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1 General properties of the intersection of all
maximal § -subgroups

Throughout this paper, all groups are finite. We
use G® to denote the intersection of all normal sub-
groups of a group G with G/Ne§. A class § of
groups is said to be a formation if for every group
G, every homomorphic image of G/G® belongs to
%. A formation § is said to be saturated if § con-
tains every group G with G® <®(G). A formation
§ is said to be hereditary if § contains every sub-
group of every its group. In this paper § denotes

some hareditary saturated formation containing all
nilpotent groups. We use 91 and i to denote the
formation of all nilpotent groups and the formation
of all supersoluble groups, respectively.

A subgroup H of a group G is said to be a
maximal § -subgroup of G if H €§ and G has no

a subgroup E € such that H <E. We use 2:(G)

to denote the intersection of all maximal -
subgroups of G. Thus X, (G) is the intersection of
all maximal nilpotent subgroups of G and X (G) is

the intersection of all maximal supersoluble sub-
groups of G.

Applications of the subgroup Z:(G) is based
on the following our theorem.
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Theorem A. Let H, E be subgroups of a
group G, N a normal subgroup of G and
Z=2:(G).

(a) 2 (H)N/N <X (HNI/N).

(b) Z(H)NE<Z(HNE).

) If HHHNX €', then HeS.

(d)If He'§, then HX €.

(e)If N<Z, then Z/N =Z.(G/N).

(H Z:(G/Z)=1.

() If every minimal non-‘§ -subgroup of G is
soluble and y,(N)<2, then N <X

In this theorem w,(G) denotes the subgroup of

G generated by all its cyclic subgroups of prime
order and of order 4 [1]. A group G is said to be a
minimal non-§ -group if G¢§ but He§ for
every proper subgroup H of G.

Corollary 1.1. Suppose that every minimal non-
§ -subgroup of a group G is soluble. If every p -
subgroup P of G is contained in the intersection of
all maximal § -subgroups of N (P), then G €§.

It is well known that every minimal non-
supersoluble group and every minimal non-p-
nilpotent group are soluble. Hence from Corollary
1.1 we obtain the following.
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Corollary 1.2. Suppose that every p -subgroup
P of a group G is contained in X, (N;(P)). Then
G is supersoluble.

Corollary 1.3. Suppose that every p -subgroup
P of a group G is contained in the intersection of
all maximal p -nilpotent subgroups of N;(P). Then
G is p -nilpotent.

Corollary 1.4 (Frobenius). If N.(P)/C.(P) is
a p-group for every p-subgroup P of a group G,
then G is p -nilpotent.

Proof. Since by [2, Appendix C, Corollary 6.4],
O,(Ng(P)/IC o (T /K))=1 for all chief factors

H/K of N;(P) below P ,wehave P<Z (N,(P)).
Hence for every p-nilpotent subgroup H of
N.(P), the subgroup PH is p -nilpotent as well.
Therefore G is p -nilpotent by Corollary 1.3.

Next applications of Theorem A are connected
with minimal subgroups.

Theorem 1.5. Let G be a group and § the
class of all 2' -supersoluble groups.

(1) If every minimal subgroup L of G of odd
order has a supplement T in G such that
LT <X (T), then G is 2'-supersoluble.

(2) If G is soluble and every subgroup of G of
order 2 is complemented in G, then G is 2-
nilpotent.

Corollary 1.6 (Gaschiitz [3, IV, Theorem 5.7]).
If every minimal subgroup of a group G is normal
in G, then the commutator subgroup G' of G is
2-closed.

Corollary 1.7 (Buckley [4]). Let G be a group
of odd order. If every minimal subgroup of G is
normal in G, then G is supersoluble.

Corollary 1.8 (Ballester-Bolinches, Guo [5]).
Let G be a group. If every minimal subgroup of G
is complemented in G, then G is supersoluble.

Recall that a subgroup H of a group G is said
to be quasinormal (S -quasinormal) in G if
HE =EH for all subgroups E of G (HP=PH
for all Sylow subgroups P of G, respectively).

Proposition 1.9. Let R be the subgroup of a
group G generated by the set of all cyclic quasi-
normal subgroups of G and R_ be the subgroup of

G generated by the set of all cyclic S -quasinormal
subgroups of G. Then R <X, (G) and R is con-
tained in the intersection of all maximal p-
supersoluble subgroups of G for all primes p.
Corollary 1.10 (Shaalan [6]). Let G be a group
and E a normal subgroup of G with supersoluble
quotient G/E. Suppose that all minimal subgroups

of E and all its cyclic subgroups with order 4 are
S -quasinormal in G. Then G is supersoluble.
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Proof. By Proposition 1.9 we have
v, (E)<X,(G). Hence E <X, (G) by Theorem A
(g) and so G is supersoluble by Theorem A (c).

Recall that the hyper-generalized-center
genz"(G) of G coincides with the largest term of
the chain of subgroups

1=0,<0,0,<-,
where Q.(G)/Q, ,(G) is the subgroup of G/Q, ,(G)
generated by the set of all cyclic S -quasinormal
subgroups of G/Q, ,(G) (see [2, page 22]).

Corollary 1.11 (Agrawal [7]). The hyper-
generalized-center genz' (G) of G is contained in
2, (G).

Proof. Let R be the subgroup of G generated
by the set of all its cyclic S -quasinormal subr-
groups. By Proposition 1.9 we have R <X (G) and
hence X, (G)/R =2, (G/R) by Theorem A (e). Thus
genz" (G/R) = genz*(G)/R < 2, (G/R) and  so
genz' (G) < Z(G).

Based on Theorem C we also proved the fol-
lowing result.

Theorem 1.12. Suppose that § is either the
class of all soluble groups or the class of all p-
decomposable groups for some prime p. Suppose
that G has three subgroups A, A, and A, whose
indices |G:4,|, |G:4,|, |G:4,| are pairwise
coprime. If 4, N A, <E:(A)NE;(A)) forall i#j,
then Ge§.

Corollary 1.13 (Wielandt [8]). If G has three
soluble subgroups A4,, A, and A, whose indices
|G:4,|, |G:4,|, |G:4,| are pairwise coprime,
then G is itself soluble.

Corollary 1.14 (Kegel [9]). If G has three nil-
potent subgroups A, A, and A, whose indices
|G:4,|, |G:4,|, |G:4,| are pairwise coprime,
then G is itself nilpotent.

In view of Proposition 1.9 and Corollary 1.10

the following natural questions arise:
(D) Is there a group G such that

genz’ (G) =X (G)? (see [2, page 22] or [7, page
19])
(1) Is there a group G such that genz' (G) is

not contained in the intersection of all maximal p-
supersoluble subgroups of G?

The following examples give positive answers
to these questions.

Example. Let p, ¢ and r be primes such that

p#q#r. Let C, beagroup of order » and Q be a
simple F [C,]-module which is faithful for C,. Let

H=0XC, and P be a simple F,[H]-module
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which is faithful for QC, . Finally, let G=PXH.
Then P=C,;(P), so P=F(G).

1. Suppose that g divides p—1, r divides
p—1 and r does not divide ¢g—1 (p=31, g=5

and =3, for instance). Then the maximal subgroups
PQ and PC. of G are supersoluble but the sub-

group H is not supersoluble. Hence X (G)=P.
Suppose that genz"(G)#1. Then G has a non-
identity cyclic S -quasinormal subgroup V. Hence
V' is subnormal in G by [10], so V' < P =F(G) by
[11]. Hence QC. < N.(V) and so V is normal in
G. But then V' =P and hence G/C,;(P)=0QC, is
cyclic. This contradiction shows that
genz’ (G)=1=2,(G).

2. Now suppose that p=r and ¢ divides
p—1. In this case PO=0"(G) and QC, is not
supersoluble. We shall show that P = genz'(G).
Indeed, since ¢ divides p—1, then PQ is super-
soluble by [2, Chapter 1, Theorem 1.4]. Hence by
Maschke’s theorem, P =B x P, x...x P, where P, is
normal in PQO=0"(G) and |P|=p for all
i=12,..,t. Hence P is S -quasinormal in G by
Lemma 4.3 below and so P<genz"(G). On the

other hand, if £ is a cyclic S-qusinormal subgroup of
G, then E is subnormal in G and hence
E<P=F(G). Thus P is the subroup of G gener-

ated by the set of all its cyclic S-quasinormal subr-
groups. It is clear also that any cyclic S -quasinormal
subgroup of QC =G/P is identity. Hence
P =genz'(G). Since all maximal subgroups of G
are p-supersoluble, then the intersection X of all

such subgroups is identity. Hence genz"(G) £ X.

2 On the § -hypercentre and the intersection
of all maximal § -subgroups of a finite group

A chief factor H/K of a group G is called § -
central provided (H/K)X(G/C,(H/K))e§ (see

[12, p. 127-128] or [13, Def. 2.4.3]). The product of
all normal subgroups of G whose G -chief factors

are §-central in G is called the § -hypercentre of
G and denoted by Z:(G) [14, p. 389].

Note that for any subgroup E e of G, the
subgroup X:(G)E belongs to § as well (see Theo-
rem A 3.1 (d)). Moreover, we shall also show that
Z:(G)<Z:(G) and the condition G/Z:(G)e§
always implies G €§ (Theorem A (c), (h)). There-
fore the subgroup X:(G) is similar in properties to

the subgroup Z;(G). Nevertheless, the following
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simple example shows that in general we have
Z:(G) # Z:(G).

Example. Let p, g and r be primes such that
q divides p—1, r divides p—1 and r does not
divide ¢g—1 (p=31, ¢=5 and r =3, for instance).
Let C, be a group of order » and Q be a simple
F [C.]-module which is faithful for C. Let

q r r

H=0XC, and P be a simple F [H]-module

which is faithful for H. Finally, let G=PXH.
Then the maximal subgroups PQ and PC, of G

are supersoluble but the subgroup H is not super-
soluble. Hence X, (G)=P # Z,(G)=1.

In connection with these observations it is
natural to ask:

Question. What one can say about a hereditary
saturated  formation §  if the  equality

Z:(G) =Z;(G) is true in each group G ?

In order to give the answer to this question we
write §(p) to denote the intersection of all forma-
tions containing the set {G/O,, ,(G)|G € §} and we
write F(p) to denote the class of groups G such
that G3 is a p-group. It is not difficult to show
that F(p) is a formation for all primes p, and any
extension of any p-group P by a group G € F(p)
belongs to F(p) as well.

We say that the formation § is a formation
with Property (*) if § contains each group whose
maximal subgroups belongs to F(p), at least for
one prime p. We say that § is a formation with
Property (*) in the class of all soluble groups if §

contains each soluble group whose maximal sub-
groups belongs to F(p), at least for one prime p.

The following our theorems give an answer to
above question.

Theorem B. The equality Z;(G)=Z2:(G) is
true in each group G if and only if § is a formation
with Property (*).

Theorem C. The equality Z;(G)=Z2:(G) is
true in each soluble group G if and only if § is a
formation with Property (*) in the class of all solu-
ble groups.

The proofs of these two theorems consist of
many steps and are based on the following lemmas.

Lemma 2.1 [15, Theorem 1]. Let § be a for-
mation containing all nilpotent groups. Then § is
saturated if and only if F(p) <'§ for all primes p.

From Thereom 17.14 in [12] we get

Lemma 2.2. Let § be a saturated formation
containing all nilpotent groups. A chief factor H/K
of a group G is §-central if and only if

IIpo6remvr Guzuku, mamemamuru u mexuuxu, Ne 3 (4), 2010



On the intersection of all maximal § -subgroups of a finite group

G/C,(H/K)e F(p) for all prime divisors p of
|H/K|.

In view of [15, Remark 1] and Proposition 3.16
in [14, IV] we get also

Lemma 2.3. For any prime p, the formation
F(p) is hereditary.

We shall need in our proofs the following
properties of the § -hypercentre.

Lemma 2.4. Let G be a group and H <G.

(1) If H is normal in G,

then Z:(G)H/H < Z:(G/H).

(2) Z;(G)NH < Z:(H).

(3) If GIZ.(G) €, then GE€S.

Proof: (1) This follows from the G-
isomorphism Z;(G)H/H = Z;(G)/Z;(G)N H.

(2) Let 1=2,<Z <..<Z,,<Z,=Z:(G) be
a chief series of G below Z;(G) and
C =C,;(Z/Z_). Let p be a prime divisor of
|\Z."HIZ_ "HI|=|Z_(Z ~"H)/Z_|. Then p
divides |Z,/Z, |, so G/C,<F(p) by Lemma 2.2.
Hence by Lemma 2.3, H/HNC, =CH/C, € F(p).
But HnNC <C,(ZHIZ_NH). Hence
H/IC,(Z, "HIZ_ nH)e F(p) for all primes p
dividing |Z, nH/Z_ "H|. Thus Z(G)NH < Z;(H)

by Lemma 2.2.

(3) This is evident.

The following lemma is a corollary of general
results on f -hypercentral action (see [16, Chapter

2] or [14, Chapter IV, Section 6]). For reader’s con-
venience, we give a direct proof.
Lemma 2.5. Let E be a normal p -subgroup

of a group G. If E<Z:(G), then G/C,(E) € F(p).

Proof. Let 1=E, <E <..<E =F be a chief
series of G below E. Let C, =C,(E/E,_) and
C=CnC,n.nC,. Then C,(E)<C and by
Corollary 3.3 in [17, Chapter 5], C/C,(E) isa p-
group. On the other hand, G/C, € F(p) by Lemma
22,50 G/C e F(p). Hence G/C,(E) € F(p).

Lemma 2.6. Let G be a group and p a prime
such that O,(G)=1. If G has the only minimal
normal subgroup, then there is a simple F [G]-
module which is faithful for G.

Proof. Let A=C,1G=[K]G, where C, is a
group of order p and K is the base group of the
regular product A. Let

1=K, <K, <..<K, =K, (k)
where K,/K,, is a chief factor of 4 for all
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i=12,.,t Let C,=C,(K/K,,), N bea minimal
normal subgroup of G and C=C,NC,N..NC,.
Suppose that C, "G =1 for all i=1,2,...,¢z. Then
N <CnNG. Hence N stabilizes Series (**), so N
is a p-group by Corollary 3.3 in [17, Chapter 5],
which implies N <O, (G). This contradiction shows
that for some i we have C,(K,/K,,)=A. The

lemma is proved.
Lemma 2.7.

() If§=8,8, then F(p)=S§.
) If §=N9 for some non-empty formation
9, then F(p)=8,9 forall primes p.

Proof. (1) In view of Lemma 2.1 we need only
to prove that § < F(p). Suppose that this is false

and let 4 be a group of minimal order in §\ F(p).

Then R=A"" is the only minimal normal sub-
group of 4 and O,(4)=1. By Lemma 2.6 there is
a simple [, [A4]-module P which is faithful for 4.
Then G=PXA4e®,F=F, so A=G/P=
=G/0,,

(2) The inclusion F(p)cIN, 9 is evident.
Suppose that 91 $ & F(p) and let 4 be a group of

(G) e F(p), a contradiction.

minimal order in M $\ F(p). Let L be a minimal
normal subgroup of 4. Then L is a unique minimal
normal subgroup of 4 and O,(4)=1. Hence
Ae$ and there is a simple F, [A]-module P
which is faithful for 4. Then G =P X 4e® HCTE,
so A=G/P=G/O, ,(G) e F(p), a contradiction. The
lemma is proved.

A group G is said to be a minimal non- -
group if G¢§ but H e§ for every proper sub-
group H of G.

In what follows we shall need the following re-
sult about minimal non- § -groups.

Lemma 2.8 [16, Chapter VI, Theorem 25.4].
Let G be a minimal non-§ -group such that G° is
soluble.

(@) P=G® is a p-group for some prime p
and P is of exponent p or of exponent 4 (if P isa
non-abelian 2 -group).

(b) P/D(P) is a chief factor of G and
(P/D(P)) N(G/C,(P/D(P))) ¢ §.

(c) If P is abelian, then ®(P)=1.

Let H amd K be subgroups of a group G. If
HK =G, then K is called a supplement of H in
G. If, in addition, HT # G for all proper subgroups
T of K, then K is called a minimal supplement of
H in G
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3 Some classes of formations with Property (*)

Classes of soluble groups with limited nilpo-
tent length. Following [14, Chapter VII, Definitions
6.9] we write /(G) to denote the nilpotent length of
the group G. Recall that 91" is the product of »
copies of N ; N’ is the class of groups of order 1
by definition. It is well known that 91" is the class
of all soluble groups G with I[(G)<r.

Proposition 3.1. For any r € N, the class I
is a hereditary saturated formation with Property (*)
in the class of the soluble groups. The formation N
is a formation with Property (*).

Proof. Let §=M". It is clear that § is a he-
reditary formation. Besides, by [14, Chapter A,
Theorem 9.3 (c)], § is saturated. Moreover,

F(p)=M,MN"" by Lemma 2.7 (2). Therefore in the
case r =1 the formation § =9 is a hereditary satu-
rated formation with Property (*).

Now suppose that » >1. We shall show that §
has Property (*) in the class of all soluble groups.
Suppose that this is false and let (91",G) be a coun-

terexample with minimal »|G|. Then G ¢‘§ and
there is a prime p such that every maximal sub-
group of G belongs to F(p). Then ®(G)=1. In-
deed, suppose that ®(G)=1. Then |G/D(G)|<| G |
and every maximal subgroup of G/®(G) belongs to
F(p). Hence G/®(G)e§ by the choice of G, so
G €§ since the formation ‘§ is saturated. This con-
tradiction shows that ®(G)=1. Let R and N be
any minimal normal subgroup of G. Suppose that
R# N. Then G=RXM and NXL for some maximal
subgroups M and L of G, so GI/R,
G/NeF(p)=®,F(p). Hence G=G/IRNNeF(p)cS,
a contradiction. Therefore R=N=C,(R) is a
unique minimal normal subgroup of G and R is a

q -group for some prime g # p.

Let M, be any maximal subgroup of M. Then
RM, e F(p)=M ", Since R=C,(R), O,(RM,)=1.
Hence O, (RM,)=0,(RM,) and O,(RM))=1.
Hence RM, e W', Thus

M,/M,"RO,(M,) = RM,/RO,(M,) =
=RM,/O,(RM,) = RM,/O,, ,(RM,) e N N"">.
Hence M, e M M. Therefore every maximal sub-
group of M belongs to 9 9. Hence M e N
by the choice of ()',G). Thus
G=[RIM e§=N".

This contradiction completes the proof of the propo-
sition.
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Proposition 3.2. Let {r,|1€l} be any parti-
tion of P and § the class of all groups G such that
Ge'§ if and only if G is the direct product of its
Hall 7, -subgroups. Then § is a hereditary satu-
rated formation with Property (*).

Proof. 1t is clear that the class § is closed un-
der taking subgroups, homomorphic images and
direct products. Hence § is a hereditary formation.
Moreover, this formation § is saturated. We show

that for any prime p, F(p)=6_, where perx,. It

is clear that F(p)c®,. Suppose that the inverse

conclusion is not true and let 4 be a group of
minimal order in &, \F(p). Let L be a minimal

normal subgroup of 4. Then L is a unique minimal
normal subgroup of 4 and O,(A4)=1. Hence there

is a simple F [A4]-module P which is faithful for
A Then G=PxA4e®, c§, so A=G/P=
=G/0, ,(G) € F(p). This contradiction shows that
F(p)=6,. Now let G be a group such that every
maximal subgroup of G belongs to F(p)=6,_.
Then either G belongs to F(p)c§ or |Gl=q ¢ 7,

is a prime, so again we have G €§. Hence § is a
formation with Property (*).

Proposition 3.3. Let {r,|1€l} be any parti-
tion of P and § be a class of all soluble groups G
such that G €§ if and only if G is the direct prod-
uct of its Hall r,-subgroups. Then § is a heredi-
tary saturated formation with Property (*) in the
class of all soluble groups.

Proof. See the proof of Proposition 3.2.

Lattice formations. A subgroup H is said to
be § -subnormal in a group G if either H =G or
there exists a chain of subgroups

H=H <H <.<H =G

such that H,, is a maximal subgroup of H, and

H/(H, ), €§ forall i=12,..,t A formation §
is said to be a lattice formation (see [18, Section 6])
if the set of all § -subnormal subgroups is a sublat-
tice of the lattice of all subgroups in every group.

We use & to denote the class of all soluble
groups.

Proposition 3.4. Every lattice formation §
with Mc§ <& is a hereditary saturated forma-
tion with Property (*) in the class of all soluble

groups.
Proof. By [18, Corollary 6.3.1], there exists a

partition {7, |1} of P such that Ge§ if and
only if G is the direct product of its Hall
7, -subgroups. Hence by Proposition 3.3, § is a

IIpo6remvr Guzuku, mamemamuru u mexuuxu, Ne 3 (4), 2010



On the intersection of all maximal § -subgroups of a finite group

hereditary saturated formation with Property (*) in
the class of all soluble groups.

Corollary 3.5. If either §=N", for some
reN, or § is a lattice formation with
NcF 6, then Z.(G)=2:(G) in every soluble
group G.

From Proposition 3.2 we also get

Corollary 3.6. If either § =0 is the class of

all nilpotent groups or § is the class of all p-
decomposable groups, for some prime p, then
2:(G) =Z2:(G) in every group G.

Proposition 3.7. Let § be the class of all
groups with nilpotent the commutator subgroup G'.
Then § is a hereditary saturated formation with
Property (*).

Proof. Suppose that this proposition is false
and let G be a counterexample with minimal |G |.

Then G' is not nilpotent and there is a prime p
such that every maximal subgroup of G belongs to
F(p). Ttis clear that § =9, where 2 is the for-
mation of all abelian groups. Hence by Lemma 2.7
(2), F(p)=6,2 for all primes p. First we show

that G 1is soluble. Suppose that this is false. Then
for every Schmidt subgroup H of G we have
H=#G. Let g+ p be any prime divisor of |G]|.

Suppose that G is not g -nilpotent. Then G has a
q -closed Schmidt subgroup H = QO X R [3, Chapter
IV, Satz 5.4], where Q is a Sylow ¢ -subgroup of
H, R is a cyclic Sylow r-subgroup of H. Since
H=#G, H<M, where M € F(p) is a maximal
subgroup of G. Then M'<O,(M) and hence
H'<QNO,(H)=1. Hence H is abelian. This
contradiction shows that G is ¢ -nilpotent for all
primes g # p, so G is a Sylow p -subgroup of G.
Hence G is soluble. Let R be any minimal normal
subgroup of G. Then every maximal subgroup of
G/R belongs to F(p),so (G/R) < F(G/R) by the
choice of G. Therefore R is the only minimal nor-
mal subgroup of G and RZ£®(G). Hence
G =R X M for some maximal subgroups M of G,
R=C;(R)=0,(G) for some prime g # p (see the
proof of Proposition 3.1). Let M, be any maximal
subgroup of M. Then RM, e F(p), so RM, is
abelian since R=C_(R). Hence M, =1,s0 G'=R
is nilpotent. This contradiction completes the proof

of the result.
Corollary 3.8. If § is the class of all groups

with nilpotent the commutator subgroup G'. Then
Z:(G) =Z2:(G) in every group G.
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4 Some classes of formations not having
Property (*)

Corollary 4.1 Suppose that for some prime p
we have F(p)=SF. Then § does not have Pro-
perty (*).

Proof. Let G be a minimal non-§ -group.
Then G ¢ § but every maximal subgroup of G is in
§ = F(p). Hence § does not have Property (*).

Similarly one can prove the following
Corollary 4.2. Suppose that § <& and for

some prime p we have F(p)=F. Then § does not
have Property (*) in the class of all soluble groups.
Corollary 4.3 Suppose that § is one of the fol-
lowing formations:
(1) The formation of all p -soluble groups.

(2) The formation of all p-supersoluble groups.
(3) The formation of all p -nilpotent groups.
(4) The formation of all soluble groups.

Then § does not have Property (*).

Proof. 1t is clear that for any prime g # p we

have § =& _§. Hence F(q)=7 by Lemma 2.7 (1).
Now we use Corollary 4.1 (4).

REFERENCES

1. Laue, R. Dualization for saturation for lo-
cally defined formations / R. Laue // J. Algebra. —
1978. — Vol. 52. — P. 347-353.

2. Weinstein, M. Between Nilpotent and Solv-
able / M. Weinstein. — Polygonal Publishing House,
1982.

3. Huppert, B. Endliche Gruppen I / B. Hup-
pert. — Berlin-Heidelberg-New York : Springer-
Verlag, 1967.

4. Buckley, J. Finite groups whose minimal
subgroups are normal / J. Buckley // Math. Z. —
1970. - Vol. 15. - P. 15-17.

5. Ballester-Bolinches, A. On complemented
subgroups of finite groups / A. Ballester-Bolinches,
X.Y. Guo // Arch. Math. — 1999. — Vol. 72. —
P. 161-166.

6. Shaalan, A. The influence of 7z -quasinor-
mality of some subgroups on the structure of a finite
group / A. Shaalan // Acta Math. Hungar. — 1990. —
Vol. 56. — P. 287-293.

7. Agrawal, RK. Generalized center and hy-
percenter of a finite group / R K. Agrawal // Proc.
Amer. Math. Soc. — 1976. — Vol. 54. — P. 13-21.

8. Wielandt, H. Uber die Normalstrukture von
mehrfach faktorisierbaren Gruppen / H. Wielandt //
B. Austral Math. Soc. — 1960. — Vol. 1. — P. 143—
146.

9. Kegel, O.H. Zur Struktur mehrafach faktoris-
ierbarer endlicher Gruppen / O.H. Kegel // Math. Z.
—1965. - Vol. 87. — P. 409-434.

61



A.N. Skiba

10. Kegel, O. Sylow-Gruppen and Subnormal-
teiler endlicher Gruppen / O. Kegel / Math. Z. —
1962. — Vol. 78. — P. 205-221.

11. Wielandt, H. Subnormal subgroups and
permutation groups. Lectures given at the Ohio State
University / H. Wielandt. — Columbus : Ohio, 1971.

12. Shemetkov, L.A. Formations of algebraic
systems / L.A. Shemetkov, A.N. Skiba. — Moscow :
Nauka, 1989.

13. Guo, Wenbin. The Theory of Classes of
Groups / Wenbin Guo. — Beijing-New York-
Dordrecht-Boston-London : Science Press-Kluwer
Academic Publishers, 2000.

14. Doerk, K. Finite Soluble Groups / K. Do-
erk, T. Hawkes. — Berlin—New York: Walter de
Gruyter, 1992.

62

15. Shemetkov, L.A. w -local Formations and
Fitting classes of finite groups / L.A. Shemetkov,
A.N. Skiba // Advances of Math. Siberian. — 2000. —
Vol. 10, Ne 2. — P. 112-141.

16. Shemetkov, L.A. Formations of Finite
Groups / L.A. Shemetkov. — Moscow : Nauka, 1978.

17. Gorenstein, D. Finite Groups / D. Goren-
stein. — New York-Evanston-London : Harper &
Row Publishers, 1968.

18. Ballester-Bolinches, A. Classes of Finite
groups / A. Ballester-Bolinches, L.M. Ezquerro. —
Dordrecht : Springer, 2006.

Hocmynuna 6 peoakyuro 22.07.10.

IIpo6remvr Guzuku, mamemamuru u mexuuxu, Ne 3 (4), 2010



