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Form-factors of relativistic bound state systems of two scalar particles
with one-boson exchange potential

V. N. KAPSHAI YU. A. GRISHECHKIN

[Tosy4yeHbI YKHCICHHBIC PEIICHUS PEISTUBUCTCKUX MHTETPAIBHBIX YPABHEHUH I CBS3aHHBIX § -COCTOS*
HUH CHCTEM JIBYX CKAIIIPHBIX YacTHUI] C OTEHIIMAIOM OJTHO0030HHOTO 0OMeHa. Ha ocHOBaHMHM MOITydeH=
HBIX PEHICHUN paccYuTaHbl POPM-(PaKTOPEI YIIPYroro paccesHust U GopM-(HaKTOphl AHHUTHIISIIA .~y CTa-
HOBJICHO, 4TO JJI BCEX PACCMOTPEHHBIX CIyYaeB YUCIO HyJeH ymnpyroro (gopM-¢akTopa paBHO YHCITY
HyJICH COOTBETCTBYIOIICH BOTHOBOW (DYHKIIUH.

KuroueBble c10Ba: MHTETPAIEHOE YpaBHEHHUE, IBYXYaCTUYHAS CHCTEMa, CBSI3aHHOE COCTOSHUE, CKAIAP-
Has YacTuIla, BOJTHOBas (QyHKmsa, QyHKus [puHa, moTeHIMan ogHOO030HHOTO 0OMEHA, COOCTBEHHOE
3HaveHue, Gpopm-dakTop.

Numerical solutions of relativistic integral equations are obtained for bound s -state systems of two scalar
particles with one-boson exchange potential. The form-factors of elastic scattering and annihilation form-
factors are calculated on the basis of solutions obtained. It is ascertained thatin‘all cases under considera-
tion the zero number of elastic form-factor is equal to the zero number of respective wave function.
Keywords: integral equation, two-particle system, bound state, scalat particle, wave function, Green
function, one-boson exchange potential, eigenvalue, form-factors

In this paper we discuss numerical solutions ‘of relativistic integral equations of quantum
field theory (QFT), describing the bound s -states of two'scalar particles [1; 2] with one-boson ex-
change potential [2]. Afterwards on this foundation the elastic form-factors [3] and the annihilation
form-factors of two-particle system [4] are found.

The two-particle equations of QFTfor bound s -state wave functions in the momentum rep-

resentation (MR) w; (w, ) have the form [5]:

22’ «° [ [ A
W (W %) = G(,-)(w,z)(J)dz Vs X, 2, (1)

zm
where index j=1,2,3,4/corresponds to the four variants of quasipotential type equations: j=1
(j =3) — the Logunoy-Tavkhelidze equation (modified), j =2 (j=4) - the Kadyshevsky equation
(modified). The value. y/ in equation (1) is the rapidity associated with the momentum p by the
relation p =msinh y»(m is the mass of each particle), w is associated with the two-particle system
energy 2E by'the relation 2E =2mcosw, A >0 is the coupling constant, V' (y, y') is the relativis-
tic potential, G ;) (w, ) are the Green functions (GF), which have the following form [1, 2]:

G,(w, 1) = [cosh2 y —cos’ w]_l 5 Goy(wx) = [2 cosh y(cosh y —cos w):|_1 :
G, (W, ) = cosh ;([cosh2 y —cos’ w]_l 5 Guy(w, x) = [2(cosh ¥ —cos w):l_1 .

In the spherically symmetric case after integration over angles the scalar one-boson exchange po-
tential turns to be

N1 cosh(y+ y')—cosa
V(z.7)=~+n V4 z,) ,
4 \cosh(y—y')—cosa

where the value o is associated with the mass x of the exchange boson by the relation [2]
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cosa=1-pu?/2m* .

For determining the elastic form-factors it is necessary to know the wave functions in the re-
lativistic configurational representation (RCR). The equations corresponding to (1) for the wave
functions in the RCR can be written in the form [6]:

VI(./')(W’ I’) = _ZJ‘ dr’ (_/)(W9 V,I"’)V(I”’)l//(j)(w, V,) 5 (2)
0

where 7 is the radius-vector modulus, the functions y; (w,r), G, (w,r,r"), V(r) are related to

respective functions in the MR by the transformations
Vi (w,r)= Idﬂ( sin(ymr)y, ;,(w, ),
G, (w,r,r')= ;—iz d y sin(ymr) G, (w, y)sin(ymr’), 3)
Viy, )= Og drsin(ymr)V (r)sin(y'mr) . 4)

The computation of integrals for GF (3) gives the following expressions‘in the RCR [6]:

G, W, r, 1) =G, (w,r =1") =G ;, (W, 1k 7') 5

-1 inh(7z/2— -1 h(z/2 -
Gy (w,r)=— s1n‘(7r/ wjmr ;o G wr) = = (n/2=wymr
msin2w  sinhzmr/2 2msinw  coshzmr/2
4mcosw)” 1 sinh(z —w)nir ~1  sinh(z —w)mr
G(z)(wa r)= ( ) - ( ) 5 G(4)(W, r)= ( ) .

coshzmr/2 msin2w sinhzmmr 2msinw  sinhzmr
The inverse transformation to (4) gives the potential () in the RCR [2]

_ cosh(z —a)mr

V(r) .
rsinh zmr
which turns to be the Yukawa potential in the non-relativistic limit.

To find numerical Solutions of the integral equations in the RCR we use the composite
Gaussian quadrature rule for computing the integrals [7] after replacing the infinity limit of integra-
tion to a large value ‘R . Alternatively the solutions of integral equations in the MR are obtained by
the Chebyshev quadrature rule after reduction of the half-infinity interval of integration to the inter-

val [-1;1] by the‘wvariable substitution y = —ln[(l—x)/ 2]. Using the quadrature rules for integral

equations (1) and (2) gives homogeneous systems of linear algebraic equations, which we represent
in the general form for the MR and for the RCR as My = A"y , where y is the vector of values of
the wave function in the quadrature node, M is a matrix obtained from the integral equation kernel.
The “finding of linear algebraic equations eigenvalues A [7, 8] (for each concrete energy
2E'=2mcosw) gives the dependence A on 2E (or 2E on A). The parallel solution of equations
in the MR and in the RCR allows to control accuracy of the eigenvalues obtained. We show the
2E—A dependence at g=m=1 and at £=0.1m=0.1 in figures 1 and 2. The results of numerical

calculations for eigenvalues in the MR and in the RCR coincide with the accuracy 10 for the first

(minimum) eigenvalues A and with the accuracy 10 for the second and for the third eigenvalues
A. As an example we represent the results of numerical calculations of the wave functions at
u=m=1, 2E =1 in figure 3. As one can see the number of wave function zeros at » # 0 is equal

to the number of state minus one (no zeros for the first state).
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Figure 1 — The bound states energy at 4 =0.1m=0.1:
a) the first states, b) the second states
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Figure 2 — The bound states energy.at p=m =1:
a) the first states, b) the second states
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Eigure'3 — The wave functions at g=m=1, 2E =1:
a) the first states, b) the second states

Availability of wave functions in the RCR and in the MR and energy of bound states makes
it possible to determine the form-factors of elastic scattering and annihilation. The elastic scattering
form-factot of.two spinless particle system was obtained based on the following interaction Hamil-
tonian [3]

H(x) = =20, (x)¢ (x)A(x) = 2,0, ()@, () A(x),

whete ¢, ,(x), A(x) are scalar fields, z,, are coupling constants. In the s-wave case the expres-

sion for the elastic form-factor £, (y,) has the form [3]:

47 (z, +z,) mdr sin x,mr

msinh y, o

Ej)(lq): |l//(j)(w’r) |2: (%)

where y, is the rapidity associated with the square of the four-momentum transfer ¢ = (p’ - p)’ by

the relation ¢ = 4 p° sinh’ ( X, / 2) , where p and p' are the four-momenta of the two-particle system



Form-factors of relativistic bound state systems of two scalar particles... 73

before and after collision respectively (and we assume that z, +z, =1). The results of numerical
calculations for elastic form-factors (5) at u=m =1, 2E =1 are shown in figures 4 and 5. It is seen

in the figures that the form-factors vanish once for the second states and vanish twice for the third
states. Thus numerical calculations show that the same is true also for the next states and the num-
ber of the form-factor zeros is equal to the index number of state minus one for all under study ;

(the form-factors of the first states have no zeros).
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Figure 4 — The elastic form-factors at g =m=1:
a) the first states, b) the second states
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Figure 5 — The elastic form-factors for j=1 (a), j=2 (b)at £x=0.5m=0.5:
solid line —the first states, dashed line — the second states,
dotted line — the third states

The expression for the form-factor of two-particle system annihilation f; (2E) has the fol-
lowing form [4]:

427

1 @B =22 g, (Arecos(Efm). ). ©)

In figures6 and 7 we represent the results of numerical calculations for expressions (6) at u=m =1
and at ©£=0.1m=0.1. The same quadrature formulae have been used to calculate the integrals in
exptessions (5) and (6).

Thus, in this paper the numerical solutions of relativistic integral equations in the momen-
tum representation and in the relativistic configurational representation describing the bound s -
state of two scalar particle systems with one-boson exchange potential have been obtained (eigen-
values and wave functions). The form-factors of elastic scattering and two-particle systems annihi-
lation have been determined on the basis of solutions obtained. It was found out that in all cases un-
der consideration the zero number of the elastic form-factors £, (7,) coincides with the zero num-

ber of the wave functions v/, (w,r).
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Figure 6 — The annihilation form-factors at g=m=1:
a) the first states, b) the second states
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Figure 7 — The annihilation form-factersiat z#=0.1m=0.1:
a) the first states, b) the second states
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