V. S. Zakrevskaya

Gomel, F. Skorina Gomel State University

FINITE GROUPS WITH PARTIALLY π -SUBNORMAL SUBGROUPS

All groups considered here are finite and G always denotes a finite group. Moreover, P is the set of all primes, $\pi \subseteq P$ and $\pi' = P \setminus \pi$.

We say that a subgroup A of G is *strongly U-subnormal* [1] in G if either A is normal in G or $A_G \neq A^G$ and every chief factor of G between A_G and A^G is cyclic.

A subgroup A of G is called π -subnormal [2] in G if and only if it is \mathfrak{F} -subnormal in G in the sense of Kegel [3], where \mathfrak{F} is the class of all π -groups.

We say that a subgroup A of G is partially π -subnormal in G if $A = \langle L, T \rangle$, where L is a strongly $\mathfrak U$ -subnormal subgroup and T is a π -subnormal subgroup of G.

Recall that if $M_n < M_{n-1} < ... < M_i < M_0 = G$ (*), where M_i is a maximal subgroup of M_{i-1} for all i = 1,...,n, then the chain (*) is said to be a *maximal chain of G of length n* and M_n (n > 0) is an *n-maximal subgroup* of G.

The relationship between n-maximal subgroups (where n > 1) of G and the structure of G was studied by many authors. One of the earliest results in this line research was obtained by Huppert in the article [4] who established the supersolubility of the group whose all second maximal subgroups are normal. In the same article Huppert proved also that if all 3-maximal

subgroups of G are normal in G, then the commutator subgroup G^1 of G is a nilpotent group and the principal rank of G is at most 2. These two results were developed by many authors. Spencer studied [5] the groups G whose every n-maximal chain includes at least one proper subnormal subgroup of G. Mann proved [6] that if all n-maximal subgroups of a soluble group G are subnormal and $n \leq |\pi(G)| - 1$, then G is nilpotent; but if $n \leq |\pi(G)| + 1$, then G is φ -dispersive for some ordering φ of the set of all primes P. Finally, in the case $n \leq |\pi(G)|$ Mann described G completely.

Our main goal here is to obtain generalizations of some of these results on the base of the following

Theorem. If in every maximal chain $M_3 < M_2 < M_1 < M_0 = G$ of G of length G, one of G, G, and G is G are soluble.

Corollary 1. (Spencer [5]). If in every maximal chain $M_3 < M_2 < M_1 < M_0 = G$ of G of length 3, one of M_3 , M_2 and M_1 is subnormal in G, then G is soluble.

Corollary 2. (Huppert [4]). *If every 3-maximal subgroup of G is normal in G, then G is soluble.*

References

- 1 Skiba, A. N. On sublattices of the subgroup lattice defined by formation Fitting sets / A. N. Skiba // J. Algebra. 2020. Vol. 550. P. 69–85.
- 2 Skiba, A. N. On σ -subnormal and σ -permutable subgroups of finite groups / A. N. Skiba // J. Algebra. 2015. Vol. 436. P. 1–16.
- 3 Kegel, O. H. Sylow-Gruppen und Subnormalteiler endlicher Gruppen / O. H. Kegel // Mathematische Zeitschrift. 1962. Vol. 78 (1). P. 205–221.
- 4 Huppert, B. Normalteiler und maximale Untergruppen endlicher Gruppen / B. Huppert // Math. Z. 1954. Vol. 60. P. 409–434.
- 5 Spencer, A. E. Maximal nonnormal chains in finite groups / A. E. Spencer // Pacific J. Math. 1968. Vol. 27 (1). P. 167–173.
- 6 Mann, A. Finite groups whose n-maximal subgroups are subnormal / A. Mann // Trans Amer. Math. Soc. -1968. Vol. 132. P. 395–409.