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Abstract. Let G be a finite group and F a class of finite groups. We say that G is a quasi-F-

group if for every F-eccentric chief factor H=K of G and every x A G, x induces an inner auto-
morphism on H=K . In this paper, the general theory of quasi-F-groups is given and some of its
applications are considered. In particular, some characterizations of quasisoluble groups and
quasisupersoluble groups are obtained.

1 Introduction

Throughout this paper, all groups are finite. We use S, U and N to denote the
classes of all soluble groups, supersoluble groups and nilpotent groups, respectively.
The symbol AzB denotes the semidirect product of A and B, where B is an operator
group on the group A.

Let F be a class of groups. A chief factor H=K of a group G is called F-central if
H=Kz ðG=CGðH=KÞÞ A F (see [13, pp. 127–128] or [3, Definition 2.4.3]). Other-
wise, it is called F-eccentric.

Recall that a group G is said to be quasinilpotent if for every chief factor H=K of
G and every x A G, x induces an inner automorphism on H=K (see [5, p. 124]). Note
that since for every central chief factor H=K an element of G induces the trivial auto-
morphism on H=K , one can say that a group G is quasinilpotent if for every non-

central chief factor H=K of G and every x A G, x induces an inner automorphism
on H=K . This elementary observation allows us to consider the following analogue
of quasinilpotent groups.

Definition 1.1. Let F be a class of groups and G a group. We say that G is a quasi-F-

group if for every F-eccentric chief factor H=K of G, every automorphism of H=K
induced by an element of G is inner.
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By analogy with p-quasinilpotent groups (defined in [6]), we introduce also the
following local version of Definition 1.1.

Definition 1.2. Let F be a class of groups, G a group and p a prime. We say that G is

a p-quasi-F-group if for every F-eccentric chief factor H=K of G of order divisible by
p, the automorphisms of H=K induced by all elements of G are inner.

We use F� and F�
p to denote the class of all quasi-F-groups and the class of all

p-quasi-F-groups, respectively.
Recall that a formation F is a homomorph of groups such that each group G has a

smallest normal subgroup (denoted by GF) whose quotient is still in F. A formation
F is said to be (solubly) saturated (see [2, IV, Definition 4.9]) if it contains each
group G with G=FðNÞ A F for some normal (soluble) subgroup N of G. It is known
that the class of all quasinilpotent groups is a solubly saturated formation (see [12])
and every normal subgroup of any quasinilpotent group is a quasinilpotent group
(see [5, X, (13.3)]).

The following theorem shows that the classes F� and F�
p have the same

properties.

Theorem A. Suppose that F is a saturated formation containing N. Then both F�

and F�
p are solubly saturated formations. Moreover, if F contains every normal sub-

group of every group in F, then every normal subgroup of any quasi-F-group (resp.
any p-quasi-F-group) is also a quasi-F-group (resp. a p-quasi-F-group).

Corollary 1.3. For every saturated formation F containing N, both F� and F�
p are

Baer-local formations.

For the definition of Baer-local formations, see [2, IV, Definition 4.9].
Theorem A is the basis for our other results. In particular, using this theorem we

prove the following result which shows that in the definition of quasi-F-groups we
need only consider chief factors between FðFðGÞÞ and F �ðGÞ.

Theorem B. Let F be a saturated formation containing N and G a group. Then G

is a quasi-F-group if and only if for every F-eccentric G-chief factor H=K between

FðF ðGÞÞ and F �ðGÞ, the automorphisms of H=K induced by all elements of G are

inner.

Corollary 1.4. If for every non-central G-chief factor H=K between FðFðGÞÞ and

F �ðGÞ, all automorphisms of H=K induced by elements of G are inner, then G is

quasinilpotent.

The normal structure of quasinilpotent groups is well known: a group G is quasi-
nilpotent if and only if G=ZyðGÞ is semisimple (see, for example, [5, X, Theorem
13.6]); recall that a group G is called semisimple if either G ¼ 1 or G is a direct prod-
uct of non-abelian simple groups.
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For the p-quasi-F-groups and for the quasi-F-groups, we give the following result.

Theorem C. Let F be a saturated formation containing N and let p be a prime. Sup-

pose that F contains every normal subgroup of every group in F. Then

(1) G is a p-quasi-F-group if and only if G=ZFp
ðGÞ is semisimple and the order of each

composition factor of G=ZFp
ðGÞ is divisible by p, and

(2) G is a quasi-F-group if and only if G=ZFðGÞ is semisimple.

In this theorem, ZFðGÞ denotes the F-hypercenter of G (see [2, p. 389]); ZFp
ðGÞ

denotes the product of all normal subgroups H of G such that every G-chief factor
of H of order divisible by p is F-central in G.

Following Robinson [9], we call a group G an SC-group if every chief factor of G
is a simple group. By Theorem C, we see that every quasisupersoluble group is an
SC-group.

On the basis of Theorem C, one can easily obtain examples of quasisupersoluble
and p-quasisupersoluble groups. For example, let A ¼ Cz hai, where jCj ¼ 7 and
a is an automorphism of C with jaj ¼ 3. Let B ¼ A� A7 and G ¼ A5 o B. Then by
Theorem C, G is 7-quasisupersoluble but not 7-quasinilpotent. The group B is quasi-
supersoluble and not quasinilpotent. The group C ¼ Bz hbi, where b is an inner
automorphism of A7 with jbj ¼ 2 and b acts trivially on A, is an SC-group but not a
quasisupersoluble group.

Theorem A, B and C are proved in Section 2. In Section 3, we give some character-
izations of quasisupersoluble groups and of quasisoluble groups.

All unexplained notation and terminology is standard, as used for example in [1]–
[3] and [5].

2 Proofs of Theorems A, B and C

Lemma 2.1. For any class F of groups, the classes F� and F�
p are non-empty forma-

tions.

Proof. This follows in an obvious way by using the proof of [5, X, Lemma 13.3]. r

A function f of the form f : P ! fgroup formationsg (where P is the set of all
primes) is called a formation function. The symbol LFð f Þ denotes the set of all
groups G such that either G ¼ 1 or G0 1 and G=CGðH=KÞ A f ðpÞ for every chief
factor H=K of G and every prime p dividing jH=K j. For a formation F, if there
exists a formation function f such that F ¼ LFð f Þ, then F is called a local forma-
tion. It is well known that a non-empty formation is local if and only if it is saturated.
A formation is called normally hereditary if it contains every normal subgroup of
each of its groups.

Lemma 2.2. Let LcKcHcDcNcG, where L, D, N are normal subgroups of G

and K , H are normal subgroups of N. Suppose that D=L is a chief factor of G and
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H=K is a chief factor of N. If F is a normally hereditary saturated formation and

D=Lz ðG=CGðD=LÞÞ A F, then H=K z ðN=CNðH=KÞÞ A F.

Proof. Since F is normally hereditary saturated formation, by [2, IV, Theorem 3.16]
there exists a formation function f such that F ¼ LFð f Þ and any value f ðpÞ of f

is a normally hereditary formation contained in F. Since D=Lz ðG=CGðD=LÞÞ A F
we have G=CGðD=LÞ A f ðpÞ for all primes p dividing jD=Lj by [3, Theorem 3.1.6] or
[13, Theorem 17.14]. Since the formation F is normally hereditary by hypothesis,
N=CNðH=KÞ A f ðpÞ for all primes p dividing jH=K j. Then by [3, Theorem 3.1.6]
again, we obtain that H=Kz ðN=CNðH=KÞÞ A F. r

Lemma 2.3. Let LcKcHcDcNcG where L, D, N are normal subgroups of G

and K , H are normal subgroups of N. Suppose that D=L is a chief factor of G and

H=K is a chief factor of N. If x A N and x induces an inner automorphism on D=L,
then x induces an inner automorphism on H=K.

Proof. See the proof of [5, X, Lemma 13.1]. r

Following Doerk and Hawkes [2, IV, (4.10)], we write CpðGÞ for the intersection
of the centralizers of all abelian p-chief factors of the group G, with CpðGÞ ¼ G if G
has no such chief factors.

For every function f of the form

f : PU f0g ! fgroup formationsg; ð*Þ

following [14] we put

CLFð f Þ ¼ fG jG=GS A f ð0Þ and G=CpðGÞ A f ðpÞ for any p A pðComðGÞÞg:

Here, GS denotes the S-radical of G (i.e., the largest normal soluble subgroup of G);
ComðGÞ denotes the class of all abelian simple groups A such that AGH=K for
some composition factor H=K of G.

Lemma 2.4. Let H=K be a chief factor of a group G. Suppose that the automorphism of

H=K induced by an element g of G is inner; then gK A ðH=KÞCG=KðH=KÞ.

Proof. Since the automorphism of H=K induced by g is also induced by some element
xK of H=K we have gx�1K A CGðH=KÞ: Hence the result follows. r

Let p be a prime and F a non-empty class of groups. We write FðpÞ for the inter-
section of all formations containing the set fG=Op 0;pðGÞ jG A Fg. The symbol Np

denotes the class of all p-groups.

Proposition 2.5. Let F be a saturated formation containing all nilpotent groups and let

p be a prime. Then
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(1) F�
p ¼ CLFð f �

p Þ, where f �
p ðpÞ ¼ NpFðpÞJF and f �

p ð0Þ ¼ F�
p ¼ f �

p ðqÞ for all

primes q0 p, and

(2) F� ¼ CLFð f �Þ, where f �ð0Þ ¼ F� and f �ðqÞ ¼ NqFðqÞJF for all primes q.

Proof. Since F is a saturated formation containing all nilpotent groups, by [2, IV,
Theorem 4.6] and by [3, Theorem 3.1.15] we have F ¼ LFð f Þ, where f ðqÞ ¼ FðqÞ
for all primes q. Then by [3, Corollary 3.1.17] we have F ¼ LFðF Þ, where
F ðqÞ ¼ Nq f ðqÞJF for all primes q.

(1) Let f �
p be a function of the form ð*Þ such that f �

p ðpÞ ¼ NpFðpÞ ¼ F ðpÞ and

f �
p ð0Þ ¼ F�

p ¼ f �
p ðqÞ for all primes q0 p. Put Mp ¼ CLFð f �

p Þ. Then we only need

to prove that F�
p ¼ Mp. Suppose that F�

p UMp and let G be a group of minimal

order in F�
p nMp. Then R ¼ GMp is the only minimal normal subgroup of G.

Suppose that R is an abelian p-group and let C ¼ CGðRÞ. If R=1 is F-eccentric,
then G ¼ RC ¼ C by Lemma 2.4 since G A F�

p : This means that R=1 is F-central
since NJF. This contradiction shows that R is F-central. If C ¼ R, then
R ¼ CpðGÞ and so

G=C ¼ G=CpðGÞ A FðpÞ ¼ f �
p ðpÞ:

It follows that G A Mp, a contradiction. Hence R0C. Since R is F-central, we have
T ¼ Rz ðG=CÞ A FJF�

p . But since jT j < jGj we have T A Mp by the choice of G.
Hence G=C A FðpÞ ¼ f �

p ðpÞ: Since R ¼ GMp we have ðG=RÞ=CpðG=RÞ A f �ðpÞ: But
obviously C VC0 ¼ CpðGÞ, where C0=R ¼ CpðG=RÞ: Hence G=CpðGÞ A f �

p ðpÞ: This
implies that G A Mp, a contradiction. Hence R is non-abelian and so RcCqðGÞ for
all primes q. Then

G=CqðGÞG ðG=RÞ=ðCqðGÞ=RÞ ¼ ðG=RÞ=CqðG=RÞ A f �
p ðqÞ

for all primes q. On the other hand, since G A F�
p we have G=GS A F�

p ¼ f �
p ð0Þ.

Thus G A Mp. This contradiction shows that F�
p JMp.

Next suppose that Mp UF�
p and let G be a group of minimal order in MpnF�

p .
Then R ¼ GF�

p is the only minimal normal subgroup of G. If R=1 is F-central or is
a p 0-group, then every F-eccentric chief factor of G of order divisible by p is above
R. Since G=R A F�

p , every element of G=R induces an inner automorphism on each

F-eccentric chief factor of G=R of order divisible by p. Hence G A F�
p by the

Jordan–Hölder theorem. This contradiction shows that the factor R=1 is F-eccentric
of order divisible by p. Suppose that R is non-abelian. Then GS ¼ 1. Since G A Mp

we have GGG=GS A f �ð0Þ ¼ F�
p . This contradiction shows that R is an abelian

p-group. Let C ¼ CGðRÞ. By [2, IV, (1.5)], we have T ¼ Rz ðG=CÞ A Mp. Sup-
pose that R0C. Then jT j ¼ jRz ðG=CÞj < jGj. The minimal choice of G implies
that T A F�

p . Obviously CT ðRÞ ¼ R and so Rz ðT=CTðRÞÞGT ¼ Rz ðG=CÞ:
Then since R=1 is F-eccentric in G, it is F-eccentric in T . Thus T ¼ CR ¼ C by
Lemma 2.4. It follows that R=1 is F-central in T since NJF by hypothesis. This
contradiction shows that R ¼ C and hence R ¼ CpðGÞ. Since G A Mp we conclude
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that G=R A F ðpÞ ¼ f �
p ðpÞ and consequently G A NpF ðpÞJFJF�

p . This contra-
diction shows that F�

p ¼ Mp:

(2) Let f � be a function of the form ð*Þ such that f �ðqÞ ¼ F ðqÞ ¼ NqFðqÞ for all
primes q and f �ð0Þ ¼ F�. Then as above it may be proved that F� ¼ CLFð f �Þ and
so (2) holds. r

Proof of Theorem A. By [2, IV, (4.11)], for any normal soluble subgroup N of a group
G, we have CpðG=FðNÞÞ ¼ CpðGÞ=FðNÞ. Hence by Proposition 2.5, the formations
F�

p and F� are solubly saturated.
Now suppose that F is a normally hereditary formation. We prove that F� and

F�
p are also normally hereditary. Let N be a normal subgroup of the quasi-F-group

(resp. of the p-quasi-F-group) G. If LcKcHcDcN, where D=L is a chief fac-
tor of G and H=K is an F-eccentric chief factor of N (resp. H=K is an F-eccentric
chief factor of N of order divisible by p), then by Lemma 2.2, D=L is an F-eccentric
chief factor of G (resp. D=L is an F-eccentric chief factor of G of order divisible by
p). By hypothesis, every element n A N induces an inner automorphism in D=L. Then
by Lemma 2.3, n induces an inner automorphism in H=K . Therefore N is a quasi-F-
group (resp. is a p-quasi-F-group). This completes the proof. r

Proof of Corollary 1.3. This follows from Theorem A and [2, IV, (4.17)]. r

Proof of Theorem B. Let F ¼ F ðGÞ. We only need to show that if for every
F-eccentric G-chief factor H=K between FðF Þ and F �ðGÞ every automorphism
of H=K induced by an element of G is inner, then G A F�. Suppose that this
is false and let G be a counter-example of minimal order. By Theorem A,
F �ðG=FðFÞÞ ¼ F �ðGÞ=FðF Þ. Hence the hypothesis holds for G=FðFÞ. If FðF Þ0 1,
then the minimal choice of G implies that G=FðFÞ A F�: Then by Theorem A again,
G A F�. This contradiction shows that FðFÞ ¼ 1. Therefore for every F-eccentric
G-chief factor H=K of F �ðGÞ, every automorphism of H=K induced by an element of
G is inner. It follows that every G-chief factor of F is central.

Now let f � be a function of the form ð*Þ such that f �ð0Þ ¼ F� and
f �ðqÞ ¼ NqFðqÞJF for all primes q. Then F� ¼ CLFð f �Þ by Proposition 2.5.
Hence G=CGðH=KÞ A f �ðjH=K jÞ for every G-chief factor H=K of F . On the other
hand, if H=K is a chief factor of G between F and F �ðGÞ, then

CG=KðH=KÞðH=KÞ ¼ ðCGðH=KÞ=KÞðH=KÞ ¼ G=K

by hypothesis and Lemma 2.4. Hence G=CGðH=KÞGH=K is semisimple. Conse-
quently G=CGðH=KÞ A F� ¼ f �ð0Þ. Since, by Corollary 1.3, F� is a Baer-local for-
mation, by using the analogue of [3, Theorem 3.1.6] for Baer-local formations and the
well-known Schmid–Shemetkov theorem on F�-stable automorphism groups (see
[11, II, Theorem 9.3] or [3, Theorem 3.2.6]), we obtain that G=CGðF �ðGÞÞ A F�.
But by [5, X, (13.12)], CGðF �ðGÞÞcF , hence G A F� by Theorem A. This contradic-
tion completes the proof. r
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Proof of Theorem C. (1) The proof is similar to the proof of [5, X, Theorem 13.6]. We
only need to prove that if G is a p-quasi-F-group, then G=ZFp

ðGÞ is semisimple and
the order of each of its composition factors is divisible by p. Let Z ¼ ZFp

ðGÞ. If
Z0 1, then the inductive hypothesis may be applied to G=Z by Lemma 2.1, and
the assertion holds. Now assume that Z ¼ 1: Let R be a minimal normal subgroup
of G and C ¼ CGðRÞ. Then p divides jRj, since otherwise RcZ, which is impossible.
Since F contains all nilpotent groups, ZðGÞ ¼ 1 and hence C0G. By Theorem A,
C is a p-quasi-F-group. Hence by the inductive hypothesis, C=ZFp

ðCÞ is semisimple
and the order of each composition factor is divisible by p. Since Z ¼ 1, R is
F-eccentric. Therefore G ¼ RC by Lemma 2.4 and so RVCcZðGÞ ¼ 1. It follows
that G ¼ R� C. Hence R is non-abelian and ZFp

ðCÞ ¼ 1. This shows that G is semi-
simple and the order of each of its composition factors is divisible by p.

(2) This follows from (1). r

3 Some characterizations of quasisoluble groups and quasisupersoluble groups

The characterizations of quasisupersolubility and quasisolubility of groups in this
section are based on the following concept.

Definition 3.1. Let H be a subgroup of a group G. We say that H is nearly normal in
G if G has a normal subgroup T such that T VHcHG and HT ¼ HG.

The following lemma can be proved by direct calculations.

Lemma 3.1. Let G be a group and HcKcG.

(1) Suppose that H is normal in G. Then K=H is nearly normal in G=H if and only if

K is nearly normal in G.

(2) If H is nearly normal in G, then H is nearly normal in K.

(3) Suppose that H is normal in G. Then HE=H is nearly normal in G=H for every

nearly normal subgroup E of G satisfying ðjHj; jEjÞ ¼ 1.

Lemma 3.2. Let X be a normal subgroup of a group G. Suppose that every maximal

subgroup of X is nearly normal in G. Then X is soluble.

Proof. We prove the result by induction on jGj. Let N be a minimal normal subgroup
of G contained in X . Then X=N is soluble. Indeed, if N ¼ X , this is clear. Otherwise,
by Lemma 3.1 (1) the hypothesis holds for G=N and so X=N is soluble by induction. If
G has a minimal normal subgroup R0N with RcX , then X GX=1 ¼ X=ðN VRÞ
is soluble. Therefore we may assume that N is the only minimal normal subgroup of
G contained in X . Now let p be a prime dividing jNj and Np be a Sylow p-subgroup
of N. Then Np ¼ N VP for some Sylow p-subgroup P of X . Obviously PcNX ðNpÞ.
Also, by the Frattini argument, X ¼ NNX ðNpÞ. Suppose that N0Np. Then for
some maximal subgroup M of X we have NX ðNpÞcM. Hence NGM and p does
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not divide jX : Mj. It follows that MG ¼ 1. By hypothesis M is nearly normal in G.
Let T be a normal subgroup of G such that X ¼ MT ¼ MG and T VMcMG ¼ 1.
Then X ¼ T zM and NcT . It is also clear that T is a minimal normal subgroup
of G. Hence N ¼ T and so p divides jX : Mj ¼ jNj. This contradiction shows that N
is a p-group. Consequently X is soluble. r

Theorem 3.3. A group G is quasisoluble if and only if G has a normal subgroup X such

that G=X is semisimple, every maximal subgroup of X is nearly normal in G and for

every x A G and every G-chief factor H=K of X , the automorphism of H=K induced by

x is also induced by some element of X.

Proof. We first prove the ‘if ’ part by induction on jGj. Let N be a minimal normal
subgroup of G contained in X . We claim that G=N is quasisoluble. Indeed, if N ¼ X ,
this is clear. Otherwise, by Lemma 3.1 (2) the hypothesis holds for G=N and so by
induction G=N is quasisoluble. By Lemma 3.2, X is soluble and hence N is a p-group
for some prime p. Now let C ¼ CGðNÞ and g A G. Then by the hypothesis the auto-
morphism of N induced by g is induced by some element x of X . Hence gx�1 A C and
so G ¼ CX . Then G=CGX=ðX VCÞ is soluble. This means that the factor N=1 is
S-central. But since G=N is quasisoluble, by Theorem C, we obtain that G is quasi-
soluble.

Now we prove the necessity part. Let X ¼ ZSðGÞ be the S-hypercenter of the qua-
sisoluble group G. Then by Theorem C, G=X is a semisimple group. Moreover, for
any G-chief factor H=K of X the group H=Kz ðG=CGðH=KÞÞ is soluble. Hence
G=CGðH=KÞ is soluble and so XCGðH=KÞ ¼ G. It follows that for every x A G the
automorphism of H=K induced by x is also induced by some element of X . Finally,
we prove that every maximal subgroup M of X is nearly normal in G. Suppose that
MG 0 1. Then by induction M=MG is nearly normal in G=MG. Hence by Lemma
3.1 (1), M is nearly normal in G. Now let MG ¼ 1 and let N be a minimal normal
subgroup of G such that NM ¼ X . Let D ¼ N VM. Since NcZSðGÞ, N is abelian.
Hence D is normal in X . On the other hand, CGðNÞcNGðDÞ. This implies that D is
normal in G ¼ XCGðNÞ and so DcMG ¼ 1. Thus M is nearly normal in G and the
theorem is proved. r

Recall that a subgroup H of a group G is said to be c-normal in G if there
exists a normal subgroup T of G such that G ¼ HT and H VT cHG ¼ coreGðHÞ
(see [15]).

Corollary 3.4 (Wang [15]). A group G is soluble if and only if every maximal subgroup

M of G is c-normal in G.

Proof. Suppose that G is soluble and M is a maximal subgroup of G. If M is normal
in G, then G ¼ GM and GVM ¼ M ¼ MG. Now assume that M is not normal in G

and let T=MG be a chief factor of G. Then T=MG is abelian. Hence T VMcMG

and MT ¼ G. The converse is obvious by Lemma 3.2 since by the hypothesis we
have MG ¼ MðMG VTÞ. r
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Corollary 3.5. A group G is soluble if and only if every maximal subgroup of G is

nearly normal in G.

Lemma 3.6. Let P be a normal p-subgroup of a group G. If P is elementary abelian and

every maximal subgroup of P is nearly normal in G, then every minimal normal sub-

group of G contained in P has prime order.

Proof. Let N be any minimal normal subgroup of G contained in P. Suppose that
jNj > p and let M be a maximal subgroup of P such that NM ¼ P. Then M is not
normal in G and so MG ¼ P. Let T be a normal subgroup of G such that P ¼ MT

and T VMcMG. Suppose that MG 0 1. By Lemma 3.1 the hypothesis holds
for G=MG and so jNMG=MGj ¼ jNj ¼ p by induction, a contradiction. Hence
MG ¼ 1 and consequently T VM ¼ 1. This implies that jT j ¼ p and T 0N. But by
induction, we have also that jTN=T j ¼ jNj ¼ p. This contradiction completes the
proof. r

Lemma 3.7. Suppose that every maximal subgroup M of every non-cyclic Sylow sub-

group of a group G is nearly normal in G. Then G is soluble.

Proof. Suppose that this lemma is false and let G be a counter-example of minimal
order. Let P be a Sylow p-subgroup of G, where p is the smallest prime dividing
jGj. Then p ¼ 2 by the Feit–Thompson theorem on groups of odd order. Clearly
P is not cyclic (see [10, (10.1.9)]). Suppose that for some maximal subgroup V of P
we have VG 0 1. Then by Lemma 3.1 the hypothesis holds for G=VG and so
G=VG is soluble, which implies the solubility of G. Therefore VG ¼ 1 for all max-
imal subgroups V of P. Let P ¼ V1V2 for some maximal subgroups V1 and V2 of
P. By hypothesis G has a normal subgroup Ti such that Di ¼ VG

i ¼ ViTi and
Ti VVi c ðViÞG ¼ 1. Clearly, PVTi is a Sylow 2-subgroup of Ti. But since
Ti VVi ¼ 1 we have jTi VPjc 2. Hence Ti is soluble and so VG

i is soluble. It follows
that D ¼ VG

1 VG
2 is soluble and therefore G is soluble since G=D is a 2 0-group. This

contradiction completes the proof. r

Theorem 3.8. The following properties are equivalent:

(1) G is quasisupersoluble;

(2) G has a normal subgroup E such that G=E is semisimple and every maximal sub-

group M of every Sylow subgroup of F �ðEÞ is nearly normal in G;

(3) G has a normal subgroup E such that G=E is quasisupersoluble and every maximal

subgroup M of every Sylow subgroup of F �ðEÞ is nearly normal in G.

Proof. (1) ) (2) Let E ¼ ZUðGÞ. By Theorem C, G=E is semisimple. Since E is
supersoluble, F �ðEÞ ¼ FðEÞ. Let M be a maximal subgroup of some Sylow subgroup
P of F ðEÞ. Since FðEÞ is characteristic in E and P is characteristic in FðEÞ, P is nor-
mal in G. We now prove that M is nearly normal in G. If M is normal in G, this is

On some classes of finite quasi-F-groups 415

Unauthenticated
Download Date | 10/8/19 2:49 PM

РЕПОЗИТОРИЙ ГГ
У И

МЕНИ Ф
. С

КО
РИНЫ



clear. Hence let M0MG. Suppose that F ¼ FðGÞVP0 1. Let L be a minimal nor-
mal subgroup of G contained in F. Then F ðEÞ=L ¼ F �ðEÞ=L ¼ F �ðE=LÞ by [4, III,
(3.5)] and M=L is a maximal subgroup of the Sylow subgroup P=L of F �ðE=LÞ.
Hence by induction M=L is nearly normal in G=L. It follows from Lemma 3.1 that
M is nearly normal in G. Now suppose that F ¼ 1. Then by [12, II, Lemma 7.9], P
is a product of minimal normal subgroups N1;N2; . . . ;Nt of G. Obviously, for some
i we have Ni GM. Since Ni cZUðGÞ, jNij is a prime. Hence Ni VM ¼ 1 and
MNi ¼ MG ¼ P. This shows that M is nearly normal in G.

(2) ) (3) This is obvious since a semisimple group is clearly quasisupersoluble.
(3) ) (1) Suppose that G has a normal subgroup E such that G=E is quasisuper-

soluble and every maximal subgroup M of every Sylow subgroup of F �ðEÞ is nearly
normal in G. We shall prove that G is quasisupersoluble. Suppose that this is false
and let G be a counter-example with minimal jGj jEj. Let p be prime dividing
jF �ðEÞj and let P be a Sylow p-subgroup of F �ðEÞ. In view of Lemma 3.7 we have
F �ðEÞ ¼ FðEÞ.

We first show that no minimal subgroup of P is normal in G. Suppose that
some minimal subgroup L of P is normal in G and let C ¼ CEðLÞ. We claim that
the hypothesis is true for ðG;CÞ. Indeed, by Lemma 2.1, G=C ¼ G=ðE VCGðLÞÞ is
quasisupersoluble. In addition, since F �ðEÞ ¼ F ðEÞcC, we have F �ðCÞ ¼ F �ðEÞ.
Hence by Lemma 3.1, the hypothesis holds for ðG;CÞ. The choice of ðG;EÞ
implies that C ¼ E. It follows that LcZðEÞ. Thus by Theorem C we have
F �ðC=LÞ ¼ F �ðEÞ=L. Now, by Lemma 3.1, the hypothesis holds for ðG=L;C=LÞ.
Hence G=L is quasisupersoluble and so G is quasisupersoluble, a contradiction.
Therefore no minimal subgroup of P is normal in G.

If FðPÞ ¼ 1, then P is elementary abelian p-group. Hence by Lemma 3.6 for every
minimal normal subgroup L of G contained in P we have jLj ¼ p, which is a contra-
diction. Thus FðPÞ0 1. By Theorem A, we have F �ðE=FðPÞÞ ¼ F �ðEÞ=FðPÞ. Then
by Lemma 3.1, the hypothesis holds for ðG=FðPÞ;E=FðPÞÞ. But jG=FðPÞj < jGj and
hence G=FðPÞ is quasisupersoluble by the choice of G. Now by Theorem A again, G
is quasisupersoluble. This contradiction completes the proof. r

In view of Lemma 3.7, we obtain from Theorem 3.8 the following new character-
ization of the supersoluble groups.

Corollary 3.9. A group G is supersoluble if and only if every maximal subgroup of every

Sylow subgroup of F �ðGÞ is nearly normal in G.

Corollary 3.10 (Ramadan [8]). Let G be a soluble group. If all maximal subgroups of

the Sylow subgroups of F ðGÞ are normal in G, then G is supersoluble.

Corollary 3.11 (Li and Guo [7]). Let G be a group and E a soluble normal subgroup of

G with supersoluble quotient G=E. If all maximal subgroups of the Sylow subgroups

of F ðEÞ are c-normal in G, then G is supersoluble.
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