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On some classes of finite quasi-Z-groups

Wenbin Guo* and Alexander N. Skiba
(Communicated by D. J. S. Robinson)

Abstract. Let G be a finite group and # a class of finite groups. We'say that G is a quasi-Z-
group if for every F-eccentric chief factor H/K of G and every x € G, »induces an inner auto-
morphism on H /K. In this paper, the general theory of quasi-Z=groups is given and some of its
applications are considered. In particular, some characterizations of quasisoluble groups and
quasisupersoluble groups are obtained.

1 Introduction

Throughout this paper, all groups are_finite. We use .%, % and ./ to denote the
classes of all soluble groups, supersoluble’groups and nilpotent groups, respectively.
The symbol 4 > B denotes the semidirect product of 4 and B, where B is an operator
group on the group A.

Let # be a class of groups.“A chief factor H/K of a group G is called F-central if
H/K X (G/Cg(H/K)) e % (see [13, pp. 127-128] or [3, Definition 2.4.3]). Other-
wise, it is called F-eccentric.

Recall that a group @ 1is said to be quasinilpotent if for every chief factor H/K of
G and every x /G, x“induces an inner automorphism on H/K (see [5, p. 124]). Note
that since for every central chief factor H/K an element of G induces the trivial auto-
morphismyon ‘i /K, one can say that a group G is quasinilpotent if for every non-
central ,chief.factor H/K of G and every x € G, x induces an inner automorphism
on H/K. This elementary observation allows us to consider the following analogue
of quasinilpotent groups.

Definition 1.1. Let # be a class of groups and G a group. We say that G is a quasi-#-
group if for every F-eccentric chief factor H/K of G, every automorphism of H/K
induced by an element of G is inner.
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408 W. Guo and A. N. Skiba

By analogy with p-quasinilpotent groups (defined in [6]), we introduce also the
following local version of Definition 1.1.

Definition 1.2. Let # be a class of groups, G a group and p a prime. We say that G is
a p-quasi-F-group if for every F~eccentric chief factor H/K of G of order divisible by
p, the automorphisms of H/K induced by all elements of G are inner.

We use 7" and 7, to denote the class of all quasi-Z-groups and the class, of all
p-quasi-Z-groups, respectively.

Recall that a formation & is a homomorph of groups such that each greup G has a
smallest normal subgroup (denoted by G7) whose quotient is still in . A formation
Z 1is said to be (solubly) saturated (see [2, IV, Definition 4.9])flit contains each
group G with G/®(N) € # for some normal (soluble) subgroup N,of G. It is known
that the class of all quasinilpotent groups is a solubly saturated*formation (see [12])
and every normal subgroup of any quasinilpotent group(is, a» quasinilpotent group
(see [5, X, (13.3)]).

The following theorem shows that the classes, & and 97],* have the same
properties.

Theorem A. Suppose that F is a saturated formation containing A'. Then both F*
and 7, are solubly saturated formations. ‘Mereover, if F contains every normal sub-
group of every group in F, then everynormal subgroup of any quasi-F-group (resp.
any p-quasi-F-group) is also a quasi=ZF-group (resp. a p-quasi-F-group).

Corollary 1.3. For every satutated formation F containing A", both 7" and 7, are
Baer-local formations.

For the definition«ofi Baer-local formations, see [2, IV, Definition 4.9].

Theorem A is the'basis for our other results. In particular, using this theorem we
prove the followingsresult which shows that in the definition of quasi-Z-groups we
need only consider chief factors between ®(F(G)) and F*(G).

Theorem\B. ‘Let F be a saturated formation containing A" and G a group. Then G
is a.quasi-F-group if and only if for every F-eccentric G-chief factor H/K between
D(F(G)) and F*(G), the automorphisms of H/K induced by all elements of G are
inner.

Corollary 1.4. If for every non-central G-chief factor H/K between ®(F(G)) and
F*(G), all automorphisms of H/K induced by elements of G are inner, then G is
quasinilpotent.

The normal structure of quasinilpotent groups is well known: a group G is quasi-
nilpotent if and only if G/Z.,(G) is semisimple (see, for example, [5, X, Theorem
13.6]); recall that a group G is called semisimple if either G = 1 or G is a direct prod-
uct of non-abelian simple groups.
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On some classes of finite quasi-Z-groups 409

For the p-quasi-Z-groups and for the quasi-Z-groups, we give the following result.

Theorem C. Let F be a saturated formation containing N and let p be a prime. Sup-
pose that F contains every normal subgroup of every group in F. Then

(1) Gisa p-quasi-F-group if and only if G/Z 7 ,(G) is semisimple and the order of each
composition factor of G/Zz,(G) is divisible by p, and

(2) G is a quasi-F-group if and only if G/Z#(G) is semisimple.

In this theorem, Z7(G) denotes the F-hypercenter of G (see [2, p. 389]); Z#,(G)
denotes the product of all normal subgroups H of G such that every G-chief\factor
of H of order divisible by p is #-central in G.

Following Robinson [9], we call a group G an SC-group if every chieffactor of G
is a simple group. By Theorem C, we see that every quasisupersolubleé group is an
SC-group.

On the basis of Theorem C, one can easily obtain examples-of quasisupersoluble
and p-quasisupersoluble groups. For example, let 4 = € Xa), where |C| = 7 and
o is an automorphism of C with |«| = 3. Let B= 4.x Aq'and G = A5 B. Then by
Theorem C, G is 7-quasisupersoluble but not 7-quasinilpotent. The group B is quasi-
supersoluble and not quasinilpotent. The group®C'=/B > (£, where f§ is an inner
automorphism of A7 with || = 2 and f acts trivially on 4, is an SC-group but not a
quasisupersoluble group.

Theorem A, B and C are proved in Section 2. In Section 3, we give some character-
izations of quasisupersoluble groups.and of quasisoluble groups.

All unexplained notation and tetrminology is standard, as used for example in [1]—-
[3] and [5].

2 Proofs of Theorems A, B and C

Lemma 2.1. For any class 7 of groups, the classes 7" and F, are non-empty forma-
tions.

Proof. Thisfollows in an obvious way by using the proof of [5, X, Lemma 13.3]. [

A function f of the form f : P — {group formations} (where IP is the set of all
prifes)is called a formation function. The symbol LF(f) denotes the set of all
groups G such that either G=1 or G # 1 and G/Cg(H/K) € f(p) for every chief
factor H/K of G and every prime p dividing |H/K|. For a formation %, if there
exists a formation function f such that # = LF(f), then # is called a local forma-
tion. It is well known that a non-empty formation is local if and only if it is saturated.
A formation is called normally hereditary if it contains every normal subgroup of
each of its groups.

Lemma 2.2. Let L < K < H<D <N < G, where L, D, N are normal subgroups of G
and K, H are normal subgroups of N. Suppose that D/L is a chief factor of G and
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410 W. Guo and A. N. Skiba

H/K is a chief factor of N. If F is a normally hereditary saturated formation and
D/L > (G/Cs(D/L)) e 7, then H/K % (N/Cy(H/K)) € 7.

Proof. Since # is normally hereditary saturated formation, by [2, IV, Theorem 3.16]
there exists a formation function f such that # = LF(f) and any value f(p) of f
is a normally hereditary formation contained in . Since D/L > (G/Cg(D/L)) €.Z,
we have G/Cg(D/L) € f(p) for all primes p dividing |D/L| by [3, Theorem 3.1.6}.0r
[13, Theorem 17.14]. Since the formation % is normally hereditary by hypothesis,
N/Cn(H/K) € f(p) for all primes p dividing |H/K|. Then by [3, Theorem 3.1.6]
again, we obtain that H/K X (N/Cy(H/K))e #. O

Lemma 2.3. Let L< K < H <D <N < Gwhere L, D, N are normual stiibgroups of G
and K, H are normal subgroups of N. Suppose that D/L is a(chief*factor of G and
H/K is a chief factor of N. If x € N and x induces an inner automorphism on D/L,
then x induces an inner automorphism on H /K.

Proof. See the proof of [5, X, Lemma 13.1]. O

Following Doerk and Hawkes [2, IV, (4.10)],,we write C”(G) for the intersection
of the centralizers of all abelian p-chief factors‘of the group G, with C?(G) = G if G
has no such chief factors.

For every function f of the form

f :PUA0} + {group formations}, (%)
following [14] we put
CLF(f) ={G|G/G% e f(0) and G/C*?(G) € f(p) for any p € n(Com(G))}.
Here, G denotesithe -radical of G (i.e., the largest normal soluble subgroup of G);
Com(G) denotes-the class of all abelian simple groups 4 such that 4 ~ H/K for

some coniposition factor H/K of G.

Lemma 2.4. Let H/K be a chief factor of a group G. Suppose that the automorphism of
H/K jinduced by an element g of G is inner; then gK € (H/K)Cgq/x(H/K).

Proof. Since the automorphism of H/K induced by g is also induced by some element
xK of H/K we have gx 'K € Cq(H/K). Hence the result follows. [

Let p be a prime and % a non-empty class of groups. We write # (p) for the inter-
section of all formations containing the set {G/O, ,(G) |G e # }. The symbol .1,
denotes the class of all p-groups.

Proposition 2.5. Let & be a saturated formation containing all nilpotent groups and let
p be a prime. Then
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(1) #,; = CLF(},), where [ (p) = N7 (p) = F and [;(0) = ZF, = [f(q) for all
primes q # p, and

(2) #* = CLFE(f*), where f*(0) = 7" and f*(q) = NyF (q) S F for all primes q.

Proof. Since 7 is a saturated formation containing all nilpotent groups, by [2, IV,
Theorem 4.6] and by [3, Theorem 3.1.15] we have & = LF(f), where f(q) = Z (q)
for all primes ¢. Then by [3, Corollary 3.1.17] we have # = LF(F), where
F(q) = A, f(q) € Z for all primes q.

(1) Let /" be a function of the form (x) such that f*(p) = 4,7 (p) = F(p) and
1, (0) =7, = f(q) for all primes ¢ # p. Put .4, = CLF(f ). Then we/onlyneed
to prove that 7, i = .#,. Suppose that F ”* & My and let G be a group, of.minimal
order in 3‘7[)*\% ». Then R = G“r is the only minimal normal subgrotp of G.

Suppose that R is an abelian p-group and let C = Cg(R). If R/Nis’ F-eccentric,
then G = RC = C by Lemma 2.4 since G € Z,". This means,that R/1 is Z-central
since 4" < %. This contradiction shows that R is Z-central. If C = R, then
R = C?(G) and so

G/C=G/CP(G) e F(p) # [;\(p)-

It follows that G € .#,, a contradiction. Hence'R 5*C. Since R is Z-central, we have
T=R>(G/C)eF =7, Butsince |T| < |G| we have T € .#, by the choice of G.
Hence G/C € F(p) = f,"(p). Since R = G*“"we have (G/R)/C?(G/R) € f*(p). But
obviously CN Cy = C?(G), where Cy/R= C?(G/R). Hence G/CP(G) € f,"(p). This
implies that G € .#,, a contradiction\Hence R is non-abelian and so R < C?(G) for
all primes ¢g. Then

G/C(G) = (GIR)/(CU(G)/R) = (G/R)/C!(G/R) € 1, (q)

for all primes g. Onthe,other hand, since G € 7, we have G/Gy € 7," = 1,(0).
Thus G € .#,. This contradiction shows that 7" < .7,

Next suppose that ., ¢ 7, and let G be a group of minimal order in .#,\7,".
Then R = G% | is the only mlmmal normal subgroup of G. If R/1 is F-central or is
a p’-group, then every Z-eccentric chief factor of G of order divisible by p is above
R. Sin¢e G/R e 7, every element of G/R induces an inner automorphism on each
F—eccentric chief factor of G/R of order divisible by p. Hence Ge 7, by the
Jordan—Holder theorem. This contradiction shows that the factor R/1 is % -eccentric
of\order divisible by p. Suppose that R is non-abelian. Then G = 1. Since G € .#,
we have G = G/Gy € f*(0) = Z,. This contradiction shows that R is an abelian
p-group. Let C = Cg(R). By [2, IV, (1.5)], we have T = R < (G/C) € .#,. Sup-
pose that R # C. Then |T| = |R X (G/C)| < |G|. The minimal choice of G implies
that 7 e Z,. Obviously Cr(R) =R and so R (T/Cr(R)) =T =R > (G/C).
Then since R/1 is F -eccentric in G, it is % -eccentric in 7. Thus T = CR = C by
Lemma 2.4. Tt follows that R/1 is & -central in T since /" = % by hypothesis. This
contradiction shows that R = C and hence R = C?(G). Since G € .4, we conclude
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that G/R e F(p) = f, (p) and consequently G e A, F(p) = # < Z,. This contra-
diction shows that 7 = ./,,.

(2) Let f* be a function of the form (*) such that /*(q) = F(q) = 437 (q) for all
primes ¢ and f*(0) = # *. Then as above it may be proved that #* = CLF(f™*) and
so (2) holds. [

Proof of Theorem A. By [2, 1V, (4.11)], for any normal soluble subgroup N of a‘group
G, we have C?(G/®(N)) = C?(G)/®(N). Hence by Proposition 2.5, the formations
7, and 7 " are solubly saturated.

Now suppose that Z is a normally hereditary formation. We proy€ that # * and
.Z)* are also normally hereditary. Let N be a normal subgroup of the‘quasi-Z-group
(resp. of the p-quasi-Z-group) G. If L < K < H < D < N, where D/L is a chief fac-
tor of G and H/K is an Z-eccentric chief factor of N (resp. H,/K'is an Z-eccentric
chief factor of N of order divisible by p), then by Lemma 2.2, D/L is an F-eccentric
chief factor of G (resp. D/L is an F-eccentric chief factor ‘'of G of order divisible by
p)- By hypothesis, every element » € N induces an inner,automorphism in D/L. Then
by Lemma 2.3, n induces an inner automorphism in H/K. Therefore N is a quasi-Z-
group (resp. is a p-quasi-Z-group). This completes the proof. [

Proof of Corollary 1.3. This follows from¢Theorem A and [2, IV, (4.17)]. [

Proof of Theorem B. Let F = F(G).\We only need to show that if for every
F-eccentric G-chief factor H/K-between ®(F) and F*(G) every automorphism
of H/K induced by an element of G is inner, then G € # . Suppose that this
is false and let G be a counter-example of minimal order. By Theorem A,
F*(G/®(F)) = F*(G)/®(F). Hence the hypothesis holds for G/®(F). If ®(F) # 1,
then the minimal choice\of G implies that G/®(F) € # *. Then by Theorem A again,
G e #*. This contradiction shows that ®(F) = 1. Therefore for every -eccentric
G-chief factor H/K of F*(G), every automorphism of H/K induced by an element of
G is inner. It follows that every G-chief factor of F is central.

Now let %* be a function of the form (%) such that f*(0)=%" and
[ (q) =NeF (q) = # for all primes ¢q. Then #* = CLF(f*) by Proposition 2.5.
Hence \6/C;(H/K) € f*(|H/K|) for every G-chief factor H/K of F. On the other
handyif"H /K is a chief factor of G between F and F*(G), then

Co/x(H/K)(H/K) = (Cc(H/K)/K)(H/K) = G/K

by hypothesis and Lemma 2.4. Hence G/Cq(H/K) = H/K is semisimple. Conse-
quently G/Cs(H/K) € F* = f*(0). Since, by Corollary 1.3, #* is a Baer-local for-
mation, by using the analogue of [3, Theorem 3.1.6] for Baer-local formations and the
well-known Schmid—Shemetkov theorem on Z *-stable automorphism groups (see
[11, II, Theorem 9.3] or [3, Theorem 3.2.6]), we obtain that G/Cqs(F*(G)) € F*.
But by [5, X, (13.12)], C4(F*(G)) < F, hence G € # * by Theorem A. This contradic-
tion completes the proof. []
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Proof of Theorem C. (1) The proof is similar to the proof of [5, X, Theorem 13.6]. We
only need to prove that if G is a p-quasi-#-group, then G/Z (G) is semisimple and
the order of each of its composition factors is divisible by p. Let Z =Z5(G). If
Z # 1, then the inductive hypothesis may be applied to G/Z by Lemma 2.1, and
the assertion holds. Now assume that Z = 1. Let R be a minimal normal subgroup
of G and C = Cg(R). Then p divides |R|, since otherwise R < Z, which is impossible.
Since # contains all nilpotent groups, Z(G) = 1 and hence C # G. By Theorem A,
C is a p-quasi-Z-group. Hence by the inductive hypothesis, C/Z 5 (C) is semisimple
and the order of each composition factor is divisible by p. Since Z = 1R s
F-eccentric. Therefore G = RC by Lemma 2.4 and so RN C < Z(G) = 1. It follows
that G = R x C. Hence R is non-abelian and Zz (C) = 1. This shows that G 1§ semi-
simple and the order of each of its composition factors is divisible by p.
(2) This follows from (1). [

3 Some characterizations of quasisoluble groups and quasisupersoluble groups

The characterizations of quasisupersolubility and quasisolubility of groups in this
section are based on the following concept.

Definition 3.1. Let H be a subgroup of a group G.\We'say that H is nearly normal in
G if G has a normal subgroup T such that TWO'H< Hg and HT = HO.

The following lemma can be proved.by direct calculations.

Lemma 3.1. Let G be a group and'H <K < G.

(1) Suppose that H is normakin G. Then K/H is nearly normal in G/H if and only if
K is nearly normal in G.

(2) If H is nearly normal'in G, then H is nearly normal in K.

(3) Suppose thatHvis normal in G. Then HE/H is nearly normal in G/H for every
nearly normal subgroup E of G satisfying (|H|, |E|) = 1.

Lemma 3.2."Let X be a normal subgroup of a group G. Suppose that every maximal
subgroup of X is nearly normal in G. Then X is soluble.

Proof. We prove the result by induction on |G|. Let N be a minimal normal subgroup
of\G contained in X. Then X/N is soluble. Indeed, if N = X, this is clear. Otherwise,
by Lemma 3.1 (1) the hypothesis holds for G/N and so X /N is soluble by induction. If
G has a minimal normal subgroup R # N with R < X, then X =~ X/l = X/(NNR)
is soluble. Therefore we may assume that N is the only minimal normal subgroup of
G contained in X. Now let p be a prime dividing |N| and N, be a Sylow p-subgroup
of N. Then N, = NN P for some Sylow p-subgroup P of X. Obviously P < Ny (N,).
Also, by the Frattini argument, X = NNy(N,). Suppose that N # N,. Then for
some maximal subgroup M of X we have Nx(N,) < M. Hence N £ M and p does
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not divide |X : M]|. It follows that M = 1. By hypothesis M is nearly normal in G.
Let T be a normal subgroup of G such that X = MT =M% and TN M < Mg = 1.
Then X =T < M and N < T. It is also clear that 7 is a minimal normal subgroup
of G. Hence N = T and so p divides |X : M| = |N|. This contradiction shows that N
is a p-group. Consequently X is soluble. [

Theorem 3.3. A group G is quasisoluble if and only if G has a normal subgroup X such
that G/ X is semisimple, every maximal subgroup of X is nearly normal in G land_for
every x € G and every G-chief factor H/K of X, the automorphism of H | K-induced by
x is also induced by some element of X.

Proof. We first prove the ‘if” part by induction on |G|. Let N besaiminimal normal
subgroup of G contained in X. We claim that G/N is quasisoluble. Indeed, if N = X,
this is clear. Otherwise, by Lemma 3.1(2) the hypothesis holds*for G/N and so by
induction G/N is quasisoluble. By Lemma 3.2, X is solubl¢ and hence N is a p-group
for some prime p. Now let C = C(N) and g € G. Then by the hypothesis the auto-
morphism of N induced by ¢ is induced by some element.x of X. Hence gx~' € C and
so G=CX. Then G/C =~ X/(X N C) is soluble, This'means that the factor N/I is
S -central. But since G/N is quasisoluble, by/Theorem C, we obtain that G is quasi-
soluble.

Now we prove the necessity part. Let X '=Z(G) be the &-hypercenter of the qua-
sisoluble group G. Then by Theorem*C; G/X is a semisimple group. Moreover, for
any G-chief factor H/K of X the'group H/K X (G/Cg(H/K)) is soluble. Hence
G/Cg(H/K) is soluble and so XCg(H/K) = G. It follows that for every x € G the
automorphism of H/K induced by x is also induced by some element of X. Finally,
we prove that every maximal subgroup M of X is nearly normal in G. Suppose that
Mg # 1. Then by inductionsM /Mg is nearly normal in G/ M. Hence by Lemma
3.1(1), M is nearly normal in G. Now let M; =1 and let N be a minimal normal
subgroup of G such that NM = X. Let D = NN M. Since N < Z(G), N is abelian.
Hence D is normal in X. On the other hand, C(N) < Ng(D). This implies that D is
normal in G'="XCg(N) and so D < Mg = 1. Thus M is nearly normal in G and the
theorem is\proved. []

Recalll that a subgroup H of a group G is said to be c¢-normal in G if there
exists)a normal subgroup 7 of G such that G = HT and HNT < Hg = coreg(H)
(see [15]).

Corollary 3.4 (Wang [15]). 4 group G is soluble if and only if every maximal subgroup
M of G is c-normal in G.

Proof. Suppose that G is soluble and M is a maximal subgroup of G. If M is normal
in G, then G = GM and GN M = M = M. Now assume that M is not normal in G
and let T /Mg be a chief factor of G. Then T/My; is abelian. Hence TN M < Mg
and MT = G. The converse is obvious by Lemma 3.2 since by the hypothesis we
have M = M(M°NT). O
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Corollary 3.5. A group G is soluble if and only if every maximal subgroup of G is
nearly normal in G.

Lemma 3.6. Let P be a normal p-subgroup of a group G. If P is elementary abelian and
every maximal subgroup of P is nearly normal in G, then every minimal normal sub-
group of G contained in P has prime order.

Proof. Let N be any minimal normal subgroup of G contained in P. Suppose that
|[N| > p and let M be a maximal subgroup of P such that NM = P. Then M-is not
normal in G and so M ¢ = P. Let T be a normal subgroup of G such that.P'< MT
and TNM < Mg. Suppose that Mg # 1. By Lemma 3.1 the hypothesis) holds
for G/Mg and so |[NMg/Mg| =|N|= p by induction, a contradiction. Hence
Mg =1 and consequently 7N M = 1. This implies that |7| = p and T % N. But by
induction, we have also that |TN/T| = |N| = p. This contradiction Completes the
proof. [

Lemma 3.7. Suppose that every maximal subgroup M of every non-cyclic Sylow sub-
group of a group G is nearly normal in G. Then G is soluble.

Proof. Suppose that this lemma is false and let G'be’a counter-example of minimal
order. Let P be a Sylow p-subgroup of G, where p is the smallest prime dividing
|G|. Then p =2 by the Feit-Thompson theorem on groups of odd order. Clearly
P is not cyclic (see [10, (10.1.9)]). Suppose that for some maximal subgroup V' of P
we have Vs # 1. Then by Lemma 3.1/ the hypothesis holds for G/Vs and so
G/ Vg is soluble, which implies the solubility of G. Therefore V' =1 for all max-
imal subgroups V of P. Let“P = V|V, for some maximal subgroups V| and V; of
P. By hypothesis G has a normal subgroup 7; such that D; = V.9 = V;T; and
TiNV; < (Vi)g=1. Cleasly," PNT; is a Sylow 2-subgroup of 7;. But since
T;NV; =1 we have |[T20'P| < 2. Hence T; is soluble and so ¥, is soluble. It follows
that D = VZV7 is(soluble and therefore G is soluble since G/D is a 2'-group. This
contradiction completes the proof. []

Theorem 3:8..The following properties are equivalent:

(1) G is quasisupersoluble;

(2)°G has a normal subgroup E such that G/E is semisimple and every maximal sub-
group M of every Sylow subgroup of F*(E) is nearly normal in G;

(3) G has a normal subgroup E such that G/E is quasisupersoluble and every maximal
subgroup M of every Sylow subgroup of F*(E) is nearly normal in G.

Proof. (1) = (2) Let E =Z4(G). By Theorem C, G/E is semisimple. Since E is
supersoluble, F*(E) = F(E). Let M be a maximal subgroup of some Sylow subgroup
P of F(E). Since F(E) is characteristic in E and P is characteristic in F(E), P is nor-
mal in G. We now prove that M is nearly normal in G. If M is normal in G, this is

Unauthenticated
Download Date | 10/8/19 2:49 PM



416 W. Guo and A. N. Skiba

clear. Hence let M # M ¢. Suppose that ® = ®(G) N P # 1. Let L be a minimal nor-
mal subgroup of G contained in ®. Then F(E)/L = F*(E)/L = F*(E/L) by [4, 111,
(3.5)] and M /L is a maximal subgroup of the Sylow subgroup P/L of F*(E/L).
Hence by induction M /L is nearly normal in G/L. It follows from Lemma 3.1 that
M is nearly normal in G. Now suppose that ® = 1. Then by [12, II, Lemma 7.9], P.
is a product of minimal normal subgroups Ny, Ns, ..., N; of G. Obviously, for some
i we have N; £ M. Since N; <Zy(G), |N;| is a prime. Hence N;N M =1 and
MN; = M = P. This shows that M is nearly normal in G.

(2) = (3) This is obvious since a semisimple group is clearly quasisupersoluble.

(3) = (1) Suppose that G has a normal subgroup E such that G/E is\quasisuper-
soluble and every maximal subgroup M of every Sylow subgroup of (F*(FE) is nearly
normal in G. We shall prove that G is quasisupersoluble. Suppose . that this is false
and let G be a counter-example with minimal |G||E|. Let (p be*prime dividing
|F*(E)| and let P be a Sylow p-subgroup of F*(E). In view of Eémma 3.7 we have
F*(E)=F(E).

We first show that no minimal subgroup of P is normal in G. Suppose that
some minimal subgroup L of P is normal in G and let,C = Cg(L). We claim that
the hypothesis is true for (G, C). Indeed, by Lemma 2.1, G/C = G/(ENCg(L)) is
quasisupersoluble. In addition, since F*(E) = F(E) < C, we have F*(C) = F*(E).
Hence by Lemma 3.1, the hypothesis holds for (G, C). The choice of (G,E)
implies that C = E. It follows that L'<Z(E). Thus by Theorem C we have
F*(C/L)=F*(E)/L. Now, by Lemma 3.1, the hypothesis holds for (G/L,C/L).
Hence G/L is quasisupersoluble and so G is quasisupersoluble, a contradiction.
Therefore no minimal subgroup’of P is normal in G.

If ®(P) = 1, then P is elendentary abelian p-group. Hence by Lemma 3.6 for every
minimal normal subgroup,L of.G contained in P we have |L| = p, which is a contra-
diction. Thus ®(P) # 1By Theorem A, we have F*(E/®(P)) = F*(E)/®(P). Then
by Lemma 3.1, the hypothesis holds for (G/®(P), E/®(P)). But |G/®(P)| < |G| and
hence G/®(P) is quasisupersoluble by the choice of G. Now by Theorem A again, G
is quasisupersoluble: This contradiction completes the proof. []

In viewrof kemma 3.7, we obtain from Theorem 3.8 the following new character-
ization, of the supersoluble groups.

Corollary 3.9. A group G is supersoluble if and only if every maximal subgroup of every
Sylow subgroup of F*(G) is nearly normal in G.

Corollary 3.10 (Ramadan [8]). Let G be a soluble group. If all maximal subgroups of
the Sylow subgroups of F(G) are normal in G, then G is supersoluble.

Corollary 3.11 (Li and Guo [7]). Let G be a group and E a soluble normal subgroup of
G with supersoluble quotient G/E. If all maximal subgroups of the Sylow subgroups
of F(E) are c-normal in G, then G is supersoluble.
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