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A method of approximate solution of the Dirac equation  

for the case of particle scattering on analytical potentials 
 

V.N. Kapshai, S.I. Fialka 

 
В работе рассмотрено упругое рассеяния релятивистской частицы спина ½ в потенциальных по-

лях. Предложен метод приближенного решения трехмерного уравнения Дирака на основе фазовых 

сдвигов. Эффективность алгоритма продемонстрирована на примере аналитического потенциала, 

допускающего наличие резонансных состояний. Исследовано резонансное поведение парциаль-

ных и полного сечений рассеяния и зависимость точности решения от параметров потенциала.  

Ключевые слова: уравнение Дирака, фазовый сдвиг, сечение рассеяния, резонансные состояния. 

 

In this paper we consider the elastic scattering of relativistic particles of spin ½ in potential fields. A 

method for approximate solution of the three-dimensional Dirac equation is developed on the basis of the 

phase shifts. The effectiveness of the algorithm is shown for an analytic potential example which allows 

existence of the resonant states. The resonant behavior of the partial and total cross sections and the de-

pendence of the solutions accuracy on the potential parameters are investigated. 
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Elementary particle scattering experiments are the most important source of information in 

the microphysics. The theoretical foundation for analysis of these experiments is quantum scattering 

theory, where the theory of elastic collisions is an essential part. 

Resonance phenomena attract the greatest interest in non-relativistic quantum physics [1, 

p. 283]. At the same time the study of resonance effects in the relativistic theory has been carried 

out to a much less extent because calculations are more complicated. However, with the develop-

ment of computational methods the study of resonant behavior of scattering amplitudes and scatter-

ing cross sections become more and more relevant on the basis of the relativistic equations, espe-

cially on the basis of the Dirac equation, describing particles of spin 1/2. In this paper, on the foun-

dation of relativistic problems with prime square potentials (square well and square barrier) that 

have been discussed in the literature, a method is developed for approximate solution of the three-

dimensional Dirac equation with analytic potentials. 

Consider the three-dimensional stationary Dirac equation for a particle of mass m in an exter-

nal field )(xV


 [2, p. 71]. In the unit system 1 c , the equation can be written in the form 

   0)()(  xmxVEi


 , (1) 

where 


 and   are 44  matrices, which are obtained from Dirac  -matrices. Since for a particle 

moving in a spherically symmetric field ))()(( rVxV 


 the total angular momentum and parity of 

the state are saved, the components of the wave function )(x


  can be written in terms of spherical 

spinors ),( mj  [3, p. 155]: 

 



















 ),()(

),()(
)(






mj

mj

rgi

rf
x




. (2) 

Substituting (2) into (1), we obtain a system of ordinary differential equations for the radial wave 

functions )(rf  and )(rg  [2, p. 73]: 
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where  
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Let us consider the case when the potential tends to zero fast enough as r  . We divide the 

range of the variable r  (0 )r   in two parts (figure 1): finite 10 Nr r   , and semi-infinite 

1Nr r   . In the last part, we will suppose the potential to be small enough to be substituted by 

0 . We also divide the interval 10 Nr r    in 1N   parts: 10 r r  ; 1 1Nr r r   ; … 2 1N Nr r r   , 

in each of which the potential varies a little, so it can be substituted by a constant.  
 

 
Figure 1 – Approximation of the potential. 

 

These constants have to be some average value of the )(rV – function on the intervals de-

scribed. Then system (3) on each of the intervals can be solved analytically and the solutions are 

expressed in terms of the spherical Bessel and Neumann functions [2, p. 73]: 
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where k is the module of the particle momentum ))(( 222 mVEk  , and the subscripts of 

spherical functions are 
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Thus, as a result we have a common solution for each specific region of the multi-step potential 

1( )i ir r r   . 

Let us consider particle scattering on such potential. In the semi-infinite region 1Nr r   , 

where the potential is supposed to be zero, we represent the coefficients c  and d  via the phase 

shifts   [4]. Then the radial functions )(rf  and )(rg  for the whole of range of the variable r will 

take the form 
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 (5) 

To find all the coefficients с and d, we have to use the conditions which smoothly connect functions 

)(rfi , )(rgi  and 1( )if r , 1( )ig r  [5, p. 51]: 
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We obtained a few first coefficients ic  and id , on the basis of (5) and (6), then we defined the 

recurrence relations for ic , id . As a result, we have obtained a compact expression for determining 

the phase shifts: 
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Here 
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The matrix elements of the scattering operator can be expressed via the phase shifts  . In 

turn the differential scattering cross section in the solid angle d  can be determined by means of 

the matrix elements. If the initial state is not polarized ( 0P


), then we have [3, p. 168] 
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and (cos )P  , 1(cos )P   are the Legendre polynomials. 

Integrating (8) over the whole solid angle d , we obtain the total scattering cross section 
which is represented as the sum of the partial cross sections. The next form of the result is conven-
ient for subsequent calculations: 
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Thus, substituting the parameters of multi-step potential into (7), and then producing the calculation 
of the partial cross sections (9), we obtain an approximate solution of the Dirac particles scattering 
problem on the smooth potential under consideration. 

Let us consider the effectiveness of the algorithm using as an example the following potential: 
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 1exp)( . (10) 

First, we approximate this smooth potential by a multi-step potential. The choice of the approxima-
tion method determines how quickly the numerical solution approaches the exact solution. We used 
several methods and identified how potential features define the best of them. Then we constructed 
the mesh of multi-step potential and the resulting array coordinates and momentum was used to cal-
culate the phase shift (7). Then we found partial cross section (9). 
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Partial cross sections have the following feature: each of them has non-zero values only in an 
energy interval. In the 0  case the cross section has its maximum value at mE  , on the other 
hand for all other values of   the partial cross sections tend to zero at mE  . It can be explained as 
follows: at low energies only central collision with 0  gives contribution to total cross section, at 
larger   an low energies partial cross section decreases, because the particle goes far enough from  
the scattering center. It gives opportunity to construct the total cross section exactly following for-
mula (9) for some energy interval. 

The dependence of cross sections   on particle energy E is shown in figure 2 for 3,2,1v  

and for various potential parameters: left – 1MeV9,0 u , MeV8,3A ; right – 1MeV3,1 u , 

MeV8,4A . To obtain the correct total cross sections behavior in the energy interval 

MeV5250 ,,   the following number of partial cross sections were summed: (a) – 19, (b) – 27, (c) – 

13, (d) – 19, (e) – 11, (f) – 14. In calculations we used the number of steps N=50, as a result the rel-
ative discrepancy is not more then 1.3 %. 

 

 
Figure 2 – The dependence of the total cross section   on energy E 

for different values of potentials (m=0,5MeV). 
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The behavior of potentials (10) allows supposing the existence of resonant states and the solu-

tion results have confirmed their availability. The number of resonant states increases with the 

height of the barrier (with increasing parameter A). The width of the resonances decreases with in-

creasing the width of the barrier (with increasing parameter u). The number of resonant states de-

creases with increasing the parameter v. 

Figure 3 illustrates the dependence of the partial cross section 2  on energy E for different 

numbers of subdividing steps N on the corresponding form of the multi-step potential. 

 

 
Figure 3 – The dependence of the partial cross 2  on energy E at 2v  (m=0,5MeV). 

 

It is seen in figure 3 that with increasing the number of steps the result converges quickly to 

the exact solution. With increasing the quantum number   the accuracy of solution decreases, that 

can be compensated by enlarging the number of steps N. The error of the solution becomes bigger 

near the resonance energies. 

Thus, the proposed method allows solving the Dirac equation with different potentials and ob-

serving physical effects that are contained in the exact solution, and calculating different character-

istics of the relativistic particle scattering. 
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