FINITE GROUPS WITH ABNORMAL SCHMIDT SUBGROUPS

All groups are finite and G always denotes a finite group.

A subgroup *H* of *G* is said to be (1) *abnormal* in *G* if $x \in \langle H, H^x \rangle$ for all $x \in G$.

We say that G is an SA-group if G is a non-nilpotent group in which every Schmidt subgroup is abnormal.

Recall that G is said to be an SC-group if G is soluble and the set of all Carter subgroups of G coincides with the set of all systems normalizers of G.

We proved the following two results.

Theorem 1. G is a soluble SA-group if and only if $G = D \rtimes M$, where $D = G^{\Re}$ is the nilpotent residual of G, and the following conditions hold:

(i) D is nilpotent, $M = \langle x \rangle$ is a cyclic Sylow q-subgroup of G for some prime q dividing |G|, and $F(G) = D\langle x^q \rangle$.

(ii) For every prime p dividing |D| and for the Sylow p-subgroup subgroup D_p of D we have (a) $Q \leq N_G(D_p)$ and $[Q, D_p] \neq 1$.

(b) $D_p = (D_n Q)^{\Re}$.

(b) $D_p = (D_p Q)^{-1}$. (c) *G* has normal subgroups $Z = \Phi_t < \Phi_{t-1} \leq \Phi_t < \Phi_2 < \Phi_1 < \Phi_0 = D_p (t = t(p))$, where $\Phi_i = \Phi(\Phi_{i-1})$ for all $i = 1, \dots, t$, such that [Q, Z] = 1 and $[Q, \Phi_i] \neq 1$ for all i < t.

(d) For every *i*, the factor Φ_i/Φ_{i+1} , regarded as a *G*-module, is completely reducible.

(e) All chief factors H/K of G between Z and P are G-isomorphic with $C_G(H/K) = F(G)$ and $|H/K| = p^n$, where n is the smallest integer such that q divides $p^n - 1$.

(f) G is an SC-group and ZQ is a Carter subgroup of G and $Z = N_G(Q) \cap D \leq Z_{\infty}(G)$. Moreover, if $Z \neq 1$, then $D = D_p$ is a Sylow subgroup of G.

Furthermore, Conditions (b), (c), (d) and (e) hold for every p-subgroup P of G such that $Q \leq N_G(P)$ and $[Q, P] \neq 1$.

(iii) A subgroup C of G is a Carter subgroup if and only if C is a maximal abnormal subgroup of some Schmid Subgroup of G. Moreover, if H is a Schmidt subgroup of G, then a maximal abnormal subgroup of H is a Carter subgroup of G.

Theorem 2. Assume that G is a non-soluble SA-group. Then the following hold.

(a) G is quasi-simple and $|Z(G)| \in \{2,4,3,9\}$.

(b) Every local subgroup $N_G(P)$ of G, where $|P| \notin \{2,4,3\}$, is soluble.

Example. (1) Let *E* be an extraspecial group of order 3^7 and exponent 3. Then Aut(*E*) contains an element α of order 7 which operates irreducibly on E/Z_E and centralizes Z(E) by Lemma 20.13 in [1, Ch. A]. Let E_1 and E_2 be two copies of the group E and let $P = E_1 \lor E_2 :=$ $(E_1 \times E_2)/D$, where $D = \{(a, a^{-1}) \mid a \in Z(E)\}$ be the direct product of the groups E_1 and E_2 with joint center (see [2, p. 49]). Then α induces an automorphism of order 7 on P and for the group $G_1 = P \rtimes \langle \alpha \rangle$ all Conditions (i), (ii), (iii) and (iv) are fulfilled with t = 1.

(2) Let *P* be a cyclic group of order 29³. Then Aut(*E*) contains an element α of order 7. Then Conditions (i), (ii), (iii) and (iv) are fulfilled for the group G₂ = *P* ⋊ ⟨α⟩ with *t* = 3 and *Z* = 1.
(3) Let φ_i: G_i → ⟨α⟩ be an epimorphism of G_i onto ⟨α⟩ and let G = G₁ ∧ G₂ = {(g₁,g₂) | g_i ∈ G_i, Ø₁ (g₁) = Ø₂ (g₂)^c} be the direct product of the groups G₁ and G₂ with joint factorgroup ⟨α⟩ (see [2, p. 50]). Then Conditions (i), (ii), (iii) and (iγ) are fulfilled for G by Parts (1) and (2).

References

1 Doerk, K. Finite soluble groups / K. Doerk, T. Hawkes // Walter de Gruyter, Berlin-New York. – 1992. – 891 p.

2 Huppert, B. Endliche Gruppen I / B. Huppert. – Berlin–Heidelberg–New York : Springer-Verlag. – 1967 – 793 p.