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Electroweak radiative corrections for polarized Møller scattering
at one loop and beyond
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Мы представляем новый расчет однопетлевых электрослабых радиационных по-
правок к асимметрии меллеровского рассеяния, используя два подхода: точный,
с использованием компьютерных программ FeynArts и FormCalc, и асимптотиче-
ский, с применением приближений, сделанных “вручную”. Также мы проводим
точное сравнение результатов, полученных в различных схемах: перенормировке
на массовой поверхности и связанной дифференциальной перенормировке. Мы об-
суждаем часть двухпетлевых поправок, индуцированных квадратом однопетлевых
диаграмм, и показываем значительную величину этой части, что указывает на
необходимость уче-та полных двухпетлевых поправок для обеспечения необходи-
мой точности предстоящих экспериментов.
Ключевые слова: поляризационное меллеровское рассеяние, нарушающая чет-
ность асимметрия, электрослабые радиационные поправки, схема перенормировки.

We perform the updated calculations of one-loop EWC for Møller scattering asymmetry
using two different approaches: semi-automatic, precise, with FeynArts and FormCalc
as base languages, and “by hand”, with reasonable approximations. In addition, we
provide a tuned comparison between the one-loop results obtained in two different
renormalization schemes: on-shell and constrained differential renormalization. Also we
discuss the two-loop EWC induced by squaring one-loop diagrams, and show that the
significant size of this partial correction indicates a need for a complete study of the
two-loop EWC in order to meet the precision goals of future experiments.
Keywords: polarized Moller scattering, parity-violating asymmetry, electroweak
radiative corrections, renormalization scheme.

1. Introduction

Polarized electron-electron (Møller) scattering is a very clean process with a well-
known kinematics and extremely suppressed backgrounds, and any inconsistency with the
Standard Model will signal new physics. The next-generation experiment to study electron-
electron scattering, MOLLER [1], planned at JLab following the 11 GeV upgrade, will offer
a new level of sensitivity and measure the parity-violating asymmetry in the scattering
of longitudinally polarized electrons off an unpolarized target to a precision of 0.73 ppb,
and allow a determination of the weak mixing angle with an uncertainty of about 0.1%, a
factor of five improvement over the measurement by E-158 [2, 3]. Obviously, before we can
extract reliable information from the experimental data, it is necessary to take into account
EWC. EWC to the parity-violating (PV) Møller scattering asymmetry were addressed in the
literature earlier and were shown to be large [4–6]. A more detailed literature review can be
found in [6], our first work on the topic. In [6], we calculated a full gauge-invariant set of
the one-loop EWC and found the total correction to be close to −70%, with no significant
theoretical uncertainty coming from the hadronic contributions to the vacuum polarization
or other uncertain input parameters. Since it is possible that a much larger theoretical
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uncertainty may come from two-loop corrections, we investigated the importance of two-
loop contribution in [7], by comparing corrections calculated in two different renormalization
schemes (RS) – on-shell (OS) and constrained differential renormalization (CDR) – and found
a difference of about 11%. This means that the two-loop EWC may be larger than previously
thought and cannot be dismissed, especially in the light of precision promised by MOLLER.
We divide the two-loop EWC into two classes: the Q-part induced by quadratic one-loop
amplitudes, and the T-part which includes the interference of Born and two-loop diagrams.
In [8], we calculated the Q-part exactly and found that it can reach 4%. Here, we provide a
brief review of our calculations done at the one-loop level [6], show details of the comparison
between the corrections evaluated in the OS and CDR schemes [7], and outline some of our
calculations of higher order corrections.

2. Born and one-loop corrections

The asymmetry between left/right longitudinally polarized electrons can be
constructed in the following way:

ALR =
σLL + σLR − σRL − σRR
σLL + σLR + σRL + σRR

=
σLL − σRR

σLL + 2σLR + σRR
, (1)

enhancing the contributions induced by PV electroweak interactions. The notation σ ≡
≡ dσ/d cos θ stands for the differential cross section defined in the center of mass reference
frame of incoming electrons. At the Born level (leading order (LO)), the asymmetry is

ALR =
s

2m2
W

y(1− y)

1 + y4 + (1− y)4
1− 4s2W
s2W

, y = − t

s
, (2)

where s2W ≡ sin2 θW = 1 − m2
W

m2
Z

∼ 0.24. As one can see from Eq. 2, the asymmetry is highly
sensitive to θW so any deviation from the SM value will signal new physics. Obviously, before
we can extract reliable information from the experimental data, it is necessary to include
EWC. The cross section including one-loop matrix elements is:

σ =
π3

2s
|M0 +M1|2 = π3

2s

(
M0M

+
0 + 2ReM1M

+
0 +M1M

+
1

)
= σ0 + σ1 + σQ (3)

where σ1 = σBSE
1 + σVer

1 + σBox
1 ∝ α3 is an interference term between the Born and one-loop

amplitudes (NLO), and the cross section σQ ∝ α4 is a quadratic term of the same order
as the two-loop contribution (NNLO). To make sure that our calculations at the one-loop
level are error-free, we evaluate EWC using two different methods. The "by hand"method
is to derive the compact analytic expressions for the leading one-loop correction manually
using appropriate approximations for

√
s < 30 GeV and

√
s > 500 GeV [6]. The other,

semi-automated, is to consider a full set of graphs with no approximations using computer-
based algebra packages [9, 10] and [11]. To make sure that we calculate a gauge-invariant
set of graphs, we use two sets of renormalization conditions (RC): the RC by Hollik (HRC)
introduced in [12] for our “by hand” approach, and the RC proposed by Denner (DRC)
in [13] for our semi-automated method. The infrared divergences (IR) are treated by the soft
and hard-photon bremsstrahlung (see [6]). We choose our input parameters to be the fine
structure constant (α = 1/137.03599), the mass of the W -boson (mW = 80.398GeV) and
the mass of the Z-boson (mZ = 91.1876GeV). A relative correction to the PV asymmetry
is defined as δCA = (ACLR − A0

LR)/A
0
LR, with the superscript in δCA corresponding to the

various contributions: “weak” indicates no IR-divergent graphs, and “QED” indicates only
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IR divergent graphs treated by bremsstrahlung contribution. In order to see how our results
compare to the literature [5], we compare the δweakA ([6]) = −0.2790 for the

√
s = 100GeV

and δweakA ([5]) = −0.2787 using the same input parameters as in [5] and obtain excellent
agreement.

To establish if the NNLO contributions in a given RS are important (see [15]), we
compare results in two RS: OS and CDR. Let us define the total correction to the unpolarized
cross section as δtot = (σtot−σ0)/σ0. In the low-energy area, the correction to the cross section
is dominated by the QED contribution, and the difference between the two schemes is almost
constant and rather small (∼ 0.01), but it grows at

√
s ≥ mZ as the weak correction becomes

comparable to QED. As a result, the difference between the OS and CDR corrections to the
PV asymmetry can reach as much as 10%, so contributions from two-loop corrections could
become important.

3. Two-loops corrections: Q-part

The higher-order corrections (∝ α4) to the electroweak Born cross section can be
divided into two classes, Q-part and T-part. The Q-part is induced by the quadratic one-
loop amplitude (∼ M1M

+
1 ) (third term in Eq. 2) and the T-part is an interference term

between the Born and two-loop amplitudes: σT = π3

s
ReM2M

+
0 ∝ α4 (Fig. 1).

Figure 1 — Representative two-loop graphs for the Møller scattering.

The T-part still needs to be evaluated in the future, but we can provide some results
for the Q-part in this paper. The cross section for the Q-part can be divided into two terms:
σQ = σλQ + σfQ. The former term, σλQ, is an IR-divergent and regularized part of the cross
section and the latter term, σfQ = (α

π
)2δf1 · σ0, is a finite contribution. The IR-divergent part

has the following structure:

σλQ =
π3

2s
Mλ+

1 (Mλ
1 + 2Mf

1 ) =
1

4

(α
π

)2
Re
[
δλ∗1 (δλ1 + 2δf1 )

]
· σ0, (4)

where δλ1 = 4 ln λ√
s

(
ln tu

m2s
− 1 + iπ

)
. Since the Q-part contains terms of order ∝ ln2 λ√

s

it deserves a special attention. To treat the IR divergences, we have to account not only
for photon emission from one-loop diagrams but also include a complete treatment of the
two-photon emission (Fig. 2).

A half of the bremsstrahlung contribution in Fig. 2(a) and 2(b) is responsible for the
treatment of IR divergence in the Q-part and the other half for the T-part. We take the
maximum energy of the emitted soft photon to be ω = 0.05 · √s. The bremsstrahlung cross
section for Q-part is derived from Fig. 2(a) as:

σγQ =
1

2
σγ =

1

2

(α
π

)2
Re[(−δλ1 +R1)

∗(δλ1 + δf1 )] · σ0 (5)

R1 = −4 ln

√
s

2ω

(
ln

tu

m2s
− 1 + iπ

)
−
(
ln

s

m2
− 1
)2
+1− π3

3
+ ln2 u

t
.
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Figure 2 — Bremsstrahlung treatment of IR divergences in the Q-part. The top plot (a)
represents interference between emission from one-loop (shaded bubble) and Born graphs.
The bottom plot (b) is the two-photon emission amplitude squared.

Here, σγ is the total photon emission cross section and σγQ is the one-photon bremsstrahlung
term from the Q-part. The two-photons emission for the Q-part (σγγQ ) is derived from
Fig. 2(b):

σγγQ =
1

2
σγγ =

1

4

(α
π

)2(∣∣∣− δλ1 +R1

∣∣∣2 − 8

3
π2
∣∣∣ ln tu

m2s
− 1 + iπ

∣∣∣2
)

· σ0. (6)

Combining Eqs. 4, 5 and 6 gives the final result for σλQ + σγQ + σγγQ free from nonphysical
parameters with the regularization parameter λ cancelled analytically. Detailed calculations
can be found in [8].

As one can see from analisys, the correction induced by the Q-part (ΔA = (A1−loop+Q
LR −

− A1−loop
LR )/A0

LR) can reach as much as ∼ 4% at θ = 90◦. The energy dependence is nearly
constant for

√
s < mZ but increases rapidly after weak interactions become comparable to

QED.

4. Conclusion

With the one-loop EWC now under control, it is worth considering the two-loop
EWC. One way to find some indication of NNLO EWC size is to compare results that are
expressed in terms of quantities related to different RS, and our tuned comparison between
the results obtained in the OS and CDR RS show a difference of about 11%. Although an
argument can be made that the two-loop EWC are suppressed by a factor of α/π relative
to the one-loop EWC, we see that they can no longer be dismissed, especially in the light of
the 2% uncertainty to asymmetry promised by the MOLLER. At the MOLLER kinematic
conditions, the part of the quadratic EWC considered here can increase the asymmetry up to
∼ 4%. For the high-energy region

√
s ∼ 2TeV, a contribution from the quadratic EWC can

reach +30%. It is impossible to say at this time if the Q-part will be enhanced or cancelled
by other two-loop radiative corrections, but we suppose that the large size of the Q-part
demands a detailed and consistent consideration of the T-part, which is the current task of
our group.
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