УДК 530.122.1

Модель геостационарного детектора гравитационных волн

И.П. ОХРИМЕНКО, П.В. ПЕТРОВ, Н.Н. КОЛЬЧЕВСКИЙ

На сегодняшний день во всем мире функционируют 3 обсерватории, предназначенные для детектирования гравитационных волн – зарегистрировано 67 событий. Рассмотрены будущие проекты гравитационных детекторов. В работе представлена модель космического детектора гравитационных волн на основе системы геостационарных спутников «S-LIGO8R-G2». Выполнены расчеты и моделирование параметров орбит данной системы для 8 планет Солнечной системы. Выполнен расчет и анализ ключевых характеристик космического детектора гравитационных волн S-LIGO8R-G2.

Ключевые слова: интерферометр, гравитационные волны, спутниковые системы, космический детектор, LIGO, LISA, DECIGO.

There are 3 observatories operating around the world, designed to detect gravitational waves. 67 detections were made. Future projects of gravitational detectors are considered. A model of a space gravitational wave detector based on a system of geostationary satellites «S-LIGO8R-G2» is presented. Calculations and modeling of the orbits parameters of the system presented have been performed for 8 planets of the Solar System. The calculation and analysis of the key characteristics of the space detector of gravitational waves S-LIGO8R-G2 are presented.

Keywords: interferometer, gravitational waves, satellite systems, space detector, LIGO, LISA, DECIGO.

Введение. Впервые, о том, что гравитационное взаимодействие носит волновую природу, было предсказано О. Хэвисайдом в 1865 г., когда было получено волновое аналитическое решение для гравитационного аналога известных уравнений Максвелла из динамической теории электромагнитного поля [1]. Теорией предсказано, что гравитационные волны (ГВ) излучаются движущимися с переменным ускорением массами, и, воздействуя на тела, они вызывают относительное смещение их частей (деформацию ΔL) согласно поляризации волны. Было предложено множество теорий гравитации, например, [3]–[5], до всеобще принятой Общей Теории Относительности Эйнштейна, в рамках которой была описана теория гравитационного поля [6], предсказывающая существование ГВ.

Вплоть, до сентября 2015 г. ГВ оставались теоретическим аспектом. 14 сентября зарегистрирована первая ГВ в обсерватории LIGO, США – специально разработанной и построенной для детектирования ГВ [7], [8]. За «решающий вклад в детектор LIGO и наблюдение гравитационных волн» в 2017 г. была присуждена Нобелевская Премия в области физики трем ученым: Кип Торну, Барри Бэришу - CalTech и Райнер Вайссу - МІТ [9]. Гравитационноволновым детектором считается любая система пробных масс (тел) или протяженное тело и сенсор, реагирующие и записывающие малые относительные смещения масс или силы, которые их вызвали. Наибольшее распространение получили два типа наземных детекторов гравитационных волн: массивный цилиндр длинной от 1 до 3 метров, регистрирующий низкочастотные механические колебания (Weber bar) – детектор резонансного типа [10], и лазерный интерферометр, регистрирующий сдвиг интерференционных полос – детектор электромагнитного типа [11]. Реализация гравитационных детекторов, действительно способных зарегистрировать гравитационные волны, стала возможной лишь в XX веке [12], [13]. Регистрация ГВ производилась от реальных астрофизических источников больших масс (например, двух черных дыр в несколько масс Солнца), в результате процесса их столкновения-слияния. Предсказанная амплитуда ГВ от источников такого типа составляет порядка $\Delta L/L = 10^{-21}$.

На сегодняшний день, функционируют 3 гравитационно-волновые обсерватории: LIGO (USA), Virgo (Italy) и KAGRA (Japan) [14], и зарегистрировано 67 событий ГВ во время наблюдательных запусков LIGO, а также LIGO+Virgo [15]. Запуск сети из трех ГВ обсерваторий LIGO+Virgo+KAGRA планируется на 2020–2021 гг. [16]. **Текущие разработки.** В настоящее время ведутся разработки наземных детекторов третьего поколения, а также космических детекторов гравитационных волн (таблица 1).

Наземные детекторы ГВ	Космические детекторы ГВ		
IndIGO (Индия)	2023	DECIGO (Япония)	2027
Einstein Telescope (Евросоюз)	2030	LISA (Евросоюз)	2034
Cosmic Explorer (CIIIA)	2030	ВВО (Евросоюз)	2035

Таблица 1 – Разрабатывающиеся наземные и космические детекторы ГВ и планируемые даты запуска

Einstein Telescope (ЕТ) и Cosmic Explorer (СЕ) – это проекты наземных детекторов гравитационных волн третьего поколения. Длины плеч ЕТ составят 10 км (3 плеча), а СЕ – 40 км (2 плеча). Конфигурация ЕТ отличается от LIGO-подобной конфигурации СЕ тем, что образует равносторонний треугольник и будет располагаться под землей. СЕ располагается на поверхности земли имея два перпендикулярных плеча. В 2021 или 2022 г. будет объявлено местоположение телескопа Эйнштейна.

LISA, DECIGO и BBO – это проекты космических детекторов гравитационных волн мировых лидеров в области гравитационно-волновой астрономии. Объединяющим фактором данных проектов является одинаковость конфигурации и принципа детектирования: все они представляют из себя различный набор детекторов в виде равностороннего треугольника, расположенного на орбите солнца (гелиоцентрическая орбита) и используют электромагнитный принцип детектирования – лазерный интерферометр Майкельсона с углом 60° между плечами. Отличиями между проектами являются количество треугольных систем из спутников, количество спутников, задействованных в системе детектора, различная длина плеч интерферометра, а также количество интерферометров, их ориентация и др. У LISA длина плеч составит 2,5 млн. км. между 3 спутниками, размещенными в точках Лагранжа. В случае DECIGOE длина плеч составит всего 1 тыс. км. Обсерватория BBO будет состоять из 12 спутников, разбитых на подсистемы по 3, 3 и 6 спутников, образующих два равносторонних треугольника и правильный шестиугольник. В каждой подсистеме длина ребра, или плеча интерферометра – 50 тыс. км, а сами подсистемы размещаются в вершинах равностороннего треугольника, вписанного в гелиоцентрическую орбиту [17]–[23].

Другой принцип детектирования основан на контролировании группы пульсаров (ЕРТА, IPTA, SKA), звездных остатков, которые испускают повторяющиеся импульсы излучения, и ищут тонкие временные сдвиги, вызванные прохождением гравитационных волн. Этот подход применяется для обнаружения низкочастотных волн, возникающих при слиянии сверхмассивных черных дыр – одного из самых энергетических событий в космосе, а также реликтового излучения (рисунок 1).

Рисунок 1 – График чувствительности планируемых космических детекторов ГВ DECIGO и BBO, а также астрофизические источники. БНЗ – бинарные нейтронные звезды; S_h^{1/2} – шум деформации. График чувствительности LIGO (справа). LI – установка в Луизиане; HI – установка в Хэнфорде

Разработанная модель космического детектора гравитационных волн. Космос – условно неограниченное пространство по сравнению с Землей, в котором можно разместить детектор большего размера и трехмерной конфигурации. Этот факт открывает доступ к областям спектра ГВ, недоступных для LIGO детекторов, размещенных на Земле. К другим преимуществам относятся сверхнизкие давления и отсутствие сейсмических вибраций. В LIGO детекторах наземного типа характерна сложная и затратная система глубокого вакуума и амортизации вибраций. В Солнечной системе имеется множество космических объектов, хорошо изученных с точки зрения кинематических характеристик, которые являются естественным ресурсом для будущего использования в целях детектирования ГВ.

В качестве космического детектора ГВ предлагается космическая измерительная система искусственных спутников (ИС), расположенная на орбитах планет, естественных спутников планет или планетоидах. Для постоянного наземного взаимодействия с космической измерительной системой предложено использовать спутники, расположенные на геостационарных орбитах. Выделяют четыре типа орбит спутников (рисунок 2): LO (от англ. Low Orbit) – низкоорбитальные ИС; МО (от англ. Medium Orbit) – среднеорбитальные; GO (от англ. Geosynchronous Orbit) – геостационарные; НО (от англ. High Orbit) – высокоорбитальные. Для GO, в случае Земли (GEO), высоты около 36 тыс. км., период обращения – 23 ч 56 м 4.09 с, либо в пределах 22–24 ч. Орбиты могут быть высокоэллиптичными или близкими к круговым. Запуски спутников выполнены многими ведущими ВУЗами мира. БГУ (Минск) 29 октября 2018 г. разработал и осуществил запуск спутника «BSUSat-1». Спутник «BSUSat-1» успешно выведен на орбиту высотой более 500 километров над поверхностью Земли (LEO) (рисунок 2). На сайтах БГУ satellite.by и bsusat.com работает сервис по приему и размещению текущей телеметрии спутника. Отслеживание местоположения спутника можно с помощью программы «Orbitron» с настройками для спутника BSUSat-1.

Рисунок 2 – Классификация орбит ИС Земли, их краткие характеристики и первый спутник БГУ «BSUSat-1», запущенный в 29 октября 2018 г.

Если рассматривать возможность создания подобной системы (классического интерферометра Майкельсона) на основе ИС – необходимо как минимум 3 спутника: 1 источник излучения и еще 2 с отражающими элементами и расположенные на перпендикулярных равных расстояниях, образуя треугольник. Если добавить еще один спутник в систему и допустить возможность, что каждый спутник может работать одновременно в качестве источника, отражателя, а также приемника, то возможное число одновременных космических интерферометров в системе равняется 4. Данная конфигурация плоская – 2D-конфигурация, для перехода в 3D конфигурацию необходимо добавить спутники с орбитой, характеризующейся другими углами наклонения.

Предлагается модель космического детектора ГВ «S-LIGOxR-Gv» в виде системы из Х спутников, расположенных на Y орбитах (рисунок 3), тип орбит также варьируется: LO, MO, GO и HO. В работе исследуется детектор S-LIGO8R-G2 (Space - Laser Interferometer Gravitational-Wave Observatory) 8 (общее число спутников) Regular (правильной формы) Geostationary (тип орбит) 2 (число орбит). Для космического детектора S-LIGO8R-G2 первые 4 спутника выводятся на геостационарную орбиту и отстоят друг от друга на одинаковом расстоянии так, что образуют квадрат, вписанный в круговую орбиту. Вторая конфигурация спутников на ортогональной орбите аналогична первой (рисунок 3). В первом приближении 4 спутника одной орбиты вращаются вокруг планеты с одинаковой угловой скоростью и сохраняют. конфигурацию перпендикулярных плеч интерферометра Майкельсона. Как говорилось выше, всего получается 4 возможных детектора для одной орбиты: каждая вершина является угловой станцией детектора ГВ. Добавление второй орбиты ортогональной первой, переводит систему из двухмерной в более сложную трехмерную, где необходимо учитывать возможные совместные конфигурации в 3D пространстве. Это усложнение системы обеспечивает увеличение числа интерферометров и расширяет диаграмму направленности космического ГВ детектора. Изменения взаимного расположение спутников вызвано их орбитальным вращением. Взаимное расположение спутников и их орбитальное движение рассчитывалось теоретически, а также моделировалось в специализированной программе AGI STK (рисунок 3).

Рисунок 3 – Этапы процесса эволюции системы космического детектора гравитационных волн «S-LIGO8R-G2». В исходной фазе правильная трехмерная фигура октаэдр, и в заключительной фазе: образование правильной фигуры куб

Положение спутников в пространстве математически описывается декартовыми координатами x, y, z геоцентрической системы, среднее движение w и начальной фазой f. Для каждой плоскости орбиты вводится система координат, где радиус вектор спутников описывается матрицей:

$$\begin{pmatrix} x_{01} \cos[f_1 + tw_1] \\ y_{01} \sin[f_1 + tw_1] \\ 0 \end{pmatrix},$$
 (1)

где x_{01} y_{01} – полуоси орбиты, 1 – номер спутника. Для описания взаимного положения двух спутников на разных орбитах используется матрица поворота M с учетом α угол между плоскостями орбит. Тогда взаимное положение двух спутников 1 и 2 описывается матрицей:

$$\begin{pmatrix} x_{01} \cos[f_1 + tw_1] - x_{02} \cos[f_2 + tw_2] \\ y_{01} \sin[f_1 + tw_1] - y_{02} \cos[\alpha] \sin[f_2 + tw_2] \\ -y_{02} \sin[f_2 + tw_2] \sin[\alpha] \end{pmatrix}.$$
 (2)

Рассмотрим первое положение системы спутников, изображенное на рис.3, и назовем данное положение исходным или началом эволюции системы. В исходном положении спутники системы S-LIGO8R-G2 образуют трехмерную фигуру октаэдра – это продемонстрировано на рис.3, где спутники соединили линиями. Следующая фаза, после оборота спутников по орбите на 45 градусов, спутники эволюционируют в трехмерную форму куба (рисунок 3). Далее, процесс эволюции системы спутников вновь возвращает ее в форму октаэдра. Период эволюции форм приблизительно равен 1/8 периода обращения планеты вокруг своей оси.

Правильные фигуры, выстраиваемые системой S-LIGO8R-G2 в двух периодически повторяющихся фазах октаэдра и куба, дают множество одновременно функционирующих детекторов ГВ классической конфигурации: интерферометр Майкельсона с перпендикулярными плечами и с углом 60 градусов между ними. Соответственно, система из спутников, расположенных в вершинах куба, расширяют возможности космического детектора ГВ и позволяют переключаться между системами с большим количеством единовременно работающих детекторов (до 24 LIGO-подобных детекторов) и выбором самых «перспективных» детекторов по ряду определяющих факторов: ориентация в пространстве, длина плеч, взаимное расположение и т. д. В соответствии с этим, предлагается размещение не менее 3-х источников излучения и 3-х отражателей на каждом из спутников.

Кроме длины плеча интерферометра, ключевым фактором для космического детектора ГВ может оказаться близость к объекту, сильно-искажающему пространство-время – например, Солнцу. В связи с этим, следует учитывать массу планеты, на орбите которой располагается такая система, и время обращения данной планеты вокруг Солнца. Возможно, для детектирования далеких астрофизических источников, излучающих ГВ, необходимо поместить детектор как можно дальше от источника сильных искажений пространства-времени. И наоборот, если необходимо измерить влияние ГВ излучения Солнца – размещать систему из спутников как можно ближе к Солнцу.

В общем случае, данную систему можно развернуть на геостационарных орбитах (геоорбит) любой планеты Солнечной системы. Как описывалось выше, интерес представляет планеты с наибольшим радиусом гео-орбит, так как это даст большие длины плеч интерферометра – расширит частотный спектр ГВ-детектора. Для расчета геостационарных орбит 8 планет Солнечной системы воспользуемся следующей формулой:

$$R = \sqrt[3]{\frac{G \cdot M_3}{\omega^2}}.$$
(3)

В таблице 2 представлены результаты расчета гео-орбит для 8 планет Солнечной системы, а также результаты расчета ключевых параметров космического детектора ГВ S-LIGO8R-G2.

Планета	Macca	Время	Радиус	Длина плеча	Длина плеча	Максимальная	Период эво-
	планеты,	вращения,	геоорбит,	интерферометра,	в длинах	чувствитель-	люции форм
	M ₃	с	М	тыс. км	LIGO (300	ность детектора,	системы спут-
			•		км)	Гц	ников, с
Меркурий	$5,50 \cdot 10^{-2}$	$5,08 \cdot 10^{6}$	$2,43 \cdot 10^{8}$	$3,44 \cdot 10^2$	1150	900·10 ⁻³	$6,35 \cdot 10^5$
Венера	8,15·10 ⁻¹	$2,10\cdot 10^7$	$1,54 \cdot 10^{9}$	$2,17 \cdot 10^3$	7240	$150 \cdot 10^{-3}$	$2,62 \cdot 10^{6}$
Земля	1,00	$8,61 \cdot 10^4$	$4,22 \cdot 10^7$	$5,96 \cdot 10^{1}$	199	$500 \cdot 10^{-2}$	$1,08 \cdot 10^4$
Mapc	1,07·10 ⁻¹	$8,86 \cdot 10^4$	$2,04 \cdot 10^7$	$2,88 \cdot 10^{1}$	96	$100 \cdot 10^{-1}$	$1,11 \cdot 10^4$
Юпитер	$3,18 \cdot 10^2$	$3,58 \cdot 10^4$	$1,60.10^{8}$	$2,26 \cdot 10^2$	755	$130 \cdot 10^{-2}$	$4,47 \cdot 10^3$
Сатурн	$9,50.10^{1}$	$3,84 \cdot 10^4$	$1,12 \cdot 10^8$	$1,59 \cdot 10^2$	529	$189 \cdot 10^{-2}$	$4,80 \cdot 10^3$
Уран	$1,40 \cdot 10^{1}$	$6,22 \cdot 10^4$	$8,18 \cdot 10^7$	$1,16 \cdot 10^2$	386	$260 \cdot 10^{-2}$	$7,78 \cdot 10^{3}$
Нептун	$1,70 \cdot 10^{1}$	$5,80 \cdot 10^4$	$8,32 \cdot 10^{7}$	$1,18 \cdot 10^2$	392	$255 \cdot 10^{-2}$	$7,25 \cdot 10^3$

Таблица 2 – Значения радиусов геостационарных орбит и ключевых параметров космического детектора S-LIGO8R-G2, размещенного на этих орбитах, для 8 планет Солнечной системы

Из таблицы 2 видно, что самый большой радиус геостационарной орбиты у планеты Венера и составляет 1 млн. 536 тыс. 477 километров. Соответственно, плечо интерферометра будет в корень из двух раз больше и составит 2 млн. 172 тыс. 906 км. В сравнение, для Юпитера длина плеча интерферометра составляет 226 тыс. км. В сравнении, у детектора ГВ наземного типа LIGO плечо составляет лишь 300 км с учетом переотражений полученных в полости Фабри-Перо. Таким образом, длина плеча космического интерферометра Венеры S-LIGO8R-G2 равносильна 7240 длинам плеча LIGO интерферометра. Максимальная частота ГВ, которую способен зарегистрировать такой космический детектор, около 0,15 Гц и будет изменятся в зависимости от эволюции системы, так как изменится длина плеча интерферометра. Для изучения гравитационного излучения Солнца, космический ГВ детектор S-LIGO8R-G2 необходимо размещать как можно ближе к исследуемому объекту, т. е. на орбите Меркурия. Для регистрации гравитационных волн из дальнего космоса необходимо гравитационный детектор размещать как можно дальше от любых доступных в Солнечной системе источников возмущений, т. е. на орбите планеты Нептун или планетоида Плутон. Период вращения планеты Нептун вокруг Солнца составляет 165 лет, а период вращения вокруг своей оси 15 ч 57 мин 59 с. Радиус гео-орбиты составляет 83 тыс. км, длина плеча интерферометра – 118 тыс. км, а максимальная частота чувствительности данного детектора около 2,55 Гц. Для планеты Меркурий, период вращения вокруг Солнца 88 дней, а период вращения вокруг своей оси 58 дней. Радиус гео-орбиты 243 тыс. км, длина плеч интерферометра – 344 тыс. км., максимальная частота чувствительности детектора 0,9 Гц.

Заключение. Существующие наземные детекторы ограничены в линейных размерах, что обуславливает диапазон чувствительности 10–1000 Гц ГВ, однако, они уже зарегистрировали 67 событий гравитационных волн. Для расширения частотного диапазона ГВ детекторов необходимо размещать измерительные установки в космосе.

Для решения поставленной задачи, предлагается отдельная система космического детектирования ГВ на основе системы спутников. Для описания системы предложено обозначение «S-LIGOxR-Gy». В работе исследуется эволюция системы S-LIGO8R-G2, состоящей из 8 спутников на 2 ортогональных орбитах. Проведен расчет и моделирование такой системы спутников для 8 планет Солнечной системы. Выполнен расчет ключевых характеристик космического детектора ГВ для этих планет. В работе обсуждаются результаты расчетов и возможности подобных детекторов.

Система из 8 спутников будет периодически выстраиваться в виде правильных трехмерных геометрических фигур. Для рассмотренной системы S-LIGO8R-G2 такими фигурами являются октаэдр и куб. Период перестроения октаэдр-куб зависит от планеты, на которой будет располагаться космический детектор. Согласно расчетам (таблица 2), в рамках Солнечной системы, самое длинное плечо космического интерферометра S-LIGO8R-G2 получается на орбите Венеры: 2 172 906 км. Значение максимальной частоты чувствительности такого космического детектора составит 0,15 Гц для фазы куба и будет изменятся в процессе эволюции системы, так как будет изменятся длина плеча. На самой удаленной от Солнца планете – Нептун характеристики S-LIGO8R-G2 следующие: длина плеча 118 000 км, максимальная частота чувствительности 2,55 Гц.

Литература

1. Heaviside, O. A Gravitational and Electromagnetic Analogy. Part II / O. Heaviside // The Electrician. – 1893. – № 31. – Р. 359.

2. Abraham, M. Zur Theorie der Gravitation / M. Abraham // Physikalische Zeitschrift. – 1912. – Vol. 13. – P. 1–4.

3. Mie, G. Grundlagen einer Theorie der Materie / G. Mie // Annalen der Physik. – 1912. – Vol. 37. – P. 511–534.

4. Mie, G. Grundlagen einer Theorie der Materie / G. Mie // Annalen der Physik. – 1913. – Vol. 40. – P. 1–65.
5. Einstein, A. Gravitationswellen / A. Einstein // Preussische Akademie der Wissenschaften Sitzungsberichte. – 1918. – Part 1. – P. 154–167.

6. Abbot, B. P. Observation of Gravitational Waves from a Binary Black Hole Merger / B. P. Abbot [et al.] // Phys. Rev. Let. – 2016. – Vol. 116, iss. 6. – 061102.

7. Weber, J. Gravitational-wave-detector events / J. Weber // Physical Review Letters. - 1968. - Vol. 20, iss. 23. - P. 1307-1308.

8. Gertsenshtein, M. E. On the detection of low frequency gravitational waves / M. E. Gertsenshtein, V. I. Pustovoit // JETP. – 1962. – Vol. 43, № 2. – P. 605–607.

9. Abbot, B. P. Exploring the sensitivity of next generation gravitational wave detectors / B. P. Abbott [et al.] // Class. Quantum Grav. -2017. - Vol. 34, No 4. - 044001.

10. Weiss, R. Electromagnetically coupled broadband gravitational antenna / R. Weiss // Quarterly Report of the Research Laboratory for Electronics. – 1972. – № 105. – P. 54–76.

11. Advanced LIGO [Electronic resource] : LIGO Scientific Collaboration / LIGO – Livingston : Laser Interferometer Gravitational-Wave Observatory, 2014. – Mode of access : https://arxiv.org/ftp/arxiv/papers/1411/1411.4547.pdf. – Date of access : 01.01.2020.

12. Cervantes-Cota, J. L. A Brief History of Gravitational Waves / J. L. Cervantes-Cota, S. Galindo-Uribarri, G. F. Smoot // Universe. – 2016. – Vol. 2, iss. 3. – P. 22–52.

13. LIGO NEWS [Electronic resource] : LIGO Suspends Third Observing Run (O3). – Mode of access : https://www.ligo.caltech.edu/news/ligo20200326. – Date of access : 01.04.2020.

14. The Nobel Prize [Electronic resource] : The Nobel Prize in Physics 2017. – Mode of access : Nobelprize.org. – Date of access : 12.12.2019.

15. KAGRA Observatory News [Electronic resource] : KAGRA Gravitational-wave Telescope Starts Observation. – Mode of access : https://gwcenter.icrr.u-tokyo.ac.jp/en/archives/1381. – Date of access : 25.02.2020.

16. Abbott, B. P. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA / B. P. Abbott, R. Abbott, T. D. Abbott [et al.] // Living Rev Relativ. – 2018. – Vol. 21, iss. 3. – DOI: 10.1007 / s41114-018-0012-9.

17. Hild, S. Sensitivity studies for third-generation gravitational wave observatories $\langle S. Hild [et al.] // Class. Quantum Grav. - 2011. - Vol. 28, No 9. - 094013.$

18. Laser Interferometer Space Antenna : A proposal in response to the ESA call for L3 mission concepts / K. Danzmann [et al.]. – Hannover, 2017. – 41 p.

19. NGO, Revealing a hidden Universe: opening a new chapter of discovery (New Gravitational wave Observatory) : Assessment Study Report / O. Jenrich [et al.]. – Paris, 2011. – 153 p. – № ESA/SRE (2011) 19.

20. Kawamura, S. The Japanese space gravitational wave antenna – DECIGO / S. Kawamura [et al.] // J. Phys.: Conf. Ser. – 2008. – Vol. 122. – DOI: 10.1088/1742-6596/122/1/012006.

21. Harry, G. M. Laser interferometry for the Big Bang Observer / G. M. Harry [et al.] // Class. Quantum Grav. - 2006. - Vol. 23. - P. 4887-4894.

22. Reitze D. Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy beyond LIGO / D. Reitze [et al.] // Bulletin of the American Astronomical Society. – 2019. – Vol. 51, iss. 7, id. 35. – arXiv: 1907.04833.

23. Yagi, K. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries / K. Yagi, N. Seto // Phys. Rev. D. -2011. - Vol. 83. -20 p.

Белорусский государственный университет

Поступила в редакцию 15.09.2020