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A method of approximate solution of the Dirac equation
for the case of particle scattering on analytical potentials

V.N. Kapshai, S.I. Fialka

B pabote paccMOTpeHO ynpyroe paccesHus pelsTUBHCTCKON YacTHIBI CIMHA Y2 B NMOTEHUUAJBHBIX I10-
nsx. [Ipennoxen MeTo NpUOIMKEHHOTO PEelIeHUs] TPEXMEPHOTo ypaBHeHus [lupaka Ha ocHOBE (ha30BBIX
caBuroB. I(GPEeKTUBHOCTH AITOPUTMA MPOAEMOHCTPUPOBAHA HA NMPUMEpPE aHATUTUYECKOrO ITOTEHIMAa,
JOIYCKAOIIET0 HATWYNE PE30HAHCHBIX COCTOSIHUI. McciemoBaHO pPEe30HAHCHOE INOBEICHHE MAPIHaIIb-
HBIX ¥ ITOJTHOTO CEYECHUH PACCESHUS U 3aBUCUMOCTh TOUHOCTH PELICHUS OT apaMeTPOB MOTECHIHAIA.
KioueBble ciioBa: ypasaeHnue /{upaka, (pa3oBbIii CABHT, CEUCHUE pacCesHUs, Pe30HAHCHEBIE COCTOSIHUSI.

In this paper we consider the elastic scattering of relativistic particles of spin % in potential fields. A
method for approximate solution of the three-dimensional Dirac equation is developed on the basis of the
phase shifts. The effectiveness of the algorithm is shown for an analytic potential example which allows
existence of the resonant states. The resonant behavior of the partial and total cross sections and the de-
pendence of the solutions accuracy on the potential parameters are investigated.

Keywords: three-dimensional Dirac equation, phase shift, scattering cross section, resonances.

Elementary particle scattering experiments are the most important source of information in
the microphysics. The theoretical foundation for analysis of these experiments is quantum scattering
theory, where the theory of elastic collisions is an essential part.

Resonance phenomena attract the greatest interest in non-relativistic quantum physics [1,
p. 283]. At the same time the study of resonance effects in the relativistic theory has been carried
out to a much less extent because calculations are more complicated. However, with the develop-
ment of computational methods the study of resonant behavior of scattering amplitudes and scatter-
ing cross sections become more and more relevant on the basis of the relativistic equations, espe-
cially on the basis of the Dirac equation, describing particles of spin 1/2. In this paper, on the foun-
dation of relativistic problems with prime square potentials (square well and square barrier) that
have been discussed in the literature, a method is developed for approximate solution of the three-
dimensional Dirac equation with analytic potentials.

Consider the three-dimensional stationary Dirac equation for a particle of mass m in an exter-
nal field V (X) [2, p. 71]. In the unit system 7 =c =1, the equation can be written in the form

{iaV+E-V(®)-mpaly(x)=0, )
where @ and S are 4x4 matrices, which are obtained from Dirac y -matrices. Since for a particle
moving in a spherically symmetric field (V(X)=V(r)) the total angular momentum and parity of
the state are saved, the components of the wave function (X) can be written in terms of spherical
spinors Q ym(6,4) [3, p- 155]:

W (%) = (_,f 12 0,4) J @
9(NQjyrm(0.9)

Substituting (2) into (1), we obtain a system of ordinary differential equations for the radial wave
functions f(r) and g(r) [2, p. 73]:

0+ "g(n)+E-V{O)-m)T(n)=0; o
f’(r)+1_T77f(r)—(E ~V(r)+m)g(r) =0,

where
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-+, j=r+1/2;
B { 0, j=r-1/2.

Let us consider the case when the potential tends to zero fast enough as r — oo . We divide the
range of the variable r (0<r <o) in two parts (figure 1): finite 0<r<r, ,, and semi-infinite
Iy, <r<oo. In the last part, we will suppose the potential to be small enough to be substituted by
0. We also divide the interval 0<r<r,, in N-1 parts: 0<r<r; L<r<f;..NH,<r<r.,
in each of which the potential varies a little, so it can be substituted by a constant.
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Figure 1 — Approximation of the potential.

These constants have to be some average value of the V(r)— function on the intervals de-

scribed. Then system (3) on each of the intervals can be solved analytically and the solutions are
expressed in terms of the spherical Bessel and Neumann functions [2, p. 73]:

f(r)=cj|ﬂ(kr)+dn|ﬂ(kr);

k .
0= e, () +dn kn).

where k is the module of the particle momentum (k2 =(E —V)2 —m2), and the subscripts of
spherical functions are

(4)

-n, n<0.
Thus, as a result we have a common solution for each specific region of the multi-step potential
(fa<r<g).

Let us consider particle scattering on such potential. In the semi-infinite region r, , <r <oo,
where the potential is supposed to be zero, we represent the coefficients ¢ and d via the phase
shifts ;) [4]. Then the radial functions f(r) and g(r) for the whole of range of the variable r will

n, n>0; n+l, n>0;
I, = I, =

take the form

fi(r)=ci §i, (ki) +din, (kir);
i : . refrian);
gi(r) =m[ci I, (kin+din_ (ki r)], s
fn (r) =cy l:jl,7 (ky 1) - c0t15,7 n, (kn r)}
r E[rN_l;OO).
_ N : .
aN (r)_mc,\, i, (Kn r)+cot5,7 n|_77 (kn r)},

To find all the coefficients ¢ and d, we have to use the conditions which smoothly connect functions
fi(r), gi(r) and f,,(r), g;.(r) [5, p. 51]:
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(gi(r)j :[gm(r)J | ©6)
f,(r) r=r, -0 f|+1(r) r=r; +0

We obtained a few first coefficients c; and d;, on the basis of (5) and (6), then we defined the
recurrence relations for c;, d;j. As a result, we have obtained a compact expression for determining
the phase shifts:

cot s, = _ . (7)
n 3 4
Here
3 4
D KI _Di—lKl
= 1 2
KI _Di—l KI

1 (. . , jlﬂ(li’) nl_n(li) _ 2 ! n|77(;5i') n|_77(;(i) .
Ki =(zi Zia Zl)(_jl_,](li') oG ~(xi Aia 2} S G )|

m, (21 i, (xi)
-n_, (xi) J'|,7 (i) |’

3 (. o A [y CGd) e, ()
kit =l i ;")[—j._,7 () i, ()

: 4 /
}, Ki' =(zi Zia Zi)(
E—Vi +m
E-Vij+m’
The matrix elements of the scattering operator can be expressed via the phase shifts Sy In
turn the differential scattering cross section in the solid angle dQ2 can be determined by means of

the matrix elements. If the initial state is not polarized (P = 0), then we have [3, p. 168]
do 2 2
— = +|B|~, 8
o= |AP +JB ©

where Dy =0, y; =kjri—1, zi =Kj-1ti—1, 4 =

where

_ 1< 216 (131 215, } .
A Zikgi(£+l)(e 1)+£(e ¢ 1) P, (cos @) ;

1 <[ 2is i

B :—Z[e ~(+D) —e2'54}P€1(cost9).
2k ]

and P,(cosd), P'(cos®) are the Legendre polynomials.

Integrating (8) over the whole solid angle dQ, we obtain the total scattering cross section
which is represented as the sum of the partial cross sections. The next form of the result is conven-
ient for subsequent calculations:

o0 o0

A /+1 4
o= ZO’g = Z — =3 t— : 9
/=0 /—o k“ | cot 5_((_,_1) +1 cot® oy +1

Thus, substituting the parameters of multi-step potential into (7), and then producing the calculation
of the partial cross sections (9), we obtain an approximate solution of the Dirac particles scattering
problem on the smooth potential under consideration.

Let us consider the effectiveness of the algorithm using as an example the following potential:

V(r) = ABexp(l_:)}v_ (10)

First, we approximate this smooth potential by a multi-step potential. The choice of the approxima-
tion method determines how quickly the numerical solution approaches the exact solution. We used
several methods and identified how potential features define the best of them. Then we constructed
the mesh of multi-step potential and the resulting array coordinates and momentum was used to cal-
culate the phase shift (7). Then we found partial cross section (9).




A method of approximate solution of the Dirac equation for the case of particle... 187

Partial cross sections have the following feature: each of them has non-zero values only in an
energy interval. In the ¢ =0 case the cross section has its maximum value at E =m, on the other
hand for all other values of ¢ the partial cross sections tend to zero at E =m. It can be explained as
follows: at low energies only central collision with ¢ =0 gives contribution to total cross section, at
larger ¢ an low energies partial cross section decreases, because the particle goes far enough from
the scattering center. It gives opportunity to construct the total cross section exactly following for-
mula (9) for some energy interval.

The dependence of cross sections o on particle energy E is shown in figure 2 for v=1,2,3

and for various potential parameters: left — u=0,9 Mev !, A=38MeV; right — u=13 Mev !,
A=48MeV. To obtain the correct total cross sections behavior in the energy interval

05—25MeV the following number of partial cross sections were summed: (a) — 19, (b) — 27, (c) —

13, (d) — 19, (e) — 11, (f) — 14. In calculations we used the number of steps N=50, as a result the rel-
ative discrepancy is not more then 1.3 %.
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Figure 2 — The dependence of the total cross section o on energy E
for different values of potentials (m=0,5MeV).
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The behavior of potentials (10) allows supposing the existence of resonant states and the solu-
tion results have confirmed their availability. The number of resonant states increases with the
height of the barrier (with increasing parameter A). The width of the resonances decreases with in-
creasing the width of the barrier (with increasing parameter u). The number of resonant states de-
creases with increasing the parameter v.

Figure 3 illustrates the dependence of the partial cross section oo on energy E for different

numbers of subdividing steps N on the corresponding form of the multi-step potential.
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Figure 3 — The dependence of the partial cross o, on energy E at v =2 (m=0,5MeV).

It is seen in figure 3 that with increasing the number of steps the result converges quickly to
the exact solution. With increasing the quantum number ¢ the accuracy of solution decreases, that
can be compensated by enlarging the number of steps N. The error of the solution becomes bigger
near the resonance energies.

Thus, the proposed method allows solving the Dirac equation with different potentials and ob-
serving physical effects that are contained in the exact solution, and calculating different character-
istics of the relativistic particle scattering.
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