= МАТЕМАТИКА =

УДК 512.542

О ПЕРЕСЕЧЕНИИ ВСЕХ МАКСИМАЛЬНЫХ 🕉 - ПОДГРУПП КОНЕЧНОЙ ГРУППЫ

А.Н. Скиба

Гомельский государственный университет им. Ф. Скорины, Гомель

ON THE INTERSECTION OF ALL MAXIMAL \mathfrak{F} -SUBGROUPS OF A FINITE GROUP

A.N. Skiba

F. Scorina Gomel State University, Gomel

Пусть \mathfrak{F} класс групп. Подгруппа H группы G называется максимальной \mathfrak{F} -подгруппой группы G если $H \in \mathfrak{F}$ и G не имеет такой подгруппы $E \in \mathfrak{F}$ что H < E. Символ $\Sigma_{\mathfrak{F}}(G)$ обозначает пересечение всех максимальных \mathfrak{F} -подгрупп группы G. Мы изучаем влияние подгруппы $\Sigma_{\mathfrak{F}}(G)$ на строение группы G.

Ключевые слова: насыщенная формация, наследственная формация, минимальная подгруппа, максимальная § -подгруппа, § -гиперцентр, разрешимая группа, сверхразрешимая группа, S -квазинормальная подгруппа.

Let \mathfrak{F} be a class of groups. A subgroup H of a group G is said to be a maximal \mathfrak{F} -subgroup of G if $H \in \mathfrak{F}$ and G has no a subgroup $E \in \mathfrak{F}$ such that H < E. The symbol $\Sigma_{\mathfrak{F}}(G)$ denotes the intersection of all maximal \mathfrak{F} -subgroups of G. We study the influence of the subgroup $\Sigma_{\mathfrak{F}}(G)$ on the structure of G.

Keywords: saturated formation, hereditary formation, minimal subgroup, maximal \mathcal{F} -subgroup, \mathcal{F} -hypercentre, soluble group, supersoluble group, S -quasinormal subgroup.

1 General properties of the intersection of all maximal \mathcal{F} -subgroups

Throughout this paper, all groups are finite. We use $G^{\$}$ to denote the intersection of all normal subgroups of a group G with $G/N \in \mathfrak{F}$. A class \mathfrak{F} of groups is said to be a formation if for every group G, every homomorphic image of $G/G^{\$}$ belongs to \mathfrak{F} . A formation \mathfrak{F} is said to be saturated if \mathfrak{F} contains every group G with $G^{\$} \leq \Phi(G)$. A formation \mathfrak{F} is said to be hereditary if \mathfrak{F} contains every subgroup of every its group. In this paper \mathfrak{F} denotes some hareditary saturated formation containing all nilpotent groups. We use \mathfrak{N} and \mathfrak{U} to denote the formation of all nilpotent groups and the formation of all supersoluble groups, respectively.

A subgroup H of a group G is said to be a maximal \mathfrak{F} -subgroup of G if $H \in \mathfrak{F}$ and G has no a subgroup $E \in \mathfrak{F}$ such that H < E. We use $\Sigma_{\mathfrak{F}}(G)$ to denote the intersection of all maximal \mathfrak{F} subgroups of G. Thus $\Sigma_{\mathfrak{N}}(G)$ is the intersection of all maximal nilpotent subgroups of G and $\Sigma_{\mathfrak{U}}(G)$ is the intersection of all maximal supersoluble subgroups of G.

Applications of the subgroup $\Sigma_{\mathfrak{F}}(G)$ is based on the following our theorem. © *Skiba A.N., 2010* **Theorem A.** Let H, E be subgroups of a group G, N a normal subgroup of G and $\Sigma = \Sigma_{\mathfrak{F}}(G)$.

(a)
$$\Sigma_{\mathfrak{F}}(H)N/N \leq \Sigma_{\mathfrak{F}}(HN/N).$$

(b) $\Sigma_{\mathfrak{F}}(H) \cap E \leq \Sigma_{\mathfrak{F}}(H \cap E).$
(c) If $H/H \cap \Sigma \in \mathfrak{F}$, then $H \in \mathfrak{F}.$
(d) If $H \in \mathfrak{F}$, then $H\Sigma \in \mathfrak{F}.$
(e) If $N \leq \Sigma$, then $\Sigma/N = \Sigma_{\mathfrak{F}}(G/N).$

(f) $\Sigma_{\Re}(G/\Sigma) = 1$.

(g) If every minimal non- \Re -subgroup of G is soluble and $\psi_e(N) \leq \Sigma$, then $N \leq \Sigma$.

In this theorem $\psi_e(G)$ denotes the subgroup of *G* generated by all its cyclic subgroups of prime order and of order 4 [1]. A group *G* is said to be a minimal non- \mathfrak{F} -group if $G \notin \mathfrak{F}$ but $H \in \mathfrak{F}$ for every proper subgroup *H* of *G*.

Corollary 1.1. Suppose that every minimal non- \mathfrak{F} -subgroup of a group G is soluble. If every p-subgroup P of G is contained in the intersection of all maximal \mathfrak{F} -subgroups of $N_G(P)$, then $G \in \mathfrak{F}$.

It is well known that every minimal nonsupersoluble group and every minimal non-*p*nilpotent group are soluble. Hence from Corollary 1.1 we obtain the following.

56

Corollary 1.2. Suppose that every p-subgroup P of a group G is contained in $\Sigma_{\mathfrak{U}}(N_G(P))$. Then G is supersoluble.

Corollary 1.3. Suppose that every p-subgroup P of a group G is contained in the intersection of all maximal p-nilpotent subgroups of $N_G(P)$. Then G is p-nilpotent.

Corollary 1.4 (Frobenius). If $N_G(P)/C_G(P)$ is a p-group for every p-subgroup P of a group G, then G is p-nilpotent.

Proof. Since by [2, Appendix C, Corollary 6.4], $O_p(N_G(P)/C_{N_G(P)}(H/K)) = 1$ for all chief factors H/K of $N_G(P)$ below P, we have $P \le Z_{\infty}(N_G(P))$. Hence for every p-nilpotent subgroup H of $N_G(P)$, the subgroup PH is p-nilpotent as well. Therefore G is p-nilpotent by Corollary 1.3.

Next applications of Theorem A are connected with minimal subgroups.

Theorem 1.5. Let G be a group and \mathcal{F} the class of all 2'-supersoluble groups.

(1) If every minimal subgroup L of G of odd order has a supplement T in G such that $L \cap T \le \Sigma_{\mathfrak{F}}(T)$, then G is 2'-supersoluble.

(2) If G is soluble and every subgroup of G of order 2 is complemented in G, then G is 2-nilpotent.

Corollary 1.6 (Gaschütz [3, IV, Theorem 5.7]). If every minimal subgroup of a group G is normal in G, then the commutator subgroup G' of G is 2-closed.

Corollary 1.7 (Buckley [4]). Let G be a group of odd order. If every minimal subgroup of G is normal in G, then G is supersoluble.

Corollary 1.8 (Ballester-Bolinches, Guo [5]). Let G be a group. If every minimal subgroup of G is complemented in G, then G is supersoluble.

Recall that a subgroup H of a group G is said to be quasinormal (S-quasinormal) in G if HE = EH for all subgroups E of G (HP = PHfor all Sylow subgroups P of G, respectively).

Proposition 1.9. Let R be the subgroup of a group G generated by the set of all cyclic quasinormal subgroups of G and R_s be the subgroup of G generated by the set of all cyclic S-quasinormal subgroups of G. Then $R_s \leq \Sigma_{st}(G)$ and R is contained in the intersection of all maximal psupersoluble subgroups of G for all primes p.

Corollary 1.10 (Shaalan [6]). Let G be a group and E a normal subgroup of G with supersoluble quotient G/E. Suppose that all minimal subgroups of E and all its cyclic subgroups with order 4 are S-quasinormal in G. Then G is supersoluble. *Proof.* By Proposition 1.9 we have $\psi_e(E) \le \Sigma_{\mathfrak{U}}(G)$. Hence $E \le \Sigma_{\mathfrak{U}}(G)$ by Theorem A (g) and so G is supersoluble by Theorem A (c).

Recall that the hyper-generalized-center $genz^*(G)$ of G coincides with the largest term of the chain of subgroups

 $1 = Q_0 \le Q_1 \le Q_2 \le \cdots,$

where $Q_i(G)/Q_{i-1}(G)$ is the subgroup of $G/Q_{i-1}(G)$ generated by the set of all cyclic *S*-quasinormal subgroups of $G/Q_{i-1}(G)$ (see [2, page 22]).

Corollary 1.11 (Agrawal [7]). The hypergeneralized-center genz^{*}(G) of G is contained in $\Sigma_{y}(G)$.

Proof. Let *R* be the subgroup of *G* generated by the set of all its cyclic *S*-quasinormal subrgroups. By Proposition 1.9 we have $R \le \Sigma_{\mathfrak{U}}(G)$ and hence $\Sigma_{\mathfrak{U}}(G)/R = \Sigma_{\mathfrak{U}}(G/R)$ by Theorem A (e). Thus $genz^*(G/R) = genz^*(G)/R \le \Sigma_{\mathfrak{U}}(G/R)$ and so $genz^*(G) \le \Sigma_{\mathfrak{U}}(G)$.

Based on Theorem C we also proved the following result.

Theorem 1.12. Suppose that \mathfrak{F} is either the class of all soluble groups or the class of all p-decomposable groups for some prime p. Suppose that G has three subgroups A_1 , A_2 and A_3 whose indices $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ are pairwise coprime. If $A_i \cap A_j \leq \Sigma_{\mathfrak{F}}(A_i) \cap \Sigma_{\mathfrak{F}}(A_j)$ for all $i \neq j$, then $G \in \mathfrak{F}$.

Corollary 1.13 (Wielandt [8]). If G has three soluble subgroups A_1 , A_2 and A_3 whose indices $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ are pairwise coprime, then G is itself soluble.

Corollary 1.14 (Kegel [9]). If G has three nilpotent subgroups A_1 , A_2 and A_3 whose indices $|G:A_1|$, $|G:A_2|$, $|G:A_3|$ are pairwise coprime, then G is itself nilpotent.

In view of Proposition 1.9 and Corollary 1.10 the following natural questions arise:

(I) Is there a group G such that $genz^*(G) \neq \Sigma_{\mathfrak{U}}(G)$? (see [2, page 22] or [7, page 19])

(II) Is there a group G such that $genz^*(G)$ is not contained in the intersection of all maximal psupersoluble subgroups of G?

The following examples give positive answers to these questions.

Example. Let p, q and r be primes such that $p \neq q \neq r$. Let C_r be a group of order r and Q be a simple $\mathbb{F}_q[C_r]$ -module which is faithful for C_r . Let $H = Q \ge C_r$ and P be a simple $\mathbb{F}_n[H]$ -module

which is faithful for QC_r . Finally, let $G=P \ge H$. Then $P = C_G(P)$, so P = F(G).

1. Suppose that q divides p-1, r divides p-1 and r does not divide q-1 (p=31, q=5and r=3, for instance). Then the maximal subgroups PQ and PC_r of G are supersoluble but the subgroup *H* is not supersoluble. Hence $\Sigma_{y_1}(G) = P$. Suppose that $genz^*(G) \neq 1$. Then G has a nonidentity cyclic S-quasinormal subgroup V. Hence V is subnormal in G by [10], so $V \le P = F(G)$ by [11]. Hence $QC_r \leq N_G(V)$ and so V is normal in G. But then V = P and hence $G/C_G(P) \simeq QC_r$ is cyclic. This contradiction shows that $genz^*(G) = 1 \neq \Sigma_{u}(G).$

2. Now suppose that p = r and q divides p-1. In this case $PQ = O^{p}(G)$ and QC_{r} is not supersoluble. We shall show that $P = genz^*(G)$. Indeed, since q divides p-1, then PQ is supersoluble by [2, Chapter 1, Theorem 1.4]. Hence by Maschke's theorem, $P = P_1 \times P_2 \times ... \times P_t$, where P_i is normal in $PQ = O^{p}(G)$ and $|P_{i}| = p$ for all i = 1, 2, ..., t. Hence P_i is S-quasinormal in G by Lemma 4.3 below and so $P \leq genz^*(G)$. On the other hand, if E is a cyclic S-quainormal subgroup of G, then E is subnormal in G and hence $E \leq P = F(G)$. Thus P is the subroup of G generated by the set of all its cyclic S-quasinormal subrgroups. It is clear also that any cyclic S -quasinormal subgroup of $QC_r \simeq G/P$ is identity. Hence $P = genz^*(G)$. Since all maximal subgroups of G are *p*-supersoluble, then the intersection Σ of all such subgroups is identity. Hence $genz^*(G) \notin \Sigma$.

2 On the \mathcal{F} -hypercentre and the intersection of all maximal \mathcal{F} -subgroups of a finite group

A chief factor H/K of a group G is called \mathfrak{F} central provided $(H/K) \geq (G/C_G(H/K)) \in \mathfrak{F}$ (see [12, p. 127–128] or [13, Def. 2.4.3]). The product of all normal subgroups of G whose G-chief factors are \mathfrak{F} -central in G is called the \mathfrak{F} -hypercentre of G and denoted by $Z_{\mathfrak{F}}(G)$ [14, p. 389].

Note that for any subgroup $E \in \mathfrak{F}$ of G, the subgroup $\Sigma_{\mathfrak{F}}(G)E$ belongs to \mathfrak{F} as well (see Theorem A 3.1 (d)). Moreover, we shall also show that $Z_{\mathfrak{F}}(G) \leq \Sigma_{\mathfrak{F}}(G)$ and the condition $G/\Sigma_{\mathfrak{F}}(G) \in \mathfrak{F}$ always implies $G \in \mathfrak{F}$ (Theorem A (c), (h)). Therefore the subgroup $\Sigma_{\mathfrak{F}}(G)$ is similar in properties to the subgroup $Z_{\mathfrak{F}}(G)$. Nevertheless, the following

simple example shows that in general we have $Z_{\mathfrak{F}}(G) \neq \Sigma_{\mathfrak{F}}(G)$.

Example. Let p, q and r be primes such that q divides p-1, r divides p-1 and r does not divide q-1 (p=31, q=5 and r=3, for instance). Let C_r be a group of order r and Q be a simple $\mathbb{F}_q[C_r]$ -module which is faithful for C_r . Let $H = Q \ge C_r$ and P be a simple $\mathbb{F}_p[H]$ -module which is faithful for H. Finally, let $G = P \ge H$. Then the maximal subgroups PQ and PC_r of G are supersoluble but the subgroup H is not supersoluble. Hence $\Sigma_{\mathfrak{U}}(G) = P \neq Z_{\mathfrak{U}}(G) = 1$.

In connection with these observations it is natural to ask:

Question. What one can say about a hereditary saturated formation \mathfrak{F} if the equality $Z_{\mathfrak{F}}(G) = \Sigma_{\mathfrak{F}}(G)$ is true in each group G?

In order to give the answer to this question we write $\mathfrak{F}(p)$ to denote the intersection of all formations containing the set $\{G/O_{p',p}(G) \mid G \in \mathfrak{F}\}$ and we write F(p) to denote the class of groups G such that $G^{\mathfrak{F}(p)}$ is a p-group. It is not difficult to show that F(p) is a formation for all primes p, and any extension of any p-group P by a group $G \in F(p)$ belongs to F(p) as well.

We say that the formation \mathfrak{F} is a *formation* with Property (*) if \mathfrak{F} contains each group whose maximal subgroups belongs to F(p), at least for one prime p. We say that \mathfrak{F} is a *formation with* Property (*) in the class of all soluble groups if \mathfrak{F} contains each soluble group whose maximal subgroups belongs to F(p), at least for one prime p.

The following our theorems give an answer to above question.

Theorem B. The equality $Z_{\mathfrak{F}}(G) = \Sigma_{\mathfrak{F}}(G)$ is true in each group G if and only if \mathfrak{F} is a formation with Property (*).

Theorem C. The equality $Z_{\mathfrak{F}}(G) = \Sigma_{\mathfrak{F}}(G)$ is true in each soluble group G if and only if \mathfrak{F} is a formation with Property (*) in the class of all soluble groups.

The proofs of these two theorems consist of many steps and are based on the following lemmas.

Lemma 2.1 [15, Theorem 1]. Let \mathfrak{F} be a formation containing all nilpotent groups. Then \mathfrak{F} is saturated if and only if $F(p) \subseteq \mathfrak{F}$ for all primes p.

From Thereom 17.14 in [12] we get

Lemma 2.2. Let \mathfrak{F} be a saturated formation containing all nilpotent groups. A chief factor H/Kof a group G is \mathfrak{F} -central if and only if

Проблемы физики, математики и техники, № 3 (4), 2010

 $G/C_G(H/K) \in F(p)$ for all prime divisors p of |H/K|.

In view of [15, Remark 1] and Proposition 3.16 in [14, IV] we get also

Lemma 2.3. For any prime p, the formation F(p) is hereditary.

We shall need in our proofs the following properties of the \mathfrak{F} -hypercentre.

Lemma 2.4. *Let* G *be a group and* $H \leq G$.

(1) If H is normal in G,

then $Z_{\mathfrak{F}}(G)H/H \leq Z_{\mathfrak{F}}(G/H)$.

(2) $Z_{\mathfrak{F}}(G) \cap H \leq Z_{\mathfrak{F}}(H)$.

(3) If $G/Z_{\mathfrak{F}}(G) \in \mathfrak{F}$, then $G \in \mathfrak{F}$.

Proof. (1) This follows from the *G*-isomorphism $Z_{\mathfrak{F}}(G)H/H \simeq Z_{\mathfrak{F}}(G)/Z_{\mathfrak{F}}(G) \cap H$.

(2) Let $1 = Z_0 < Z_1 < ... < Z_{i-1} < Z_i = Z_{\widehat{\$}}(G)$ be a chief series of G below $Z_{\widehat{\$}}(G)$ and $C_i = C_G(Z_i/Z_{i-1})$. Let p be a prime divisor of $|Z_i \cap H/Z_{i-1} \cap H| = |Z_{i-1}(Z_i \cap H)/Z_{i-1}|$. Then pdivides $|Z_i/Z_{i-1}|$, so $G/C_i \le F(p)$ by Lemma 2.2. Hence by Lemma 2.3, $H/H \cap C_i \simeq C_i H/C_i \in F(p)$. But $H \cap C_i \le C_H(Z_i \cap H/Z_{i-1} \cap H)$. Hence $H/C_H(Z_i \cap H/Z_{i-1} \cap H) \in F(p)$ for all primes pdividing $|Z_i \cap H/Z_{i-1} \cap H|$. Thus $Z_{\widehat{\$}}(G) \cap H \le Z_{\widehat{\$}}(H)$ by Lemma 2.2.

(3) This is evident.

The following lemma is a corollary of general results on f-hypercentral action (see [16, Chapter 2] or [14, Chapter IV, Section 6]). For reader's convenience, we give a direct proof.

Lemma 2.5. *Let* E *be a normal* p*-subgroup of a group* G. If $E \leq Z_{\mathfrak{F}}(G)$, then $G/C_G(E) \in F(p)$.

Proof. Let $1 = E_0 < E_1 < ... < E_t = E$ be a chief series of *G* below *E*. Let $C_i = C_G(E_i/E_{i-1})$ and $C = C_1 \cap C_2 \cap ... \cap C_t$. Then $C_G(E) \le C$ and by Corollary 3.3 in [17, Chapter 5], $C/C_G(E)$ is a *p*group. On the other hand, $G/C_i \in F(p)$ by Lemma 2.2, so $G/C \in F(p)$. Hence $G/C_G(E) \in F(p)$.

Lemma 2.6. Let G be a group and p a prime such that $O_p(G)=1$. If G has the only minimal normal subgroup, then there is a simple $\mathbb{F}_p[G]$ module which is faithful for G.

Proof. Let $A = C_p \wr G = [K]G$, where C_p is a group of order p and K is the base group of the regular product A. Let

 $1 = K_1 < K_2 < \ldots < K_i = K, \qquad (**)$ where K_i/K_{i-1} is a chief factor of A for all

i = 1, 2, ..., t. Let $C_i = C_A(K_i/K_{i-1})$, N be a minimal normal subgroup of G and $C = C_1 \cap C_2 \cap ... \cap C_t$. Suppose that $C_i \cap G \neq 1$ for all i = 1, 2, ..., t. Then $N \leq C \cap G$. Hence N stabilizes Series (**), so Nis a p-group by Corollary 3.3 in [17, Chapter 5], which implies $N \leq O_p(G)$. This contradiction shows that for some i we have $C_A(K_i/K_{i-1}) = A$. The lemma is proved.

Lemma 2.7.

(1) If $\mathfrak{F} = \mathfrak{G}_p \mathfrak{F}$, then $F(p) = \mathfrak{F}$.

(2) If $\mathfrak{F} = \mathfrak{N}\mathfrak{H}$ for some non-empty formation \mathfrak{H} , then $F(p) = \mathfrak{G}_{p}\mathfrak{H}$ for all primes p.

Proof. (1) In view of Lemma 2.1 we need only to prove that $\mathfrak{F} \subseteq F(p)$. Suppose that this is false and let A be a group of minimal order in $\mathfrak{F} \setminus F(p)$. Then $R = A^{F(p)}$ is the only minimal normal subgroup of A and $O_p(A) = 1$. By Lemma 2.6 there is a simple $\mathbb{F}_p[A]$ -module P which is faithful for A. Then $G = P \ge A \in \mathfrak{G}_p \mathfrak{F} = \mathfrak{F}$, so $A \simeq G/P =$ $= G/O_{p',p}(G) \in F(p)$, a contradiction.

(2) The inclusion $F(p) \subseteq \mathfrak{N}_p \mathfrak{H}$ is evident. Suppose that $\mathfrak{N}_p \mathfrak{H} \not\subseteq F(p)$ and let A be a group of minimal order in $\mathfrak{N}_p \mathfrak{H} \setminus F(p)$. Let L be a minimal normal subgroup of A. Then L is a unique minimal normal subgroup of A and $O_p(A) = 1$. Hence $A \in \mathfrak{H}$ and there is a simple $\mathbb{F}_p[A]$ -module P which is faithful for A. Then $G = P \ge A \in \mathfrak{G}_p \mathfrak{H} \subseteq \mathfrak{H}$, so $A \simeq G/P = G/O_{p',p}(G) \in F(p)$, a contradiction. The lemma is proved.

A group G is said to be a minimal non- \mathfrak{F} group if $G \notin \mathfrak{F}$ but $H \in \mathfrak{F}$ for every proper subgroup H of G.

In what follows we shall need the following result about minimal non- \Im -groups.

Lemma 2.8 [16, Chapter VI, Theorem 25.4]. Let G be a minimal non- \mathcal{F} -group such that $G^{\hat{s}}$ is soluble.

(a) $P = G^{\$}$ is a *p*-group for some prime *p* and *P* is of exponent *p* or of exponent 4 (if *P* is a non-abelian 2-group).

(b) $P/\Phi(P)$ is a chief factor of G and $(P/\Phi(P)) \land (G/C_G(P/\Phi(P))) \notin \mathfrak{F}.$

(c) If P is abelian, then $\Phi(P) = 1$.

Let *H* and *K* be subgroups of a group *G*. If HK = G, then *K* is called a supplement of *H* in *G*. If, in addition, $HT \neq G$ for all proper subgroups *T* of *K*, then *K* is called a minimal supplement of *H* in *G*.

3 Some classes of formations with Property (*) Classes of soluble groups with limited nilpotent length. Following [14, Chapter VII, Definitions 6.9] we write l(G) to denote the nilpotent length of the group *G*. Recall that \mathfrak{N}^r is the product of *r* copies of \mathfrak{N} ; \mathfrak{N}^0 is the class of groups of order 1 by definition. It is well known that \mathfrak{N}^r is the class of all soluble groups *G* with $l(G) \leq r$.

Proposition 3.1. For any $r \in \mathbb{N}$, the class \mathfrak{N}^r is a hereditary saturated formation with Property (*) in the class of the soluble groups. The formation \mathfrak{N} is a formation with Property (*).

Proof. Let $\mathfrak{F} = \mathfrak{N}^r$. It is clear that \mathfrak{F} is a hereditary formation. Besides, by [14, Chapter A, Theorem 9.3 (c)], \mathfrak{F} is saturated. Moreover, $F(p) = \mathfrak{N}_p \mathfrak{N}^{r-1}$ by Lemma 2.7 (2). Therefore in the case r = 1 the formation $\mathfrak{F} = \mathfrak{N}$ is a hereditary saturated formation with Property (*).

Now suppose that r > 1. We shall show that \mathfrak{F} has Property (*) in the class of all soluble groups. Suppose that this is false and let (\mathfrak{N}^r, G) be a counterexample with minimal r | G |. Then $G \notin \mathfrak{F}$ and there is a prime p such that every maximal subgroup of G belongs to F(p). Then $\Phi(G) = 1$. Indeed, suppose that $\Phi(G) \neq 1$. Then $|G/\Phi(G)| < |G|$ and every maximal subgroup of $G/\Phi(G)$ belongs to F(p). Hence $G/\Phi(G) \in \mathfrak{F}$ by the choice of G, so $G \in \mathfrak{F}$ since the formation \mathfrak{F} is saturated. This contradiction shows that $\Phi(G) = 1$. Let R and N be any minimal normal subgroup of G. Suppose that $R \neq N$. Then $G=R \geq M$ and $N \geq L$ for some maximal subgroups M and L of G, so G/R, $G/N \in F(p) = \mathfrak{G}_n F(p)$. Hence $G \simeq G/R \cap N \in F(p) \subseteq \mathfrak{F}$, a contradiction. Therefore $R = N = C_G(R)$ is a unique minimal normal subgroup of G and R is a q -group for some prime $q \neq p$.

Let M_1 be any maximal subgroup of M. Then $RM_1 \in F(p) = \mathfrak{N}_p \mathfrak{N}^{-1}$. Since $R = C_G(R)$, $O_q(RM_1) = 1$. Hence $O_{q',q}(RM_1) = O_q(RM_1)$ and $O_p(RM_1) = 1$. Hence $RM_1 \in \mathfrak{N}^{r-1}$. Thus

$$\begin{split} M_1/M_1 &\cap RO_q(M_1) \simeq RM_1/RO_q(M_1) = \\ = RM_1/O_q(RM_1) = RM_1/O_{q',q}(RM_1) \in \mathfrak{N}_q\mathfrak{N}^{r-2}. \end{split}$$

Hence $M_1 \in \mathfrak{N}_q \mathfrak{N}^{r-2}$. Therefore every maximal subgroup of M belongs to $\mathfrak{N}_q \mathfrak{N}^{r-2}$. Hence $M \in \mathfrak{N}^{r-1}$ by the choice of (\mathfrak{N}, G) . Thus

$$G = [R]M \in \mathfrak{F} = \mathfrak{N}^r$$
.

This contradiction completes the proof of the proposition. **Proposition 3.2.** Let $\{\pi_i \mid i \in I\}$ be any partition of \mathbb{P} and \mathfrak{F} the class of all groups G such that $G \in \mathfrak{F}$ if and only if G is the direct product of its Hall π_i -subgroups. Then \mathfrak{F} is a hereditary saturated formation with Property (*).

Proof. It is clear that the class \mathcal{F} is closed under taking subgroups, homomorphic images and direct products. Hence \mathfrak{F} is a hereditary formation. Moreover, this formation \mathcal{F} is saturated. We show that for any prime p, $F(p) = \mathfrak{G}_{\pi_i}$, where $p \in \pi_i$. It is clear that $F(p) \subseteq \mathfrak{G}_{\pi}$. Suppose that the inverse conclusion is not true and let A be a group of minimal order in $\mathfrak{G}_{\pi_i} \setminus F(p)$. Let L be a minimal normal subgroup of A. Then L is a unique minimal normal subgroup of A and $O_p(A) = 1$. Hence there is a simple $\mathbb{F}_p[A]$ -module P which is faithful for A. Then $G = P \ge A \in \mathfrak{G}_{\pi_i} \subseteq \mathfrak{F}$, so $A \simeq G/P =$ $= G/O_{p',p}(G) \in F(p)$. This contradiction shows that $F(p) = \mathfrak{G}_{\pi_i}$. Now let *G* be a group such that every maximal subgroup of G belongs to $F(p) = \mathfrak{G}_{\pi}$. Then either G belongs to $F(p) \subseteq \mathfrak{F}$ or $|G| = q \notin \pi_i$ is a prime, so again we have $G \in \mathfrak{F}$. Hence \mathfrak{F} is a formation with Property (*).

Proposition 3.3. Let $\{\pi_i | i \in I\}$ be any partition of \mathbb{P} and \mathfrak{F} be a class of all soluble groups G such that $G \in \mathfrak{F}$ if and only if G is the direct product of its Hall π_i -subgroups. Then \mathfrak{F} is a hereditary saturated formation with Property (*) in the class of all soluble groups.

Proof. See the proof of Proposition 3.2.

Lattice formations. A subgroup H is said to be \mathcal{F} -subnormal in a group G if either H = G or there exists a chain of subgroups

$$H = H_0 < H_1 < \dots < H_t = G$$

such that H_{i-1} is a maximal subgroup of H_i and $H_i/(H_{i-1})_{H_i} \in \mathfrak{F}$ for all i = 1, 2, ..., t. A formation \mathfrak{F} is said to be a lattice formation (see [18, Section 6]) if the set of all \mathfrak{F} -subnormal subgroups is a sublattice of the lattice of all subgroups in every group.

We use $\ensuremath{\mathfrak{S}}$ to denote the class of all soluble groups.

Proposition 3.4. Every lattice formation \mathfrak{F} with $\mathfrak{N} \subseteq \mathfrak{F} \subseteq \mathfrak{S}$ is a hereditary saturated formation with Property (*) in the class of all soluble groups.

Proof. By [18, Corollary 6.3.1], there exists a partition $\{\pi_i \mid i \in I\}$ of \mathbb{P} such that $G \in \mathfrak{F}$ if and only if *G* is the direct product of its Hall π_i -subgroups. Hence by Proposition 3.3, \mathfrak{F} is a

hereditary saturated formation with Property (*) in the class of all soluble groups.

Corollary 3.5. If either $\mathfrak{F} = \mathfrak{N}^r$, for some $r \in \mathbb{N}$, or \mathfrak{F} is a lattice formation with $\mathfrak{N} \subseteq \mathfrak{F} \subseteq \mathfrak{S}$, then $Z_{\mathfrak{F}}(G) = \Sigma_{\mathfrak{F}}(G)$ in every soluble group G.

From Proposition 3.2 we also get

Corollary 3.6. If either $\mathfrak{F} = \mathfrak{N}$ is the class of all nilpotent groups or \mathfrak{F} is the class of all p-decomposable groups, for some prime p, then $Z_{\mathfrak{F}}(G) = \Sigma_{\mathfrak{F}}(G)$ in every group G.

Proposition 3.7. Let \mathfrak{F} be the class of all groups with nilpotent the commutator subgroup G'. Then \mathfrak{F} is a hereditary saturated formation with Property (*).

Proof. Suppose that this proposition is false and let G be a counterexample with minimal |G|. Then G' is not nilpotent and there is a prime psuch that every maximal subgroup of G belongs to F(p). It is clear that $\mathfrak{F} = \mathfrak{N}\mathfrak{A}$, where \mathfrak{A} is the formation of all abelian groups. Hence by Lemma 2.7 (2), $F(p) = \mathfrak{G}_p \mathfrak{A}$ for all primes p. First we show that G is soluble. Suppose that this is false. Then for every Schmidt subgroup H of G we have $H \neq G$. Let $q \neq p$ be any prime divisor of |G|. Suppose that G is not q-nilpotent. Then G has a q-closed Schmidt subgroup $H = Q \times R$ [3, Chapter IV, Satz 5.4], where Q is a Sylow q-subgroup of H, R is a cyclic Sylow r-subgroup of H. Since $H \neq G$, $H \leq M$, where $M \in F(p)$ is a maximal subgroup of G. Then $M' \leq O_p(M)$ and hence $H' \leq Q \cap O_p(H) = 1$. Hence H is abelian. This contradiction shows that G is q-nilpotent for all primes $q \neq p$, so $G^{\mathfrak{N}}$ is a Sylow p-subgroup of G. Hence G is soluble. Let R be any minimal normal subgroup of G. Then every maximal subgroup of G/R belongs to F(p), so $(G/R)' \leq F(G/R)$ by the choice of G. Therefore R is the only minimal normal subgroup of G and $R \leq \Phi(G)$. Hence $G = R \ge M$ for some maximal subgroups M of G, $R = C_G(R) = O_q(G)$ for some prime $q \neq p$ (see the proof of Proposition 3.1). Let M_1 be any maximal subgroup of M. Then $RM_1 \in F(p)$, so RM_1 is abelian since $R = C_G(R)$. Hence $M_1 = 1$, so G' = Ris nilpotent. This contradiction completes the proof of the result.

Corollary 3.8. If \mathfrak{F} is the class of all groups with nilpotent the commutator subgroup G'. Then $Z_{\mathfrak{F}}(G) = \Sigma_{\mathfrak{F}}(G)$ in every group G.

me **Property (*)** Corollary 4.1 Suppose that for some prime p

we have $F(p) = \mathcal{F}$. Then \mathcal{F} does not have Property (*).

4 Some classes of formations not having

Proof. Let *G* be a minimal non- \mathfrak{F} -group. Then $G \notin \mathfrak{F}$ but every maximal subgroup of *G* is in $\mathfrak{F} = F(p)$. Hence \mathfrak{F} does not have Property (*).

Similarly one can prove the following

Corollary 4.2. Suppose that $\mathfrak{F} \subseteq \mathfrak{S}$ and for some prime p we have $F(p) = \mathfrak{F}$. Then \mathfrak{F} does not have Property (*) in the class of all soluble groups.

Corollary 4.3 Suppose that \mathfrak{F} is one of the following formations:

(1) *The formation of all p-soluble groups.*

(2) The formation of all p-supersoluble groups.

(3) The formation of all *p*-nilpotent groups.

(4) The formation of all soluble groups.

Then \mathfrak{F} does not have Property (*).

Proof. It is clear that for any prime $q \neq p$ we have $\mathfrak{F} = \mathfrak{G}_q \mathfrak{F}$. Hence $F(q) = \mathfrak{F}$ by Lemma 2.7 (1). Now we use Corollary 4.1 (4).

REFERENCES

1. *Laue, R.* Dualization for saturation for locally defined formations / R. Laue // J. Algebra. – 1978. – Vol. 52. – P. 347–353.

2. Weinstein, M. Between Nilpotent and Solvable / M. Weinstein. – Polygonal Publishing House, 1982.

3. *Huppert, B.* Endliche Gruppen I / B. Huppert. – Berlin-Heidelberg-New York : Springer-Verlag, 1967.

4. *Buckley, J.* Finite groups whose minimal subgroups are normal / J. Buckley // Math. Z. – 1970. – Vol. 15. – P. 15–17.

5. *Ballester-Bolinches, A.* On complemented subgroups of finite groups / A. Ballester-Bolinches, X.Y. Guo // Arch. Math. – 1999. – Vol. 72. – P. 161–166.

6. Shaalan, A. The influence of π -quasinormality of some subgroups on the structure of a finite group / A. Shaalan // Acta Math. Hungar. – 1990. – Vol. 56. – P. 287–293.

7. *Agrawal, R.K.* Generalized center and hypercenter of a finite group / R.K. Agrawal // Proc. Amer. Math. Soc. – 1976. – Vol. 54. – P. 13–21.

8. *Wielandt, H.* Uber die Normalstrukture von mehrfach faktorisierbaren Gruppen / H. Wielandt // B. Austral Math. Soc. – 1960. – Vol. 1. – P. 143–146.

9. *Kegel, O.H.* Zur Struktur mehrafach faktorisierbarer endlicher Gruppen / O.H. Kegel // Math. Z. – 1965. – Vol. 87. – P. 409–434. 10. *Kegel, O.* Sylow-Gruppen and Subnormalteiler endlicher Gruppen / O. Kegel // Math. Z. – 1962. – Vol. 78. – P. 205–221.

11. *Wielandt, H.* Subnormal subgroups and permutation groups. Lectures given at the Ohio State University / H. Wielandt. – Columbus : Ohio, 1971.

12. *Shemetkov, L.A.* Formations of algebraic systems / L.A. Shemetkov, A.N. Skiba. – Moscow : Nauka, 1989.

13. *Guo, Wenbin.* The Theory of Classes of Groups / Wenbin Guo. – Beijing-New York-Dordrecht-Boston-London : Science Press-Kluwer Academic Publishers, 2000.

14. Doerk, K. Finite Soluble Groups / K. Doerk, T. Hawkes. – Berlin–New York: Walter de Gruyter, 1992. 15. Shemetkov, L.A. ω -local Formations and Fitting classes of finite groups / L.A. Shemetkov, A.N. Skiba // Advances of Math. Siberian. – 2000. – Vol. 10, No 2. – P. 112–141.

16. *Shemetkov, L.A.* Formations of Finite Groups / L.A. Shemetkov. – Moscow : Nauka, 1978.

17. *Gorenstein, D.* Finite Groups / D. Gorenstein. – New York-Evanston-London : Harper & Row Publishers, 1968.

18. *Ballester-Bolinches, A.* Classes of Finite groups / A. Ballester-Bolinches, L.M. Ezquerro. – Dordrecht : Springer, 2006.

Поступила в редакцию 22.07.10.