a σ-Hall subgroup of G, then A is 

normal in G.  
(11) If G is a σ-group and A is σ-nilpotent, 

then A  is contained in ( )F Gσ .    
In this theorem ( )O GΠ  denotes the subgroup 

of G generated by all its ′Π -subgroups. Instead of 
{ } ( )iO Gσ  we write ( )iO Gσ .   

Before continuing, let’s consider the following 
elementary example.  

Example 3.2. Let p, q, r be different primes, 
where q  divide 1p − .  Let P Q  be a non-abelian 
group of order pq  and R  a group of order r.  Let 

( )G P Q R=  be the regular wreath product of the 
group P Q  with R and H Q= .  If {{ }p qσ = , ,  
{ } }p q ′, ,  then the subgroup H is σ-subnormal in G 
by Theorem 3.1(6) but it is not subnormal in G.  

The following result indicates the importance 
of the concept of σ-subnormality.  

Theorem 3.3. Any two of the following condi-
tions are equivalent:   

(i) G is σ-nilpotent.  
(ii) Every chief factor of G is σ-central.  
(iii) G has a complete Hall σ-set =H  
1{ }tH … H= , ,  such that 1 tG H H= × × .   
(iv) G has a complete Hall σ-set =H  
1{ }tH … H= , ,  such that every member of H is σ-sub-

normal in G.  
(v) Every subgroup of G is σ-subnormal in G.  
(vi) Every maximal subgroup of G is σ-subnor-

mal in G.  
Proof. See the proof of Theorem 4.1 in [1].  
We use σN  and ∗

σN  to denote the classes of 
all σ-nilpotent groups and of all σ-quasinilpotent 
groups, respectively.  

Corollary 3.4. The class σN  is closed under 
taking products of normal subgroups, homomorphic 
images and subgroups. Moreover, if E is a normal 
subgroup of G and ( )E G E/ Φ ∩  is σ-nilpotent, 
then E is σ-nilpotent.   

A normal subgroup E of G is said to be σ-hy-
percentral (in G) if either 1E =  or every chief factor 
of G below E is σ-central (in G). We use ( )Z Gσ  to 
denote the product of all normal σ-hypercentral sub-
groups of G. It is not difficult to show (see Proposi-
tion 3.5 (i) below) that ( )Z Gσ  is also σ-hypercentral 
in G. We call the subgroup ( )Z Gσ  the σ-hyper-
centre of G.  

The next proposition collects the main proper-
ties of the σ-hypercentre.  

Proposition 3.5 (Skiba [7]). Let G be a σ-full 
group and ( )Z Z Gσ= .  Let A,  B  and N  be sub-
groups of G, where N is normal in G.  
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(i) Every chief factor of G below Z is σ-central in G.  
(ii) ( )ZN N Z G Nσ/ ≤ / .   
(iii) ( ) ( )Z A N N Z AN Nσ σ/ ≤ / .   
(iv) For every subgroup H of G we have 

( ) ( )Z H A Z H Aσ σ∩ ≤ ∩ .    
(v) ( )GG C Z/  and Z  are σ-nilpotent.  
(vi) If G Z/  is σ-nilpotent, then G is also σ-nil-

potent.  
(vii) If N Z≤ ,  then ( )Z N Z G Nσ/ = / .   
(viii) If A is σ-nilpotent, then ZA  is also σ-nil-

potent.  
(ix) If G A B= × ,  then ( ) ( )Z Z A Z Bσ σ= × .  

Moreover, if a subgroup U of G is subdirectly con-
tained in G,  then ( ) ( )Z U U Z Gσ σ= ∩ .    

(x) If N Z≤ ,  then A  is σ-subnormal in NA.   
(xi) If N Z≤ ,  then A  is σ-subnormal in G if 

and only if NA N/  is σ-subnormal in G N/ .   
Corollary 3.6. [ ( )] 1G Z Gσ

σ, = .N   
A subgroup H of G is said to be a maximal σ-nil-

potent subgroup  of G if H is σ-nilpotent subgroup 
but every subgroup E of G such that H E<  is not 
σ-nilpotent.  

We have already known (see Theorem 2.18 (iii)) 
that if G is σ-soluble, then the σ-hypercentre ( )Z Gσ  
of G coincides with the intersection of all conjugates 
of H, where H is a σ-system normalizer of G. In the 
general case, we have  

Theorem 3.7 (Skiba [7]). ( )Z Gσ  coincides 
with the intersection of all maximal σ-nilpotent sub-
groups of G.  

Corollary 3.8 (Baer). The hypercentre ( )Z G∞  
of G coincides with the intersection of all maximal 
nilpotent subgroups of G.  

Lemma 3.9. (i) If G is σ-quasinilpotent group 
and N a normal subgroup of G,  then N  and G N/  
are σ-quasinilpotent.  

(ii) If G N/  and G L/  are σ-quasinilpotent, 
then ( )G N L/ ∩  is σ-quasinilpotent.  

Proof. (i), (ii) See the proof of Lemma 13.2 in [4, X].  
Lemma 3.10. Let H K/  be a chief factor of 

G.  Then every automorphism of H K/  induced by 
an element of G is inner if and only if 

( ) ( )GG H K C H K= / / .  
Proof. See the proof of Lemma 13.4 in [4].  
Definition 3.11. We say that G is: σ-perfect  if 

G Gσ = ;N  σ-semisimple if either 1G =  or 

1 tG A A= × ×  is the direct product of non-abelian 
simple non-σ-primary groups 1 tA … A, , .   

Note that if {{2 3 5} {2 3 5} }′σ = , , , , ,  and 

7 11G A A= × ,  then G is σ-semisimple and σ-perfect.  
Lemma 3.12. Let N be a normal iσ -subgroup 

of G. Then ( )N Z Gσ≤  if and only if ( ) ( )i
GO G C Nσ ≤ .  

Proof. If ( ) ( )i
GO G C Nσ ≤ ,  then for every chief 

factor H K/  of G below N  both groups H K/  
and ( )GG C H K/ /  are iσ -group since ( )iG O Gσ/  
is a iσ -group, so ( )N Z Gσ≤ .   

Now assume that ( )N Z Gσ≤ .  Let 01 Z= <  

1 tZ … Z N< < < =  be a chief series of G below N and 

1( )i G i iC C Z Z −= / .  Let 1 tC C C= ∩ .  Then G C/  
is a iσ -group. On the other hand, ( )GC C N/  

( )A Aut N≤  stabilizes the series 0 11 Z Z= < <  

t… Z N< < = ,  so ( )GC C N/  is a ( )Nπ -group by 
Theorem 0.1 in [12]. Hence ( )GG C N/  is a iσ -group, 

so ( ) ( )i
GO G C Nσ ≤ .  The lemma is proved. 

Theorem 3.13. Given group G the following 
are equivalent:  

(i) G is σ-quasinilpotent.   
(ii) ( )G Z Gσ/  is σ-semisimple.   
(iii) ( )G F Gσ/  is σ-semisimple and  

( ) ( ( ))GG F G C F Gσ σ= .  
Proof. Let ( )Z Z Gσ= .  (i) ⇒  (ii) Assume that 

this is false and let G be a counterexample of mini-
mal order. Then the hypothesis holds for G R/  by 
Lemma 3.9 (i). On the other hand, ( ) 1Z G Zσ / =  by 
Proposition 3.5 (vii). Hence in the case when 1Z ≠ ,  

( )G Z Gσ/  is σ-semisimple by the choice of G.   
Now assume that 1Z =  and let R be any mini-

mal normal subgroup of G. Then 1R /  is σ-eccentric 
since ( ) 1Z G Z≤ = .  Hence R  is non-abelian and 

( )GG R C R= ×  by Lemma 3.10. Therefore  
( ) ( ( )) ( ) 1GZ R Z C R Z Gσ σ σ× = =  

by Proposition 3.5 (ix). Hence the choice of G im-
plies that R  and ( )GC R  are σ-semisimple, so G is 
σ-semisimple, a contradiction. Hence G Z/  is σ-se-
misimple.  

(ii)⇒ (iiii) First note that ( )Z F Gσ≤  by 
Proposition 3.5 (v), so ( )Z F Gσ=  since G Z/  is σ-se-
misimple by hypothesis. But then ( ( ))GG C F Gσ/  is 
σ-nilpotent by Proposition 3.5(v). Hence G =  

( ) ( ( ))GF G C F Gσ σ=  since ( )G F G G Zσ/ = /  is σ-se-
misimple.  

(iii)⇒ (i) Let H K/  be a chief factor of G.  If 
( )F G Kσ ≤ ,  then every automorphism of H K/  

induced by an element of G is inner by Lemma 3.10 
since ( )G F Gσ/  is σ-semisimple by hypothesis. 
Now suppose that ( )H F Gσ≤ .  Then  

( )

( ) ( ) ( ) ( ( ))
( ( )) ( )

G G G

G F G

C H K C H K F G C F G
C F G C H K

σ

σ σ

σ

/ = / ∩ =

= / ,
 

so  

( )

( )
( ) ( ( )) ( ( )) ( )

G

G G F G

G C H K
F G C F G C F G C H K

σσ σ σ

/ / =

= / /
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( )

( )

( ) ( ) ( ( )) ( )

( ) ( ) ( ( ))
G F G

F G

F G F G C F G C H K

F G C H K Z F G
σ

σ

σ σ σ

σ σ

/ ∩ / =

= / /
 

( ) ( )

( )

( ( ) ( )) ( ( )

( ( )) ( ))
F G F G

F G

F G C H K C H K

Z F G C H K
σ σ

σ

σ

σ

/ / / / ×

× / /
 

is σ-primary by Lemma 3.12. Therefore H K/  is 
σ-central in G.  Now applying the Jordan-Hölder 
theorem for the chief series [5] we get that for every 
σ-eccentric chief factor H K/  of G, every automor-
phism of H K/  induced by an element of G is inner.  
The theorem is proved.  

Corollary 3.14. Let G be σ-quasinilpotent.  
(i) If G is σ-perfect, then ( ) ( )Z G Z Gσ = .    
(ii) If H is a normal σ-soluble subgroup of G,  

then ( )H Z Gσ≤ .   
Proof. (i) This assertion follows from Proposi-

tion 3.5 (v) and Theorem 3.13.  
(ii) This directly follows from Theorem 3.13.  
Corollary 3.15. If a σ-quasinilpotent group 

1G ≠  is σ-soluble, then 
1
( ) ( )

t
G O G O Gσ σ= × × ,  

where 1{ } ( )t… Gσ , ,σ = σ .    
Corollary 3.16. Let 

i iσ ∈Ππ = ∪ σ .  If a σ-quasi-
nilpotent group 1G ≠  is π -separable, then 

( ) ( )G O G O G′π π= × .  
Corollary 3.17. If a quasinilpotent group G is 

π -separable, then ( ) ( )G O G O G′π π= × .    
A formation is a class F  of groups with the 

following properties:  
(i) Every homomorphic image of an F -group 

is an F -group.  
(ii) If G M/  and G N/  are F -groups, then 

also ( )G M N/ ∩  belongs to .F   
The formation F  is said to be: (solubly) satu-

rated if G∈ F  whenever ( )G N/ Φ ∈ F  for some 
(soluble) normal subgroup N of G; (normally) he-
reditary if H ∈ F  whenever G∈ F  and H is a 
(normal) subgroup of G.  

A class F  of groups is called a Fitting class if 
it is closed under taking normal subgroups and 
products of normal subgroups.  

From Corollary 3.4 we get at once the follow-
ing fact.  

Theorem 3.18 The class σN  is a hereditary 
saturated formation. Moreover, σN  is a Fitting class.  

We write ( )Com G  to denote the class of all 
groups L  such that L  is isomorphic to some abelian 
composition factor of G;  ( )R G  denotes the largest 
normal soluble subgroup of G.   

For a formation function of the form  
 {0} {formations of groups}f : ∪ →P    (3.1) 

we put, following [13],  
( ) { is a group| ( ) (0)CLF f G G R G f= / ∈  

and 
( ) ( ) for any prime ( ( ))}pG C G f p p Com G/ ∈ ∈π .  

If ( )CLF f=F  for some formation function f, 
then we say that f is a composition satellite of the 
formation .F   

From [14, I, 3.2] and Baer’s Theorem [5, IV, 
3.17], the following result follows.  

Lemma 3.19. (i) For any function f of the form 
(3.1), the class ( )CLF f  is a solubly saturated for-
mation.   

(ii) For any non-empty solubly saturated for-
mation ,F  there is a unique function F  of the form 
(3.1) such that ( )CLF F= ,F  ( ) ( )pF p F p= ⊆G F  
for all primes p,  and (0)F = .F    

The function F in Lemma 3.19 (ii) is called the 
canonical composition satellite of .F   

Now, being based on Theorem 3.13 and 
Lemma 3.19, we prove the following useful fact.  

Theorem 3.20. The class ∗
σN  is a normally he-

reditary solubly saturated formation. Moreover, ∗
σN  

is a Fitting class.  
Proof. In order to prove the first assertion of 

the theorem, it is enough to prove, in view of 
Lemma 3.9, that ∗

σN  is a solubly saturated forma-
tion. Let ( )CLF f= ,M  where ( )

i
f p σ=G  is the 

class of all iσ -groups for all ip∈σ ,  and 
(0)f ∗

σ= .N  We show that ∗
σ= .M N  Let G be a 

group of minimal order in ∗
σM\N  and R a minimal 

normal subgroup of G. Then, in view of Lemma 3.9, 
R is the unique minimal normal subgroup of G and 
G R/  is σ-quasinilpotent. Therefore, in view of 
Theorem 3.13, R is not σ-central in G. Hence R is 
non-abelian. But then ( ) 1R G =  and so 

( ) (0)G G R G f ∗
σ/ ∈ = ,N  a contradiction. Thus 

∗
σ⊆ .M N  Now, assume that ∗

σN M  and G be a 
group of minimal order in ∗

σN \M  with a minimal 
normal subgroup R. Then R G= M  is the unique mini-
mal normal subgroup of G. If R is non-abelian, then 

( ) 1R G =  and therefore ( ) (0)G G R G f ∗
σ/ ∈ = .N  

Moreover, in this case we have ( )pR C G≤  and  

( ) ( ) ( ( ) )
( ) ( ) ( )

p p

p

G C G G R C G R
G R C G R f p

/ / / / =

= / / / ∈
 

for all ( ( ))p Com G∈π  since G R/ ∈M  and so 
G∈ ,M  a contradiction. Hence R is a p-group for some 
prime ip∈σ .  But G ∗

σ∈ ,N  so ( ( ))GR G C R/  is a 

iσ -group. But then ( )pG C G/  is a iσ -group and so 
G∈ .M  Hence ∗

σ= .M N  Therefore ∗
σN  is a solu-

bly saturated formation by Lemma 3.19.  
Since the class ∗

σN  is normally hereditary by 
Lemma 3.9, in order to prove the second assertion of 
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the theorem it is enough to show that if G AB= ,  
where A and B are normal σ-quasinilpotent sub-
groups of G, then G is σ-quasinilpotent. Let R be a 
minimal normal subgroup of G and ( )GC C R= .  By 
Lemma 2.9 (i), the hypothesis holds for G R/ ,  so 
the choice of G implies that G R/  is σ-quasinilpo-
tent. Therefore in view of Lemma 2.9 (ii), R is the 
unique minimal normal subgroup of G.  

Let 1 ( )Z Z Aσ=  and 2 ( )Z Z Bσ= .  If 1A B∩ = ,  
then 1 2( )Z G Z Zσ = ×  by Proposition 3.5 (ix). On the 
other hand, 1A Z/  and 2B Z/  are σ-semisimple by 
Theorem 3.13, so  

1 2 1 2( ) ( ) ( ) ( )G Z A B Z Z A Z B Z/ = × / × / × /  
is σ-semisimple. Hence G is σ-quasinilpotent by 
Theorem 3.13.  

Now suppose that 1A B∩ ≠ .  Then R A B≤ ∩ .  
First assume that R is σ-primary, say R is a iσ -group. 
Then by Proposition 3.5, 1 2( ) ( )R F A F B Z Z≤ ∩ ≤ ∩ .  
Then AC C A A C/ / ∩  and BC C B B C/ / ∩  
are iσ -groups and hence ( )( )G C AC C BC C/ = / /  
is a iσ -group. Hence R is σ-central in G. Therefore 

( )R Z Gσ≤  and so ( ) ( )Z G R Z G Rσ σ/ = /  by Propo-
sition 3.5 (vii). Thus G is σ-quasinilpotent by Theo-
rem 3.13.  

Therefore R is not σ-primary. Hence R is non-
abelian, so 1C = .  Then 1 tR R R= × × ,  where 

1 tR … R, ,  are minimal normal subgroups of A.  Let 
( )i A iC C R=  ( 1 ).i … t= , ,  Then 11 tC C C= = ∩ ∩ .  

Since A is σ-quasinilpotent by hypothesis, i iA R C=  
for all 1i … t= , ,  by Lemma 3.9. Hence  

1 1

1 1 1 1

( )
( )

t t

t t t t

R RC R …R C C
R …R R C C C− −

= = ∩ ∩ =
= ∩ ∩ ∩ =

 

1 1 1 1 1 1( )t tR …R A C C R C A− −= ∩ ∩ ∩ = = = .  
Similarly we can get that B R= ,  so G R=  is σ-se-
misimple. Hence G is σ-quasinilpotent. The theorem 
is proved.  
 

4 The subgroups ( )F Gσ ,  ( )F G∗
σ ,  and ( )E Gσ    

We use the symbol ( )G∗Φ  to denote the sub-
group ( ( ))R GΦ  [15].  

The following result collect basic properties of 
the ( )F Gσ ,  ( )F G∗

σ  and ( )E Gσ ,  and describes the 
main relations between them.  

Theorem 4.1 (Skiba [7]). Let G be a σ-full 
group. Let ( )F F Gσ σ= ,  ( )F F G∗ ∗

σ σ=  and ( )E E Gσ σ= .    
(i) F ∗

σ  is σ-quasinilpotent and ( )F Z F ∗
σ σ σ= .  

Hence F F∗
σ σ/  is σ-semisimple and F F∗

σ σ/  is the 
product of all minimal normal subgroups of G Fσ/  
contained in ( )GF C F Fσ σ σ/ .  Also ( )F Z Gσ σ/ =  

( ( ))F G Z Gσ σ= /  and ( ) ( ( ))F Z G F G Z G∗ ∗
σ σ σ σ/ = / .  

(ii) ( )
F

F E F C F F∗
σ

∗
σ σ σ σ σ= =  and ( )

F
F C E∗

σ
σ σ= .  

Also Eσ  is a σ-perfect characteristic subgroup of 
F ∗
σ  and ( )E Z Eσ σ/  is σ-semisimple. Hence ( )E Gσ =  

( ( ))E E Gσ σ= .  
(iii) A σ-subnormal subgroup H of G is con-

tained in F ∗
σ  (respectively in )Fσ  if and only if it is 

σ-quasinilpotent (respectively σ-nilpotent). Moreover, 
if H also is σ-quasinilpotent σ-perfect, then H Eσ≤ .   

(iv) ( ) ( )GC F Z F∗ ∗
σ σ≤ .    

(v) ( ( )) ( )F G G F Gσ σ/ Φ = / Φ  and  
( ( )) ( )F G G F G∗ ∗ ∗ ∗

σ σ/ Φ = / Φ .  
Corollary 4.2. If G is σ-full, then for every 

σ-subnormal subgroup V of G we have ( )F G Vσ ∩ =  
( )F Vσ=  and ( ) ( )F G V F V∗ ∗

σ σ∩ = .    
It is clear that if R E G≤ ≤ ,  where R  is a non-

abelian minimal normal subgroup of G and E is 
normal in G, then R is the product of some minimal 
normal subgroups of E [5, A, 4.13]. Hence we get 
from Theorem 4.1 (i) the following  

Corollary 4.3. If G is σ-full, then ( ) ( )F G F G∗
σ σ/  

is the group generated by all minimal normal sub-
group of  

( ( )) ( ) ( )GC F G F G F Gσ σ σ/ .  
From Theorem 4.1 (iv) we get  

Corollary 4.4 (Skiba [1]). If G is σ-soluble, 
then ( ( )) ( )GC F G F Gσ σ≤ .   

Note that in view of Example 1.2 (ii) in the 
special case, when { }′σ = π,π ,  we get from Corol-
lary 4.3 the following fact.  

Corollary 4.5. If G is π -separable, then  
( ( ) ( )) ( ) ( )GC O G O G O G O G′ ′π π π π× ≤ × .  

Theorem 4.6. Let G be a σ-full group and H a 
σ-soluble subgroup of G.  If ( ) ( )GE G N Hσ ≤ ,  then 

( ) ( )GE G N Hσ ≤ .    
Proof. Since ( ) ( )GE G N Hσ ≤ ,  [ ( ) 1]E G Hσ , = ≤  
( )E G Hσ≤ ∩  and ( )E G Hσ ∩  is a σ-soluble nor-

mal of ( )E Gσ .  Hence ( ) ( ( ))E G H Z E Gσ σ∩ ≤  since 
( ) ( ( ))E G Z E Gσ σ/  is σ-semisimple by Theorem 

4.1 (ii). Hence [ ( ) ( )] 1E G H E Gσ σ, , = ,  so [ ( ) ]E G Hσ , =  
[ ( ) ( ) ] 1E G E G Hσ σ= , , =  by the lemma on three sub-

groups [11, III, 1.10]. The theorem is proved.  
Definition 4.7. A σ-component of ( )E Gσ  (sf. 

[4, Definition 13.17]) is a σ-perfect normal subgroup 
H of ( )E Gσ  such that that ( )H Z H/  is simple.  

Theorem 4.1 makes possible to prove the fol-
lowing two results.  

Theorem 4.8 (Skiba [7]). Suppose that G is 
σ-full and let ( ( ))Z Z E Gσ= .    

(i) ( )E Gσ  is the product of its σ-components 
but is not the product of any proper subset of them.  
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(ii) If H is a σ-component of ( )E Gσ ,  then 
HZ Z/  is a simple direct factor of ( )E Gσ  and 

( )Z H H Z= ∩ .   
(iii) If 1H  and 2H  are distinct σ-components 

of ( )E Gσ ,  then 1 2[ ] 1H H, = .    
(iv) If R is a σ-subnormal subgroup of ( )E Gσ ,  

then R is the product of R Z∩  and certain σ-com-
ponent of ( )E Gσ .  In particular, R is normal in ( )E Gσ .  
Also ( ( ))Z E G ZR Rσ = /  and ( )( ) ( )E GE G RC R

σσ = .    

(v) If H is a σ-component of ( )E Gσ  and A G≤ ,  
then either [ ]H H A≤ ,  or [ ] 1H A, = .  If, further, 

( )GH N A≤ ,  then either ( )H E Aσ≤  or [ ] 1H A, = .   
Theorem 4.9 (Skiba [7]). Let G be a σ-full 

group and a Hall 1σ -subgroup of G is nilpotent. 
Suppose that S  is a 1σ -subgroup of G.  Then  

1 1( ( ( ))) ( ( ( ))) ( ( ))G G GO F N S O F C S C O Gσ σ∗ ∗
σ σ σ= ≤ .  

Corollary 4.10 (Bender [16]). If S is a p-sub-
group of G, then  

( ( ( ))) ( ( ( ))) ( ( ))p p
G G GO F N S O F C S C O G∗ ∗

σ= ≤ .  
Some other applications of Theorem 4.1. 

Theorem 4.1 not only covers a large number of 
known results, but it also allows you to establish a 
link between some of these results. Note for example 
that the following known results are special cases of 
Corollary 4.3.  

Corollary 4.11 (See [17, Ch. 6, 1.3]). If G is 
soluble, then ( ( )) ( )GC F G F G≤ .  

Corollary 4.12 (See [17, Ch. 6, 3.2]). If G is 
π -separable, then the following inclusion holds:  

( ) ( ( ( )) ( ( )G O GC O G O G O G O G
′π ′ ′/ π π π π/ ≤ / .  

In view of Example 1.2 (iii) and Remark 1.6, 
we get from Corollary 4.3 also the following  

Corollary 4.13 (Monakhov and Shpyrko [18]). 
Let G be a π -soluble group.   

(1) ( ( ) ( )) ( ( )) ( )GC O G O G F O G O G′ ′π π π π× ≤ × .   
(2) If ( ) 1O G′π = ,  then ( ( )) ( )GC F G F G≤ .   
In the case, when σ is the smallest partition of 

,P  we get from Theorem 4.1 and Corollaries 4.2 and 
4.3 the following known results.  

Corollary 4.14 (See [4, X, 13.13]). ( ) ( )F G F G∗ /  
is the group generated by all minimal normal sub-
group of ( ( )) ( ) ( )GC F G F G F G/ .    

Corollary 4.15 (See [4, X, 13.10]). ( )F G∗  is 
quasinilpotent and every subnormal quasinilpotent 
subgroup of G is contained in ( )F G∗ .   

Corollary 4.17 (See [5, A, 8.8]). ( )F G  is gen-
erated by all subnormal nilpotent subgroup of G.  

Corollary 4.18 (See [4, X, 13.15]). 

( )
( ) ( ( ))

F G
F G C E G∗= .  

 

5 Further applications  
Let L  be some non-empty set of subgroups of 

G and E a subgroup of G. Then a subgroup A of G is 
called L -permutable if AH HA=  for all H ∈ ;L   

EL -permutable if x xAH H A=  for all H ∈L  and 
x E∈ .   

If L  is a complete Sylow π -set of G (that is, 
L  contains exact one Sylow p-subgroup for every 
p∈π  such that p divides ),G| |  then an GL -per-

mutable subgroup is called π -permutable or π -qua-
sinormal [19] in G. Recall also that ( )Gπ -permu-
table subgroups are also called S-permutable or 
S-quasinormal in G.  

In this section we deal with the following gen-
eralization of these concepts.  

Definition 5.1. We say that a subgroup H of G 
is Π -permutable in G if G possess a complete Hall 
Π -set H  such that H is GH -permutable.  

Example 5.2. (i) If G is nilpotent, then Sylow 
subgroups of G are normal in G, so every subgroup 
of G is σ-permutable in G for every partition σ of .P   

In more general case, when G is σ-nilpotent, 
every subgroup of G is Π -permutable in G for 
every Π ⊆ σ.   

(ii) Now let p q r, ,  be different primes, where 
q  divides 1p − .  Let H Q R=  be a non-abelian 
group of order qr,  P  a simple p HF -module which 
is faithful for H ,  and G P H= .   

Let 1 2{ }σ = σ ,σ ,  where 1 { }p rσ = ,  and 

2 { }p r ′σ = , .  Then G is not σ-nilpotent and P p| |> .  
Since q  divides 1p − ,  PQ  is supersoluble and 
hence for some normal subgroup L  of PQ  we have 
1 L P< < .  Then for every Hall 1σ -subgroup V  of 
G we have L P V≤ ≤ ,  so QV V VQ= = .  On the 
other hand, for every Hall 2σ -subgroup W  of G we 
have W PQ≤ ,  so QW WQ= .  Hence Q is σ-per-
mutable in G. It is also clear that L is not normal in 
G,  so LR RL≠ ,  which implies that L is not S-per-
mutable in G.  

Theorem 5.3 (Skiba [20]). Let H be a Π -sub-
group of G.  

(i) If G is a Π -full group and H is Π -per-
mutable in G,  then H is σ-subnormal in G and GH  
is a Π -group.  

(iii) If G is a ′Π -full group and H is ′Π -per-
mutable in G,  then GH  has a σ-nilpotent Hall 
′Π -subgroup.   

Corollary 5.4 (Kegel [19]). If a π -subgroup H 
of G is π -permutable in G, then H is subnormal in G.  

A subgroup H of G is called a S-semiper-
mutable in G if H permutes with all Sylow sub-
groups P of G such that ( ) 1H P| |, | | = .   

Corollary 5.5 (Isaacs [21]). If a π -subgroup H 
of G is S-semipermutable in G, then the normal 
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closure GH  of H in G possess a nilpotent π -comp-
lement.  

Theorem 5.3 was applied in the proofs of many 
results about Π -permutable subgroups. In particu-
lar, on the basis of this result the following fact can 
be proved.  

Theorem 5.6 (Skiba [2]). Let G be a σ-full 
group and D G σ= .N  If a subgroup H of G is σ-per-
mutable in G, then G

GH H/  is σ-nilpotent and 
( )GD N H≤ .    

Corollary 5.7 (Deskins [22]). If a subgroup H 
of G is S-permutable in G, then GH H/  is nilpotent.   

As a direct consequence of Theorem 5.6, we 
also have  

Corollary 5.8. Suppose that G is a σ-full group 
of Sylow type. If G Gσ = ,N  then every σ-permutable 
subgroup of G is normal.  

It is not difficult to show that if H N/  is 
Π -permutable in G N/  and G is a Π -full group of 
Sylow type, then H is Π -permutable in G as well. 
On the other hand, in view of Example 5.2 (i), every 
subgroup of every σ-nilpotent group is σ-permu-
table. Hence we also get from Theorem 5.6 the fol-
lowing facts.  

Corollary 5.9. Suppose that G is a σ-full group 
of Sylow type and let H be a subgroup of G. If H is 
σ-permutable in G,  then ( )GN H  is also σ-permu-
table in G.  

Corollary 5.10 (Schmid [23]). If a subgroup H 
of G is S-permutable in G,  then ( )GN H  is also 
S-permutable.  

A group G is said to be a π -decomposable if 
( ) ( )G O G O G′π π= × ,  that is, G is the direct product 

of its Hall π -subgroup and Hall ′π -subgroup.  
Taking in Theorem 5.6 { }′σ = π,π ,  we get  
Corollary 5.11. Assume that 1 2G A A= ,  where 

1A  are 2A  are Hall π -subgroup and Hall ′π -sub-
group of G, respectively. If a subgroup H of G per-
mutes with x

iA  for all x G∈  and 1 2i = , ,  then 
G

GH H/  is π -decomposable.   
Corollary 5.12. Assume that G has a p-comple-

ment. If a subgroup H of G permutes with every Sy-
low p-subgroup of G and every p-complement of G, 
then G

GH H/  is p-decomposable.   
It is well-known that in general the set of all 

quasinormal subgroups of G is not a sublattice of the 
lattice of all subgroups of G (Ito). Nevertheless, as 
another application of Theorem 5.3, the following 
result is proved.  

Theorem 5.13 (Skiba [20]). Let G be a Π -full 
group of Sylow type. Then the set of all σ-subnormal 
Π -permutable subgroups of G forms a sublattice of 
the lattice of all σ-subnormal subgroups of G.  

Corollary 5.14 (Kegel [19]). The set of all sub-
normal π -permutable subgroups of G forms a sub-
lattice of the lattice of all subnormal subgroups of G.  

In view of Theorem 5.6, we get from Theorem 
5.13 the following result.  

Corollary 5.15 (Skiba [2]). Let G be a σ-full 
group of Sylow type. Then the set of all σ-per-
mutable subgroups of G forms a sublattice of the 
lattice of all subgroups of G.  

Corollary 5.16 (Kegel [19]). The set of all 
( )Gπ -permutable subgroups of G forms a sublattice 

of the lattice of all subgroups of G.  
Note that Corollary 5.15 not only generalizes 

Corollary 5.16 but also gives a shorter proof of it.  
Groups in which σ-permutability is a transi-

tive relation. A group G is called a PST-group if 
S-permutability is a transitive relation on G, that is, 
every S-permutable subgroup of an S-permutable 
subgroup of G is S-permutable in G. In view of the 
Corollary 5.14 the class of all PST-groups coincides 
with the class of all groups, in which every subnor-
mal subgroup is S-permutable.  

The description of PST-groups was first ob-
tained by Agrawal [24], for the soluble case, and by 
Robinson in [25], for the general case. In the further 
publications, authors (see, for example, the recent 
papers [26]–[35]) have found out and described 
many other interesting characterizations of soluble 
PST-groups.  

The results of such kind are the motivations for 
the following  

Question 5.17. Let G be a σ-full group. What 
is the structure of G provided that every σ-sub-
normal subgroup of G is σ-permutable?  

The answer to this question for the case of an 
arbitrary σ-full group G is not known now. But a 
complete classification of such groups in the uni-
verse of all σ-soluble groups is known.  

Theorem 5.18 (Skiba [2]). Let G be a σ-so-
luble group. Then every σ-subnormal subgroup of G 
is σ-permutable if and only if G D M= ,  where 
D G σ= N  is an abelian σ-Hall subgroup of odd or-
der of G such that every element of M induces a 
power automorphism of D. 

Corollary 5.19 (Agrawal [24]). Let G be a 
soluble group. Then G is a PST -group if and only if 
G D M= ,  where D G= N  is an abelian Hall sub-
group of odd order of G such that every element of 
M induces a power automorphism of D.   

Two characterizations of σ-permutability. 
Now we give two characterizations of the σ-per-
mutable subgroups. The first of them uses the idea 
of description of the quasinormal subgroups which 
dates back to Theorem 5.1.1 in [36].  

Theorem 5.20 (Skiba [20]). Let G be a σ-full 
group of Sylow type. Then a subgroup A of G is 
σ-permutable in G if and only if A is σ-subnormal 
and, for each i I∈ ,  the equality  
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E A H A E H∩ , = , ∩  
holds for every Hall iσ -subgroup H of G and every 
subgroup E of G containing A.  

Theorem 5.20 remains to be new also in the 
case when {{2} {3} {5} }…σ = , , , .   

Corollary 5.21. A subgroup A of G is S-per-
mutable in G if and only if A is subnormal in G and 
the equality E A P A E P∩ , = , ∩  holds for every 
Sylow subgroup P of G and every subgroup E of G 
containing A.  

By making some small changes in the proof of 
Theorem 4.1 in [2], one can prove the following result.  

Theorem 5.22. Let G be a Π -full group of Sy-
low type. Then a subgroup A  of G is Π -permutable 
in G if and only if A  is σ-subnormal in G and A  is 
Π -permutable in A x,  for all x G∈ .   

In the case when σ is the smallest partition of 
P  we get from Theorem 5.22 the following fact.  

Corollary 5.23. A π -subgroup A of G is π -per-
mutable in G if and only if A is subnormal in G and 
A  is π -permutable in A x,  for all x G∈ .   

Since a subgroup A of G is subnormal in G if 
and only if A  is subnormal in A x,  for all x G∈  
(Wielandt), from Theorem 5.22 we get also the fol-
lowing known result.  

Corollary 5.24 (Ballester-Bolinches and Este-
ban-Romero [37]). A subgroup A of G is S-permu-
table in G if and only if A is S-permutable in A x,  
for all x G∈ .   

The σ-permutable closure and the σ-core of 
subgroups. Let H be a subgroup of a Π -full group 
G.  Then we use GHΠ  to denote the Π -core of H ,  
that is, the subgroup of H generated by all those sub-
groups of H which are Π -permutable in G.  We use 

GH Π  to denote the Π -permutable closure  of H in 
G,  that is, the intersection of all Π -permutable 
subgroups of G containing H.  

In the case, when Π = σ  and σ  is the smallest 
partition of ,P  these two constructions proved use-
ful in the analysis of many aspects of the theory of 
groups (see, for example, [38]–[41]).  

A subgroup H of G is called respectively Hall 
normally embedded, Hall subnormally embedded 
[42], Hall S -qusinormally embedded [43] in G if H 
is a Hall subgroup of respectively the normal closure 

GH ,  the subnormal closure GH ..  [5, A], the S-per-
mutable closure sGH  [40] of H in G.   

By analogy with it we say that a subgroup H of 
a σ-full group G is called Hall σ-permutable em-
bedded in G if H is a σ-Hall subgroup of the σ-per-
mutable closure GH σ  of H in G. We say also that a 
subgroup H of a group G is called Hall σ-subnor-
mally embedded in G if H is a σ-Hall subgroup of 
the σ-subnormal closure sub GH σ  of H in G.   

Theorem 5.25 (Skiba [44]). Let G be a σ-full 
group. Then every subgroup of G is Hall σ-subnor-
mally embedded in G if and only if every σ-subnor-
mal subgroup E of G is a σ-soluble group of the 
form E D M= ,  where D E σ= N  is a σ-Hall sub-
group of E with ( ) ( )D D| σ |=| π |,  M  is a σ-Carter 
subgroup of E and for every chief factor H K/  of E 
below D there is a Sylow subgroup P of D such that 
H K P= ,  so M acts irreducibly on every M-inva-
riant Sylow subgroup of D.   

On the basis of Theorem 5.25 can be proved 
the following useful result.  

Theorem 5.26. Let G be a σ-full group of Sy-
low type. Then every subgroup of G is Hall σ-qua-
sinormally embedded in G if and only if G D M= ,  
where D G σ= N  is a σ-Hall cyclic subgroup of G of 
square-free order.   

Corollary 5.27 (Li and Liu [42]). Every sub-
group of G is Hall normally embedded in G if and 
only if G D M=  is a split extension of a cyclic 
subgroup D of square-free order by a Dedekind group 
M, where D and M are both Hall subgroups of G. 

Proof. First assume that every subgroup of G is 
Hall normally embedded in G. Then by Theorem 
5.26, G D M= ,  where D G= N  is a Hall cyclic 
subgroup of G of square-free order. On the other 
hand, G is clearly a T-group, so M G D/  is a 
Dedekind group [45, Ch. 2, 2.1.11].  

Conversely, if H G≤ ,  then GH DH≤  since 
G D/  is a Dedekind group. Hence H is a Hall sub-
group of DH ,  so H is a Hall subgroup of GH σ .  The 
corollary is proved.  

Groups with given σ-cofactors of subgroups. 
Recall that the cofactor of the subgroup H G≤  is 
the factor group GH H/ .  By analogy with it, we say 
that GH HΠ/  is a Π -cofactor of H .   

The structure of groups with given restrictions 
on the cofactors of subgroups were studied by many 
authors (see, for example, [46]–[51]).  

Recall that G is said to be an A-group provided 
all Sylow subgroups of G are abelian. The class of 
all A-groups is a formation. We denote this forma-
tion by the symbol ∗.A   

Theorem 5.28 (Skiba [44]). If the σ-cofactor of 
every subgroup of G is a cyclic σ-primary group, 
then G is σ-soluble and ( )G Z G

∗

σ≤ .A    
From Theorem 5.28 we get  
Corollary 5.29 (Poland [48]). If the cofactor of 

every subgroup of G is a cyclic primary group, then 
G is soluble and ( )G Z G

∗

∞≤ .A    
Groups with maximal subgroups of Hall sub-

groups σ-permutably embedded. We say that a sub-
group H of G is said to be σ-permutably embedded in 
G if, for every ( )i Hσ ∈σ ,  every Hall iσ -subgroup 
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of H is also a Hall iσ -subgroup of some σ-per-
mutable subgroup of G. In particular, H of G is said 
to be S-permutably embedded in G [52] if, for every 

( )p H∈π ,  every Sylow p-subgroup of H is also a Sy-
low p-subgroup of some S-permutable subgroup of G. 

Srinivasan proved [53] that G is supersoluble if 
every maximal subgroup of every Sylow subgroup 
of G is S-permutable in G. In the paper [54], Walls 
obtained a description of groups in which every 
maximal subgroup of every Sylow subgroup is nor-
mal. In the other direction, this result was amplified 
in the paper [52] where the authors have proved that 
G is supersoluble provided that every maximal sub-
group of every Sylow subgroup is S-permutably em-
bedded. These results are motivations for our two 
next results.  

Theorem 5.30 (Skiba [20]). Let G be a σ-full 
group of Sylow type and 1{ }tH … H= , ,H  be a com-
plete Hall σ-set of G  such that iH N  is a Hall sub-
group of .iH  Every maximal subgroup of every 
member of H  is σ-permutably embedded in G if and 
only if G D M= ,  where D and M are σ-Hall sub-
groups of G,  D G σ= N  is nilpotent of odd order and 
every element of M induces a power automorphism 
on ( )D D/ Φ .   

Corollary 5.31. Every maximal subgroup of 
every Sylow subgroup of G is S-permutably embed-
ded in G if and only if G D M= ,  where D and M 
are Hall nilpotent subgroups of G, D is of odd order 
and every element of M induces a power automor-
phism on ( )D D/ Φ .   

On the basis of Theorem 3.30 the following 
generalization of the Walls result was obtained in [20]. 

Theorem 5.32. Let G be a σ-full group and 
1{ }tH … H= , ,H  a complete Hall σ-set of G  such 

that iH N  is a Hall subgroup of .iH  Every maximal 
subgroup of every member of H  is σ-per-mutable in 
G if and only if ( )G A B C= × ,  where (i) A,  B  
and C  are σ-Hall subgroups of G, (ii) A  is a nor-
mal nilpotent subgroup of G of odd order, B  is a 
normal σ-nilpotent subgroup of G and C  is a cyclic 
subgroup of G such that ( ) ( )C Cπ = σ  and 
[ ] 1B C, = ,  (iii) the generators of Sylow subgroups of 
C  induce power automorphisms on ( )A A/ Φ  and 
automorphisms of order dividing a prime on A.  

Corollary 5.33 (Srinivasan [53]). If every 
maximal subgroup of every Sylow subgroup of G is 
S-permutable in G, then G is supersoluble.  

Corollary 5.34 (Walls [54]). Every maximal 
subgroup of every Sylow subgroup of G is normal in 
G if and only if G H x= ,  where (i) H is a normal 
nilpotent Hall subgroup of G, (ii) the generators of 

Sylow subgroups of x  induce power automorphisms 
on ( )H H/ Φ  and automorphisms of order dividing 
a prime on H. 

Corollary 5.35 (Ballester-Bolinches and Ped-
raza-Aguilera [52]). If every maximal subgroup of 
every Sylow subgroup of G is S-permutable in G, 
then G is supersoluble.  
 

6 Final remarks and some open questions  
1. In the case, when G is σ-soluble, Theorem 

5.6 can be improved [20].  
Theorem 6.1 (See [23, Theorem C]). Let G be 

a σ-soluble group and H is a σ-permutable sub-
group of G. If H permutes also with some σ-system 
normalizer of G,  then ( )G

G GH H Z G Hσ/ ≤ / .    
2. One of the key properties of σ-subnormal sub-

groups we get from the following (see Theorem 3.1 (7)).  
Lemma 6.2. If A is σ-subnormal in G, then 

A H∩  is a Hall Π -subgroup of A  for every Hall 
Π -subgroup H  of G.    

Moreover, the following fact is true.  
Proposition 6.3 (Skiba [3]). If G is a σ-soluble, 

then a subgroup A  of G is σ-subnormal in G if and 
only if A H∩  is a Hall iσ -subgroup of A  for every 
Hall iσ -subgroup H of G and every i I∈ .    

In view of these observations, it seems natural 
to ask:  

Question 6.4. Is it true that a subgroup A of the 
σ-full group G is a σ-subnormal in G if and only if 
H A∩  is a Hall iσ -subgroup of A  for every Hall 

iσ -subgroup H of G and every i I∈ ?  
The answer to this question in the case when 

σ  is the smallest partition of P  is positive [55].  
The remarks before Corollary 5.24 make natu-

ral the following question.  
Question 6.5. Suppose that for every x G∈ ,  

the subgroup H of G is σ-subnormal in H x, .  Is it 
true then that H is σ-subnormal in G?  

Recall that the well-known Wielandt theorem 
states that  

Theorem 6.6 (See [56, Ch. 4, 4.1.2]). If H and 
K are subnormal subgroups of G such that 

( ) ( )H H K Kπ / ∩π /N N  is empty, then HK KH= .   
In this theorem H N  denotes the nilpotent re-

sidual of H.  
Theorem 6.6 allows us to hope that the answer 

to the following question is positive.  
Question 6.7. Let H and K be σ-subnormal 

subgroups of G such that ( ) ( )H H K Kσ σπ / ∩π /N N  
is empty. Is it true then that HK KH= ?  

3. It is known [57] that if a subgroup H of G is 
subnormal and H permutes with all members of 
some complete set of Sylow subgroups of G, then 

GH H/  is nilpotent. Nevertheless, we do not know 
the answer to the following question.  
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Question 6.8. Let G be a σ-full group and H a 
subgroup of G. Suppose that H is σ-subnormal in G 
and it permutes with all members of some complete 
Hall σ-set of G. Is it true then that GH H/  is 
σ-nilpotent?  

4. Theorem 2.8 is a motivation for the following  
Question 6.9. Let G be a σ-full group and 

1{ }tH … H= , ,H  a complete Hall σ-set of G.  What 
is the structure of G provided that for every chief 
factor H K/  of G and every A∈H  the number 

(( ) )GG N A H K| : ∩ |  is σ-primary?  
Note that the answer to this question in the case 

when σ is the smallest partition of P  is known [10].  
5. The final stage in the proof of Theorem 

5.3 (ii) is based on two useful observations.  
The first of them is a σ-generalization of Wie-

landt’s theorem on groups with a nilpotent Hall sub-
group.  

Proposition 6.10 (Skiba [7]). If G possess a 
σ-nilpotent Hall Π -subgroup H, then every Π -sub-
group of G is contained in a conjugate of H.  

In its turn, Proposition 6.10 has required the 
use of the following interesting result.  

Proposition 6.11 (Skiba [7]). Let G be σ-so-
luble and iπ = σ .  If G is not ′π -closed but every 
proper subgroup of G is ′π -closed, then G is a 
Schmidt group.   

6. In the paper [58], V.A. Vedernikov proved 
the following important result.  

Theorem 6.12 (Vedernikov [58]). Let G be a 
Dπ -group. If G is not π -decomposable but every 
proper subgroup of G is π -decomposable, then G is 
a Schmidt group.   

Corollary 6.13. Let G be a Dσ -group. If G is not 
σ-nilpotent but every proper subgroup of G is σ-nil-
potent, then G is a Schmidt group.   
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