

Ю. А. Гришечкин, В. Н. Капшай г. Гомель, ГГУ имени Ф. Скорины

КВАЗИПОТЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ОДНОМЕРНЫМ ОСЦИЛЛЯТОРНЫМ ПОТЕНЦИАЛОМ И ЗАДАЧА ШТУРМА-ЛИУВИЛЛЯ

Введение. Одной из ключевых проблем, возникающих при исследовании квантовых составных систем на основании квазипотенциального подхода [1, с. 380, 2, с. 125],

212

является поиск решений уравнений, описывающих такие системы. В данной работе рассмотрен метод приближённого аналитического решения уравнения Логунова-Тавхелидзе с одномерным аналогом потенциала гармонического осциллятора:

$$V(\rho) = \omega^2 \rho^2, \qquad -\infty < \rho < \infty, \qquad (1)$$

где ω – константа связи, ρ – координата в одномерном релятивистском конфигурационном представлении (РКП) [3, с. 656].

1. Одномерное уравнение Логунова-Тавхелидзе. В импульсном представлении одномерное уравнение Логунова-Тавхелидзе для связанных состояний системы двух скалярных частиц имеет следующий вид [4, с. 183]:

$$\psi(2E_q, p) = \frac{-m}{2\pi} G(E_q, p) \int_{-\infty}^{\infty} \frac{dk}{\sqrt{m^2 + k^2}} V(p, k) \psi(2E_q, k), \quad -\infty$$

где величина $2E_q$ – энергия системы, p – относительный импульс, m – масса каждой частицы, $\psi(2E_q, p)$ – волновая функция, V(p, k) – потенциал, $G(E_q, p)$ – функция Грина, имеющая форму

$$G(E_q, p) = \left(E_p^2 - E_q^2 - i0\right)^{-1}, \qquad E_p = \sqrt{m^2 + p^2}.$$
(3)

В РКП уравнение (2) принимает следующий вид [5, с 5331]:

$$\psi(\chi_q,\rho) = \int_{-\infty}^{\infty} d\rho' G(\chi_q,\rho-\rho') V(\rho') \psi(\chi_q,\rho'), \quad -\infty < \rho < \infty, \tag{4}$$

где величина $\chi_q > 0$ связана с энергией $2E_q$ двухчастичной системы как

$$2E_q = 2m \operatorname{ch} \chi_q, \qquad (5)$$

 $G(\chi_q, \rho - \rho') - функция Грина, V(\rho)$ потенциал. Входящие в уравнение (4) величины связаны с соответствующими величинами в импульсном представлении посредством интегрального преобразования [3, с. 660], которое в одномерном случае аналогично преобразованию Фурье [5, с. 5331]. Так, преобразование для потенциала имеет следующую форму:

$$\mathbf{V}(p,k) = \int_{-\infty}^{\infty} d\rho \exp\left[-i(\chi - \chi')m\rho\right] V(\rho), \qquad (6)$$

где $\chi(\chi')$ – быстрота, связанная с импульсом p(k) по формуле $p = m \operatorname{sh} \chi(k = m \operatorname{sh} \chi')$. **2. Задача Штурма-Лиувилля в импульсном представлении.** Подстановка (1) в формулу (6) и последующее вычисление интеграла приводит к следующему выражению:

$$V(p,k) = -\frac{2\pi\omega^2}{m^3} \frac{d^2}{d\chi^2} \delta(\chi - \chi').$$
⁽⁷⁾

Подстановка потенциала (7) в уравнение (2) и интегрирование с учётом свойств дельтафункции приводит к дифференциальному уравнению

$$\frac{\omega^2}{m^2} \frac{d^2}{d\chi^2} \psi(\chi_q, \chi) = m^2 \Big[\operatorname{ch}^2 \chi - \operatorname{ch}^2 \chi_q \Big] \psi(\chi_q, \chi) , \qquad (8)$$

где выполнено переобозначение $\psi(2E_q, p) \Rightarrow \psi(\chi_q, \chi)$. Дополнив уравнение (8) граничными условиями

$$\psi(\chi_q,\chi)\Big|_{\chi\to\pm\infty}\cong 0\,,\tag{9}$$

получим задачу Штурма-Лиувилля (ЗШЛ). Условия (9) могут быть получены из интегрального уравнения (2). **3. Приближённое аналитическое решение ЗШЛ.** Рассмотрим приближённое аналитическое решение ЗШЛ (8), (9). Разделим бесконечную область определения волновой функции на две подобласти: I) $\chi < 0$ и II) $\chi > 0$. Решение уравнения (8) будем искать отдельно в каждой из этих подобластей. Дополним функцию $\psi(\chi_q, \chi)$ в каждой из них соответствующим индексом I и II. При этом на решения в каждой из подобластей I и II будет налагаться лишь по одному из граничных условий (9). Таким образом, для решения обсуждаемой ЗШЛ нужны дополнительные условия. Введём условия сшивания для волновых функций и их первых производных на границе $\chi = 0$:

$$\psi_I(\chi_q, 0) = \psi_{II}(\chi_q, 0); \qquad \psi_I'(\chi_q, 0) = \psi_{II}'(\chi_q, 0).$$

В подобласти I осуществим замену переменной $z = \omega^{-1}m^2 \exp(-\chi)/2$. Представим урав нение (8) и соответствующее граничное условие (9) в виде

$$\left[\left(z \frac{d}{dz} \right)^2 - z^2 + \frac{m^4}{2\omega^2} \operatorname{ch} 2\chi_q \right] \psi_I(\chi_q, z) = \frac{m^8}{16\omega^4} \frac{1}{z^2} \psi_I(\chi_q, z), \quad z \ge \omega^{-1} m^2/2, \quad (11)$$
$$\psi_I(\chi_q, z) \Big|_{z \to \infty} \cong 0. \quad (12)$$

Замена переменной $z = \omega^{-1}m^2 \exp(\chi)/2$ в подобласти II, приводит к аналогичному уравнению и граничному условию для волновой функции $\psi_{II}(\chi_q, z)$. Пренебрежём в обоих полученных уравнениях правой частью. Такое приближение оправдано, например, при больших значениях величины ω . Полученным в результате приближения уравнениям удовлетворяют модифицированные функции Бесселя [6, с. 13]. С учётом граничных условий решения представим в форме

$$\psi_{I}(\chi_{q}, z) = C_{I}K_{i\nu}(z); \qquad \psi_{I}(\chi_{q}, z) = C_{II}K_{i\nu}(z),$$
(13)

где $K_{i\nu}(z)$ – функция Макдональда [6, с. 13], C_I и C_{II} – неизвестные константы, величина V связана с величиной χ_q по формуле

$$v = m^2 / \omega \sqrt{1/2 \operatorname{ch} 2\chi_q} \,. \tag{14}$$

Подстановка функции (16) в условия сшивания (10) приводит к линейной системе однородных уравнений относительно величин C_I и C_{II}

$$\begin{pmatrix}
K_{i\nu} \left(\omega^{-1} m^{2} / 2 \right) & -K_{i\nu} \left(\omega^{-1} m^{2} / 2 \right) \\
K_{i\nu}' \left(\omega^{-1} m^{2} / 2 \right) & K_{i\nu}' \left(\omega^{-1} m^{2} / 2 \right) \\
\end{pmatrix} \begin{pmatrix}
C_{I} \\
C_{II}
\end{pmatrix} = 0.$$
(15)

Условием существования ненулевого решения однородной системы является равенство нулю определителя её матрицы. Приравнивая определитель матрицы системы (15) к нулю, мы получаем два трансцендентных уравнения для величины V

$$K_{i\nu+1}\left(\omega^{-1}m^2/2\right) + K_{i\nu-1}\left(\omega^{-1}m^2/2\right) = 0; \qquad K_{i\nu}\left(\omega^{-1}m^2/2\right) = 0.$$
(16)

Равенства (16) являются условиями квантования энергии. Численное решение уравнений (16) показывает, что их корни являются вещественными и они чередуются. При этом, наименьшее значение принимает корень первого уравнения. Обозначим корни первого из уравнений (16) как $v_q^{(2s)}$, а корни второго – $v_q^{(2s+1)}$, где s = 0, 1, 2, ... – номер состояния релятивистского гармонического осциллятора. Аналогичный верхний индекс введём для величин χ_q . Для определения приближённых значений энергии найденные $\chi_q^{(n)}$ должны быть затем подставлены в формулу (5).

С учётом введенных обозначений, приближённые волновые функции могут быть записаны в виде

$$\psi(\chi_{q}^{(2s)},\chi) = C_{I}^{(2s)}K_{i\nu_{2s}}\left(\omega^{-1}m^{2}\exp(|\chi|)/2\right),$$

$$\psi(\chi_{q}^{(2s+1)},\chi) = -\operatorname{sgn}(\chi)C_{I}^{(2s+1)}K_{i\nu_{2s+1}}\left(\omega^{-1}m^{2}\exp(|\chi|)/2\right),$$
(17)

где sgn(χ) – функция знака, величины v_n связаны с корнями $\chi_q^{(n)}$ согласно формуле (14). Константы $C_l^{(n)}$ могут быть найдены из условия нормировки волновых функций.

4. Численные результаты. Обсудим теперь результаты численных расчётов но найденным формулам. В таблице 1 приведены значения энергии. Они были получены двумя способами: численно – методом стрельбы [7, с. 320] и рассмотренным в этой работе методом при m = 1, для разных значений константы связи ω .

T 7 1 D					
$ a_0 u_1 a_1 = \langle u_1 a_0 u_1 a_1 $	эцергии ре	INTURBUCTCKOFO I	гармонического	OCTH	ITTON 2
таолица т Эпа юпил	Jucpi nn pe		approximation of	осці	immopu

Номер состоянияЧисленное решениеПриближённое решение02,97416272872,894284182114,45751526204,434064070025,77068172865,749543315236,98206038276,968864051948,12378062798,111615860848,12378062798,111615860806,32745235486,3023457130111,509920067211,5059921196216,161058826616,1553709125320,484503063520,4818426838424,586374591924,583387608409,92502926289,9113808547118,745871768318,7441886720226,814190927326,8110403639334,378338326234,3770590345441,591569966441,589589097						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Номер состояния	Численное решение	Приближённое решение			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ω=1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	2,9741627287	2,8942841821			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	4,4575152620	4,4340640700			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	5,7706817286	5,7495433152			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3	6,9820603827	6,9688640519			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	8,1237806279	8,1116158608			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ω =5					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	6,3274523548	6,3023457130			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	11,5099200672	11,5059921196			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2	16,1610588266	16,1553709125			
4 24,5863745919 24,5833876084 ω=10 0 9,9250292628 9,9113808547 1 18,7458717683 18,7441886720 2 26,8141909273 26,8110403639 3 34,3783383262 34,3770590345 4 41,5915699664 41,5899589097	3	20,4845030635	20,4818426838			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 🤳	24,5863745919	24,5833876084			
0 9,9250292628 9,9113808547 1 18,7458717683 18,7441886720 2 26,8141909273 26,8110403639 3 34,3783383262 34,3770590345 4 41,5915699664 41,5899589097	ω=10					
118,745871768318,7441886720226,814190927326,8110403639334,378338326234,3770590345441,591569966441,5899589097	0	9,9250292628	9,9113808547			
2 26,8141909273 26,8110403639 3 34,3783383262 34,3770590345 4 41,5915699664 41,5899589097	1	18,7458717683	18,7441886720			
3 34,3783383262 34,3770590345 4 41,5915699664 41,5899589097	2	26,8141909273	26,8110403639			
4 41,5915699664 41,5899589097	3	34,3783383262	34,3770590345			
	4	41,5915699664	41,5899589097			

Сравнение величин энергии, найденных численным решением ЗШЛ с соответствующими величинами, найденными приближённо аналитически, показывает, что с увеличением константы связи ω точность возрастает. Таким образом, приближённый метод более эффективен для решения при больших значениях ω .

На рисунке 1 приведены волновые функции первых четырёх состояний, построенные по формулам (17) при m = 1, $\omega = 5$. Номер графика равен номеру квантового состояния гармонического осциллятора.

Как видно на рисунке, особенностью волновых функций одномерного релятивистского гармонического осциллятора в импульсном представлении является равенство количества нулей номеру состояния. Аналогичным свойством обладают волновые функции в импульсном представлении трёхмерного релятивистского гармонического осциллятора [8, с. 1650], а также волновые функции в случае других типов взаимодействий, например, потенциалов однобозонного обмена [9, с. 438].

а) нулевого и первого состояний; b) второго и третьего состояний

Заключение. В работе получены решения уравнения Логунова-Тавхелидзе для одномерного гармонического осциллятора в релятивистском конфигурационном представлении. Интегральное уравнение в импульсном представлении было сведено к задаче Штурма-Лиувилля, решение которой было получено приближённо аналитически и численно. Приближённые волновые функции были выражены через функцию Макдональда мнимого индекса. При этом были получены трансцендентные уравнения для определения значений энергии релятивистского осциллятора.

Список использованных источников

1 Logunov, A. A. Quasi-optical approach in quantum field theory / A. A. Logunov, A. N. Tavkhelidze // Nuovo Cimento, – 1963. – Vol. 29, № 2. – P. 380–399.

2 Kadyshevsky, V. G. Quasipotential type equation for the relativistic scattering amplitude / V. G. Kadyshevsky // Nucl. Phys. – 1968. – Vol. B6, N_{2} 1. – P. 125–148.

3 Кадышевский, В. Г. Трёхмерная формулировка релятивистской проблемы двух тел / В. Г. Кадышевский, Р. М. Мир-Касимов, Н. Б. Скачков // ЭЧАЯ. – 1972. – Т. 2, № 3. – С. 635–690.

4 Faustov, R. N. Relativistic wavefunction and form-factors of the bound system / R. N. Faustov // Annals of physics. -1973. - Vol. 78, N 1. - P. 176–189.

5 Kapshai, V. N. Relativistic two-particle one-dimensional scattering problem for superposition of δ -potentials / V. N. Kapshai, T. A. Alferova // J. Phys. A. – 1999. – Vol. 32. – P. 5329–5342.

6 Бейтмен, Г. Высшие трансцендентные функции: в 3 т. / Г. Бейтмен, А. Эрдейи. – с изд. – Москва : Наука, 1974. – Т. 2. – 296 с.

7 Калиткин, Н. Н. Численные методы / Н. Н. Калиткин. – Санкт-Петербург : БХВ-Петербург, 2011. – 592 с.

8 Grishechkin, Yu. A. Solution of the Logunov-Tavkhelidze equation for the three-dimensional oscillator potential in the relativistic configuration representation / Yu. A. Grishechkin, V. N. Kapshai // Russian Physics Journal. – 2018. – Vol. 61, N_{2} 9. – P. 1645–1652.

9 Grishechkin, Yu. A. Numerical solution of relativistic problems on bound states of systems of two spinless particles / Yu. A. Grishechkin, V. N. Kapshai // Russian Physics Journal. – 2013. – Vol. 56, N 4. – P. 435–443.