© Journal "Algebra and Discrete Mathematics"

On finite groups with Hall normally embedded Schmidt subgroups

Viktoryia N. Kniahina and Victor S. Monakhov

Communicated by L. A. Kurdachenko

To the 70th anniversary of Academician of the National Academy of Sciences of Belarus V. I. Yanchevskii

ABSTRACT. A subgroup H of a finite group G is said to be Hall normally embedded in G if there is a normal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a non-nilpotent finite group whose all proper subgroups are nilpotent. In this paper, we prove that if each Schmidt subgroup of a finite group G is Hall normally embedded in G, then the derived subgroup of G is nilpotent.

1. Introduction

All groups in this paper are finite. We use the standard notation and terminology of [1,2].

A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. O. Y. Schmidt [3] initiated the investigations of such groups. He proved that a Schmidt group is biprimary (i. e. its order is divided by only two different primes), one of its Sylow subgroups is normal and other one is cyclic. In [3], it was also specified the index system of the chief series of a Schmidt group. Reviews on the structure of the Schmidt

²⁰¹⁰ MSC: 20E28, 20E32, 20E34.

Key words and phrases: finite group, Hall subgroup, normal subgroup, derived subgroup, nilpotent subgroup.

groups and their applications in the theory of finite groups are available in [4,5].

Since every non-nilpotent group contains a Schmidt subgroup, Schmidt groups are universal subgroups of groups. So naturally the properties of Schmidt subgroups contained in a group have a significant influence on the group structure. Groups with some restrictions on Schmidt subgroups was investigated in many papers. For example, groups with subnormal Schmidt subgroups were studied in [6]–[8], and groups with Hall Schmidt subgroups were described in [9].

The normal closure of a subgroup H in a group G is the smallest normal subgroup of G containing H. It is clear that the normal closure

$$H^G = \langle H^x \mid x \in G \rangle = \bigcap_{H \leqslant N \triangleleft G} N$$

coincides with the intersection of all normal subgroups of G containing H.

A subgroup H of a group G is said to be Hall normally embedded in G if there is a normal subgroup N of G such that $H \leq N$ and H is a Hall subgroup of N, i.e., (|H|, |N:H|) = 1. In this situation the subgroup H is a Hall subgroup of H^G . It is clear that all normal and all Hall subgroups of G are Hall normally embedded in G.

Groups in which some subgroups are normally embedded were studied, for example, in [10]–[13].

In this paper, we study groups with Hall normally embedded Schmidt subgroups. The following theorem is proved.

Theorem. If each Schmidt subgroup of a group G is Hall normally embedded in G, then the derived subgroup of G is nilpotent.

2. Preliminaries

Throughout this paper, p and q are always different primes. Recall that a p-closed group is a group with a normal Sylow p-subgroup, and a p-nilpotent group is a group of order $p^a m$, where p does not divide m, with a normal subgroup of order m. A pd-group is a group of the order divided by p. A group of order $p^a q^b$, where a and b are non-negative integers, is called a $\{p,q\}$ -group.

If q divides $p^n - 1$ and does not divide $p^{n_1} - 1$ for all $1 \le n_1 < n$, then we say that the positive integer n is the order of p modulo q.

Let G be a group. We denote by $\pi(G)$ the set of all prime divisors of the order of G. We use Z(G), $\Phi(G)$ and F(G) to denote the center,

the Frattini subgroup and the Fitting subgroup of G, respectively. As usual, $O_p(X)$ and $O_{p'}(X)$ are the largest normal p- and p'-subgroups of X, respectively. We denote by [A]B a semidirect product of two subgroups A and B with a normal subgroup A. The symbol \square indicates the end of the proof.

We need the following properties of Schmidt groups.

Lemma 1 ([3,5]). Let S be a Schmidt group. Then the following statements hold:

- (1) $\pi(S) = \{p, q\}, S = [P]\langle y \rangle, \text{ where } P \text{ is a normal Sylow } p\text{-subgroup}, \langle y \rangle \text{ is a non-normal Sylow } q\text{-subgroup}, y^q \in Z(S);$
- (2) $P/\Phi(P)$ is a minimal normal subgroup of $G/\Phi(P)$, $\Phi(P) = P' \leqslant Z(G)$;
- (3) $|P/\Phi(P)| = p^n$, n is the order of p modulo q.

Following [6], a Schmidt group with a normal Sylow p-subgroup and a non-normal cyclic Sylow q-subgroup is called an $S_{\langle p,q\rangle}$ -group. So if G is an $S_{\langle p,q\rangle}$ -group, then G=[P]Q, where P is a normal Sylow p-subgroup and Q is a non-normal cyclic Sylow q-subgroup.

Lemma 2 ([6, Lemma 6]). (1) If a group G has no p-closed Schmidt subgroups, then G is p-nilpotent.

- (2) If a group G has no 2-nilpotent Schmidt 2d-subgroups, then G is 2-closed.
- (3) If a p-soluble group G has no p-nilpotent Schmidt pd-subgroups, then G is p-closed.

Lemma 3. Let A be a subgroup of a group G such that A is a Hall subgroup of A^G .

- (1) If H is a subgroup of G, $A \leq H$, then A is a Hall subgroup of A^H .
- (2) If N is a normal subgroup of G, then AN/N is a Hall subgroup of $(AN/N)^{(G/N)}$.

Proof. 1. By the hypothesis, A is a Hall subgroup of A^G and $A \leq H \cap A^G$. Since A^G is normal in G, it follows that $H \cap A^G$ is normal in H. So $A^H \leq H \cap A^G \leq A^G$ and A is a Hall subgroup of A^H .

2. Since A^GN is normal in G and $AN \leq A^GN$, so $(AN/N)^{(G/N)} \leq A^GN/N$. By the hypothesis, A is a Hall subgroup of A^G , thus AN/N is a Hall subgroup of $(AN/N)^{(G/N)}$.

Lemma 4. Let K and D be subgroups of a group G such that D is normal in K. If K/D is an $S_{\langle p,q\rangle}$ -subgroup, then each minimal supplement L to D in K has the following properties:

- (1) L is a p-closed $\{p,q\}$ -subgroup;
- (2) all proper normal subgroups of L are nilpotent;
- (3) L includes an $S_{\langle p,q\rangle}$ -subgroup [P]Q such that D does not include Q and $L = ([P]Q)^L = Q^L$;
- (4) if [P]Q is a Hall subgroup of $([P]Q)^G$, then L = [P]Q.

Proof. Assertions (1)–(3) were established in [6, Lemma 2]. Let us verify assertion (4). If [P]Q is a Hall subgroup of $([P]Q)^G$, then [P]Q is a Hall subgroup of $([P]Q)^L = L$ by Lemma 3(1), and L = [P]Q.

Lemma 5. If H is a subgroup of a group G generated by all $S_{\langle p,q\rangle}$ -subgroups of G, then G/H has no $S_{\langle p,q\rangle}$ -subgroups.

Proof. Assume the contrary. Suppose that A/H is a $S_{\langle p,q\rangle}$ -subgroup of G/H. By Lemma 4, in A there is an $S_{\langle p,q\rangle}$ -subgroup S such that $S^AH=A$. However, $S^A\leqslant H$ by the choice of H, i. e A=H, a contradiction. \square

Lemma 6. Let each $S_{\langle p,q\rangle}$ -subgroup of a group G be Hall normally embedded in G.

- (1) If H is a subgroup of G, then each $S_{\langle p,q\rangle}$ -subgroup of H is Hall normally embedded in H.
- (2) If N is a normal subgroup of G, then each $S_{\langle p,q\rangle}$ -subgroup of G/N is Hall normally embedded in G/N.

Proof. 1. Let A be an $S_{\langle p,q\rangle}$ -subgroup of H. Therefore, A is an $S_{\langle p,q\rangle}$ -subgroup of G. By the hypothesis, A is a Hall subgroup of A^G . By Lemma 3 (1), A is a Hall subgroup of A^H .

2. Let K/N be an $S_{\langle p,q\rangle}$ -subgroup of G/N, and let L be a minimal supplement to N in K. By Lemma 4 (4), L is an $S_{\langle p,q\rangle}$ -subgroup, therefore, L is Hall normally embedded in G. By Lemma 3 (2), LN/N = K/N is Hall normally embedded in G/N.

Lemma 7. Let G be a p-soluble group and $l_p(G) > 1$. If $l_p(H) \le 1$ and $l_p(G/K) \le 1$ for each H < G, $1 \ne K \lhd G$, then the following hold:

- (1) $\Phi(G) = O_{p'}(G) = 1;$
- (2) G has a unique minimal normal subgroup $N=F(G)=O_p(G)=C_G(N)$;
- (3) $l_p(G) = 2;$
- (4) G = [N]S, where S = [Q]P is a p-nilpotent Schmidt subgroup, |P| = p.

Proof. Assertions (1)–(2) follow from [2, VI.6.9]. As $l_p(N) = 1$ and $l_p(G/N) \le 1$ we have $l_p(G) = 2$. It remains to prove assertion (4). Since G is a p-soluble non-p-closed group, we conclude from Lemma 2 (3) that in G there is an $S_{\langle q,p\rangle}$ -subgroup S = [Q]P for some $q \in \pi(G)$. Suppose that NS is a proper subgroup of G. Then $O_{p'}(NS) \le C_G(N) = N$. Thus, $O_{p'}(NS) = 1$. By the hypothesis, $l_p(NS) = 1$, so NS is p-closed. This contradicts the fact that S is not p-closed. Therefore, NS = G. Moreover $N \cap S \lhd G$, $N \cap S = 1$, and S is a maximal subgroup of G. Since $O_p(S) = 1$, it follows from Lemma 1 that |P| = p. □

Lemma 8. If each p-nilpotent Schmidt pd-subgroup of a p-soluble group G is Hall normally embedded in G, then $l_p(G) \leq 1$.

Proof. Let G be a counterexample of minimal order. By Lemma 6, each proper subgroup and each non-trivial quotient group of G have a p-length \leq 1. By Lemma 7,

$$G = [N]S, \ \Phi(G) = O_{p'}(G) = 1, \ N = O_p(G) = F(G) = C_G(N),$$

where S = [Q]P is a maximal subgroup of G and is an $S_{\langle p,q\rangle}$ -subgroup for some $q \in \pi(G)$. By the hypothesis, S is a Hall subgroup of S^G . Since $S^G = G$, it follows that N is a p'-subgroup, a contradiction.

Lemma 9. Let $n \ge 2$ be a positive integer, let r be a prime, and let π be the set of primes t such that t divides $r^n - 1$ but t does not divide $r^{n_1} - 1$ for all $1 \le n_1 < n$. Then the group $\mathrm{GL}(n,r)$ contains a cyclic π -Hall subgroup.

Proof. The group G = GL(n, r) is of order

$$r^{n(n-1)/2}(r^n-1)(r^{n-1}-1)\dots(r^2-1)(r-1).$$

By Theorem II.7.3 [2], G contains a cyclic subgroup T of order $r^n - 1$. Its π -Hall subgroup T_{π} is a π -Hall subgroup of G, because t does not divide $r^{n_1} - 1$ for all $t \in \pi$ and all $1 \leq n_1 < n$.

3. Proof of the theorem

We proceed by induction on the order of G. First, we verify that G is soluble. Assume the contrary. It follows that G is not 2-closed, and by Lemma 2 (2), in G there exists a 2-nilpotent Schmidt subgroup S = [P]Q of even order, where P is a Sylow p-subgroup of order p > 2, Q is a

cyclic Sylow 2-subgroup. By the hypothesis, S is a Hall subgroup of S^G , therefore, Q is a Sylow 2-subgroup of S^G , and S^G is 2-nilpotent. Thus, $S \leq S^G \leq R(G)$. Here R(G) is the largest normal soluble subgroup of G. Since S is arbitrary, we conclude that all 2-nilpotent Schmidt subgroups of even order are contained in R(G). By Lemma 5, the quotient group G/R(G) has no 2-nilpotent Schmidt subgroups of even order. By Lemma 2 (2), the quotient group G/R(G) is 2-closed, therefore, G is soluble.

Note that the derived subgroup G' is nilpotent if and only if $G \in \mathfrak{NA}$. Here \mathfrak{N} , \mathfrak{A} and \mathfrak{E} are the formations of all nilpotent, abelian and finite groups, respectively, and

$$\mathfrak{NA} = \{ G \in \mathfrak{E} \mid G' \in \mathfrak{N} \}$$

is the formation product of $\mathfrak N$ and $\mathfrak A$. According to [14, p. 337], $\mathfrak N\mathfrak A$ is an s-closed saturated formation. The quotient group $G/N \in \mathfrak N\mathfrak A$ for each non-trivial normal subgroup N of G by Lemma 6(2). A simple check shows that

$$G = [N]M, \ N = O_p(G) = F(G) = C_G(N), \ |N| = p^n, \ M_G = 1,$$

where N is a unique minimal normal subgroup of G, M is a maximal subgroup of G. In view of Lemma 7, N is a Sylow p-subgroup of G.

Let $\pi = \pi(M) = \pi(G) \setminus \{p\}$, $r \in \pi$, and let R be a Sylow r-subgroup of G. Since $N = C_G(N)$, we obtain from Lemma 2(1) that in [N]R there is an $S_{\langle p,r\rangle}$ -subgroup $[P_1]R_1$. By the hypothesis, $[P_1]R_1$ is a Hall subgroup of $([P_1]R_1)^G$, therefore, P_1 is a Sylow p-subgroup of $([P_1]R_1)^G$. Since $N \leq ([P_1]R_1)^G$ and N is a Sylow p-subgroup of G, it follows that $N = P_1$. By Lemma 1, n is the order of p modulo q. But $q \in \pi$. The group $M \cong G/N$ is isomorphic to a subgroup of GL(n,p), which contains a cyclic Hall π -subgroup H by Lemma 9. In view of Theorem 5.3.2 [15], M is contained in a subgroup H^x , $x \in GL(n,p)$. Therefore, M is cyclic. \square

References

- [1] V. S. Monakhov, Introduction to the Theory of Finite groups and their Classes, Vyshejshaja shkola, 2006 (In Russian).
- [2] B. Huppert, Endliche Gruppen I, Springer, 1967.
- [3] O. Y. Schmidt, *Groups whose all subgroups are special*, Matem. Sb., Vol. **31**, 1924, pp. 366–372 (in Russian).
- [4] N. F. Kuzennyi, S. S. Levishchenko, Finite Shmidt's groups and their generalizations, Ukrainian Math. J., Vol. 43(7-8), 1991, pp. 898–904.

- 96
- [5] V.S. Monakhov, The Schmidt groups, its existence and some applications, Tr. Ukrain. Math. Congr.-2001. Kiev: 2002, Section 1. pp. 81-90 (in Russian).
- [6] V. N. Kniahina, V. S. Monakhov, On finite groups with some subnormal Schmidt subgroups, Sib. Math. J., Vol. 4(6), 2004, pp. 1075–1079.
- [7] V. A. Vedernikov, Finite groups with subnormal Schmidt subgroups, Algebra and Logic, Vol. 46(6), 2007, pp. 363-372.
- [8] Kh. A. Al-Sharo, A. N. Skiba, On finite groups with σ-subnormal Schmidt subgroups, Commun. Algebra, Vol. 45, 2017, pp. 4158–4165.
- [9] V. N. Kniahina, V. S. Monakhov, Finite groups with Hall Schmidt subgroups, Publ. Math. Debrecen, Vol. 81(3-4), 2012, pp. 341–350.
- [10] Li Shirong, He Jum, Nong Guoping, Zhou Longqiao, On Hall normally embedded subgroups of finite groups, Communications in Algebra, Vol. 37, 2009, pp. 3360-3367.
- [11] Li Shirong, Liu Jianjun. On Hall subnormally embedded and generalized nilpotent groups, J. of Algebra, Vol. 388, 2013, pp. 1-9.
- [12] V. S. Monakhov, V. N. Kniahina, On Hall embedded subgroups of finite groups, J. of Group Theory, Vol. 18(4), 2015, pp. 565-568.
- [13] A. Ballester-Bolinches, J. Cossev, Qiao ShouHong, On Hall subnormally embedded subgroups of finite groups, Monatsh. Math, Vol. 181, 2016, pp. 753-760.
- [14] K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, 1992.
- [15] M. Suzuki. Group Theory II, Springer, 1986.

Contact information

V. N. Kniahina, V. S. Monakhov Department of Mathematics, Francisk Skorina Gomel State University, Sovetskaya str., 104, Gomel 246019, Belarus

E-Mail(s): Knyagina@inbox.ru, Victor.Monakhov@gmail.com

Received by the editors: 20.04.2018.