ИЗВЛЕЧЕНИЕ ЧИСЛЕННОЙ ИНФОРМАЦИИ ОБ ИЗОТОПАХ ВОДОРОДА С ПОМОЩЬЮ САЙТА ЦДФЭ

В настоящее время известно семь изотопов ядра водорода $_{1}H$: протон $p=_{1}H^{1}$, дейтрон $d=_{1}H^{2}$, которые стабильны; тритон $t=_{1}H^{3}$, подвергающийся бета-распаду и очень неустойчивые тяжелые изотопы $_{1}H^{4}$, $_{1}H^{5}$, $_{1}H^{6}$, $_{1}H^{7}$. Изотопы водорода уникальны тем, что для каждого из них наблюдаются значительные отличия физических, химических, термодинамических и ядерных свойств, что не имеет аналогов в периодической системе. Этим обусловлен интерес к изучению свойств и характеристик данных изотопов.

Продемонстрируем как получить численные данные для характеристик изотопов водорода $_{1}H$, используя калькуляторы системы реляционных баз данных (БД), находящиеся в свободном доступе на интерактивном веб-сайте Центра данных фотоядерных экспериментов (ЦДФЭ) НИИЯФ МГУ [1]. Калькуляторы дают возможность на основе оцененных ядерных данных рассчитать энергию связи и удельную энергию связи атомных ядер, энергию распадов всех известных ядер, а также вычислить пороги и энергии ядерных реакций. Система БД согласно необходимому запросу строит графики зависимости полученных энергий от полного числа нуклонов A.

На рисунке 1 приведена поисковая форма БД калькулятор «Энергии связи ядер» для определения энергии связи, удельной энергии связи и разности энергий связи, полученных экспериментально и с помощью формулы Вайцзеккера, для изотопов водорода *1H*, а также выходная форма запроса [1]. Энергия связи является важнейшей характеристикой прочности ядра и вычисляется по формулам в соответствии с определением [2]

$$E_{es}(Z,A) = Zm_p + Nm_n - M_{go}(Z,A)$$

и согласно теории Вайцзеккера

$$E_{ce} = a_1 A - a_2 A^{\frac{2}{3}} - a_3 Z^2 A^{-\frac{1}{3}} - a_4 (N - Z)^2 A^{-1} + \delta E_{ce},$$

где $\alpha_1 = 15,75$ МэВ; $\alpha_2 = 17,8$ МэВ; $\alpha_3 = 0,71$ МэВ; $\alpha_4 = 23,7$ МэВ; $|\delta| = 34 \cdot A^{-3/4}$. Удельная энергия связи – это энергия связи, приходящаяся на один нуклон: $\mathcal{E}_{cs}(Z,A) = \frac{E_{cs}(Z,A)}{A}.$ 220

Каждое поле формы может бы	ть пустым. [Помощь				
Входные параметры					
Z:	1 Призер: 20, 40-60				
N:	Пример: 20, 40-60				
A:	Пример: 20, 40-60				
Варванты расчета:	 Энергия связи Уделькая энергия связи Разность энергий связи (Эксперимент - Вайцзеккер) 				
На осн абсцисс:	$\bigcirc Z \bigcirc N $ A				
Вычи	построить график Очистить				

Result - Есв(А,Z	ζ), ε(Α,Ζ	Z) = Eci	B(A,Z)/	Вычислить Построить гра A, $\delta(A,Z) = Ecb(A,Z)e$	фик Очистить xp - Ecb(A,Z)theor:	
Elem	Z	N	A	Есв	ε	δ
Н	1	0	1	0.0000	0.0000	26.4600
Н	1	1	2	2.2245	1.1123	19.7603
Н	1	2	3	8.4821	2.8274	6.6499
Н	1	3	4	5.6036	1.4009	23.6249
Н	1	4	5	6.6851	1.3370	23.0579
Н	1	5	6	5.7467	0.9578	42.4805
Н	1	6	7	6.6182	0.9455	46.5178

Используя полученные численные данные из таблицы рисунка 1 можно построить графики зависимости трех видов энергий связи от полного числа нуклонов А для изотопов водорода 1Н (рисунок 2).

Рисунок 2 – График зависимости энергии связи от полного числа нуклонов А для изотопов водорода 1Н

Из графиков рисунка 2 видно, что энергия связи изотопов водорода 1Н плавно растет с увеличением числа нуклонов А и лежит в интервале примерно 2–9 МэВ (красная линия), удельная энергия связи для всех изотопов водорода 1H, исключая стабильный протон, примерно одинакова и находится в пределах 1-3 МэВ/нуклон (зеленая линия). Максимальное значение удельной энергии связи 2,8274 МэВ/нуклон (рисунок 1) соответствует тритию $_{1}H^{3}$, в ядре которого нуклоны связаны наиболее прочно. Данные результаты подтверждают выводы о том, что удельная энергия связи легких атомных ядер мала из-за поверхностных эффектов, происходящих в ядре, что объясняется на основе полуэмпирической формулы Вайцзеккера.

На рисунке 3 приведена поисковая форма БД калькулятор «Энергии распадов» и выходная форма запроса для расчёта энергии распада выбранного ядра [1]. Калькулятор позволяет определить энергии α -распада, электронного или β -распада, позитронного или β^+ -распада, а также электронного захвата. В качестве исследуемых ядер выбираем изотопы водорода $_1H$.

Из таблицы рисунка 3 видно, что α -распаду не подвержен ни один изотоп водорода *IH*, т. к. это легкое ядро, а α -распад характерен в основном для тяжелых ядер. Электронный или β -распад наблюдается у 5 из 7 изотопов водорода *IH* (A = 3-7), протон и дейтрон стабильны. Позитронный или β^+ -распад и *e*-захват не характерны для изотопов водорода *IH*.

На основе полученных численных данных можно построить график зависимости энергии β -распада, так как другие отсутствуют, от полного числа нуклонов A для изотопов водорода $_{1}H$ (рисунок 4). Под энергией, выделяющаяся в результате β -распада Q_{β} , следует понимать максимальную энергию, которую приобретает электрон в результате β -распада. Ее обычно называют верхней границей β -спектра. Из рисунка 4 видно, что энергия β -распада увеличивается с ростом числа A и лежит в интервале 0-24,5 МэВ. Для тяжелых изотопов водорода (A = 4-7) она примерно одинакова. Явно выраженные максимумы и минимумы энергии на графике рисунка 4 свидетельствует об эффекте спаривания одинаковых нуклонов, ири этом изотопы водорода с четным числом нуклонов A = 4 и 6 обладают большей энергией распада, а с нечетным числом нуклонов A = 5 и 7– меньшей.

Рассмотрим работу калькулятора «Пороги и энергии реакций» системы базы данных [1]. Он дает возможность рассчитать энергетические пороги и энергии любых ядерных реакций: под действием любых налетающих частиц и для любой комбинации образующихся продуктов. Энергия реакции Q – это кинетическая энергия, выделяющаяся или поглощающаяся в процессе реакции. Порог ядерной реакции *Е*_{пор} – минимальная кинетическая энергия налетающей частицы, при которой начинается эндотермический процесс (Q < 0). Формула для вычисления энергии реакции через известные дефекты 4 OPMHB масс частиц и ядер Δ , участвующих в данной реакции, имеет вид [3]:

$$Q = \Delta_1 + \Delta_2 - \Delta_3 - \Delta_4.$$

Порог ядерной реакции определяется формулой:

$$E_{nop} = \left| Q \right| \left(1 + \frac{m_1}{m_2} \right),$$

где m_1 и m_2 – массы налетающей частицы и ядра-мишени соответственно.

На рисунке 5 приведена поисковая форма калькулятора для определения порога и энергии термоядерной реакции на Солнце углеродно-азотного цикла [2]:

$$p+_6C^{12}\rightarrow_7N^{13}+\gamma$$

а также результат работы калькулятора или выходная форма запроса. В соответствии с видом реакции налетающей частицей в выпадающем меню выбирается протон *p*, как ядро-мишень указывается ядро с Z = 6 и A = 12, как вылетающая частица 1 отмечен γ квант с Z = 0 и A = 0, в поле ядро-продукт реакции система автоматически выдает ядро с Z = 7 и A = 13.

Рисунок - Входная и выходная формы запроса по определению энергетического порога и энергии термоядерной реакции углеродно-азотного цикла

Как видно из данных, представленных на рисунке 5, порог термоядерной реакции $C^{12} \rightarrow \gamma N^{13} + \gamma$ не определяется, так как реакция является экзотермической Q = 1,94349 МэВ (Q > 0), следовательно, происходит при любой энергии налетающей частицы.

Таким образом, можно сделать вывод, что применение калькуляторов «Энергии связи ядер», «Энергии распадов» и «Пороги и энергии реакций» позволяет на основе современных экспериментальных данных рассчитать необходимые численные значения с заданной точностью, максимально быстро и доступно. Калькуляторы веб-сайта ЦДФЭ дают возможность провести качественную наглядную интерпретацию полученных результатов с помощью автоматически сформированных таблиц числовых данных и соответствующих им графиков. При этом вычисления ограниченны только количеством известных изотопов и численной информацией по их свойствам.

Список использованных источников

1 Центр данных фотоядерных экспериментов (ЦДФЭ) [Электронный ресурс] / Центр данных фотоядерных экспериментов (ЦДФЭ) – ЦДФЭ, 2003. – Режім доступа : http://cdfe.sinp.msu.ru/index.ru.html – Дата доступа : 14.10.2020.

2 Широков, Ю. М. Ядерная физика / Ю. М. Широков, Н. П. Юдин. – Москва : Наука, 1980. – 728 с.

3 Варламов, В. В. Физика ядра и банки ядерных данных: учебное пособие / В. В. Варламов, Н. Г. Гончарова, Б. С. Ишханов. – Москва: Университетская книга, 2010. – 246 с.