A Robinson characterization of finite $P\sigma T$ -groups

Alexander N. Skiba

Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University,

Gomel 246019, Belarus

E-mail: alexander.skiba49@gmail.com

Abstract

Let $\sigma = \{\sigma_i | i \in I\}$ be some partition of the set of all primes \mathbb{P} and let G be a finite group. Then G is said to be σ -full if G has a Hall σ_i -subgroup for all i. A subgroup A of G is said to be σ -permutable in G provided G is σ -full and A permutes with all Hall σ_i -subgroups H of G (that is, AH = HA) for all i.

We obtain a characterization of finite groups G in which σ -permutability is a transitive relation in G, that is, if K is a σ -permutable subgroup of H and H is a σ -permutable subgroup of G, then K is a σ -permutable subgroup of G.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, \mathbb{P} is the set of all primes, $\pi = \{p_1, p_2, \ldots\} \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G.

If $1 \in \mathfrak{F}$ is a class of groups, then $G^{\mathfrak{F}}$ denotes the \mathfrak{F} -residual of G, that is, intersection of all normal subgroups N of G with $G/N \in \mathfrak{F}$; $G_{\mathfrak{F}}$ denotes the \mathfrak{F} -radical of G, that is, the product of all normal subgroups N of G with $N \in \mathfrak{F}$.

In what follows, σ is some partition of \mathbb{P} , that is, $\sigma = \{\sigma_i | i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$; G is said to be σ -full [1, 2] if G has a Hall σ_i -subgroup for all i.

Definition 1.1. We say that a subgroup A of G is σ -permutable in G [3] provided G is σ -full and H permutes with all Hall σ_i -subgroups H of G (that is, AH = HA) for all i.

Remark 1.2. A set \mathcal{H} of subgroups of G is a *complete Hall* σ -set of G [1, 2] if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every i. By Proposition 3.1 in [4], a subgroup A of G is σ -permutable in G if and only if G possesses a a complete Hall σ -set \mathcal{H} such that $AL^x = L^x A$ for all $L \in \mathcal{H}$ and all $x \in G$.

⁰Keywords: finite group, a Robinson σ -complex of a group, σ -permutable subgroup, σ -soluble group, σ -supersoluble group, a σ -SC-group.

⁰Mathematics Subject Classification (2010): 20D10, 20D15, 20D30

Recall that G is said to be: σ -primary [3] if G is a σ_i -group for some i, σ -decomposable (Shemetkov [5]) or σ -nilpotent (Guo and Skiba [6]) if $G = G_1 \times \cdots \times G_n$ for some σ -primary groups G_1, \ldots, G_n

The usefulness of σ -permutable subgroups is connected mostly with the following their property.

Theorem A. (See Theorem B in [3]). If A is a σ -permutable subgroup of G, then A^G/A_G is σ -nilpotent.

Example 1.3. (i) In the classical case, when $\sigma = \sigma^0 = \{\{2\}, \{3\}, \ldots\}$, the subgroup A of G is σ^0 -permutable in G if and only if A permutes with all Sylow subgroups of G. Note that a σ^0 -permutable subgroup is also called *S*-permutable [7]. Note also that for every *S*-permutable subgroup A of G the quotient A^G/A_G is nilpotent (Kegel, Deskins) by Theorem A.

(ii) In the other classical case, when $\sigma = \sigma^{\pi} = \{\pi, \pi'\}$, a subgroup A of G is σ^{π} -permutable in G if and only if G has a Hall π -subgroup and a Hall π' -subgroup and A permutes with all Hall π -subgroups and with all Hall π' -subgroups of G. For every σ^{π} -permutable subgroup A of G the quotient A^G/A_G is π -decomposable, that is, $A^G/A_G = O_{\pi}(A^G/A_G) \times O_{\pi'}(A^G/A_G)$ by Theorem A.

(iii) In fact, in the theory of π -soluble groups $(\pi = \{p_1, \ldots, p_n\})$ we deal with the partition $\sigma = \sigma^{0\pi} = \{\{p_1\}, \ldots, \{p_n\}, \pi'\}$ of \mathbb{P} . The subgroup A of G is $\sigma^{0\pi}$ -permutable in G if and only if G has a Hall π' -subgroup and A permutes with all Hall π' -subgroups and with all Sylow p-subgroups of G for all $p \in \pi$. For every $\sigma^{0\pi}$ -permutable subgroup A of G the quotient A^G/A_G is π -nilpotent, that is, $A^G/A_G = O_{\pi}(F(A^G/A_G)) \times O_{\pi'}(A^G/A_G)$ by Theorem A.

We say, following [3], that G is a $P\sigma T$ -group if σ -permutability is a transitive relation in G, that is, if K is a σ -permutable subgroup of H and H is a σ -permutable subgroup of G, then K is a σ -permutable subgroup of G. In the case when $\sigma = \sigma^0$, a $P\sigma T$ -group is also called a PST-group [7].

Note that if $G = (Q_8 \rtimes C_3) \land (C_7 \rtimes C_3)$ (see [8, p. 50]), where $Q_8 \rtimes C_3 = SL(2,3)$ and $C_7 \rtimes C_3$ is a non-abelian group of order 21, then G is not a *PST*-group but G is a $P\sigma T$ -group, where $\sigma = \{\{2,3\}, \{2,3\}'\}$

The description of PST-groups was first obtained by Agrawal [9], for the soluble case, and by Robinson in [10], for the general case. In the further publications, authors (see, for example, the recent papers [11]–[21] and Chapter 2 in [7]) have found out and described many other interesting characterizations of PST-groups.

In the case when G is σ -soluble (that is, every chief factor of G is σ -primary) the description of $P\sigma T$ -groups was obtained in the paper [22] on the base of the results and methods in [3, 23, 24, 25].

Theorem B (See Theorem A in [22]). If G is a σ -soluble $P\sigma T$ -group and $D = G^{\mathfrak{N}_{\sigma}}$ is the σ -nilpotent residual of G, then the following conditions hold:

(i) $G = D \rtimes M$, where D is an abelian Hall subgroup of G of odd order, M is σ -nilpotent and every element of G induces a power automorphism in D;

(ii) $O_{\sigma_i}(D)$ has a normal complement in a Hall σ_i -subgroup of G for all i.

Conversely, if Conditions (i) and (ii) hold for some subgroups D and M of G, then G is a PNHE $P\sigma T$ -group.

Before continuing, we give some further definitions.

Definition 1.4. We say that G is:

(i) σ -supersoluble if every chief factor of G below $G^{\mathfrak{N}_{\sigma}}$ is cyclic:

(ii) a σ -SC-group if every chief factor of G below $G^{\mathfrak{N}_{\sigma}}$ is simple.

Example 1.5. (i) G is supersoluble if and only if G is σ -supersoluble where $\sigma = \sigma^0$ (see Example 1.3(i)).

(ii) The group G is called an SC-group (Robinson [10]) or a c-supersoluble group (Vedernikov [26]) if every chief factor of G is a simple group. Note that G is an SC-group if and only if G is σ -SC-group where $\sigma = \sigma^0$.

(iii) Let $G = A_5 \times B$, where A_5 is the alternating group of degree 5 and $B = C_{29} \rtimes C_7$ is a non-abelian group of order 203, and let $\sigma = \{\{7\}, \{29\}, \{2,3,5\}, \{2,3,5,7,29\}'\}$. Then $G^{\mathfrak{N}_{\sigma}} = C_{29}$, so G is a σ -supersoluble group but it is neither soluble nor σ -nilpotent.

(iv) Let $G = SL(2,7) \times A_7 \times A_5 \times B$, where $B = C_{43} \rtimes C_7$ is a non-abelian group of order 301, and let $\sigma = \{\{2,3,5\},\{7,43\},\{2,3,5,7,43\}\}$. Then $G^{\mathfrak{N}_{\sigma}} = SL(2,7) \times A_7$, so G is a σ -SC-group but it is not a σ -supersoluble group.

In what follows, \mathfrak{U}_{σ} is the class of all σ -supersoluble groups; $\mathfrak{U}_{c\sigma}$ is the class of all σ -SC-groups. We say that G is σ -perfect if $G^{\mathfrak{N}_{\sigma}} = G$, that is, $O^{\sigma_i}(G) = G$ for all i.

From Theorem B it follows that every σ -soluble $P\sigma T$ -group is σ -supersoluble. Our first observation shows that in general case every $P\sigma T$ -group is a σ -SC-group.

Proposition A. Let G be a $P\sigma T$ -group and let $D = G^{\mathfrak{S}_{\sigma}}$ be the σ -soluble residual of G. Suppose that G possesses a complete Hall σ -set \mathcal{H} whose members are PST-groups. Then the following conditions hold:

(i) G is a σ -SC-group.

(ii) $D = G^{\mathfrak{U}_{\sigma}}$ is σ -perfect and G/D is a σ -soluble $P\sigma T$ -group.

(iii) G satisfies N_{σ_i} for all *i*.

In this proposition we say that G satisfies N_{σ_i} if whenever N is a σ -soluble normal subgroup of G, σ'_i -elements of G induce power automorphisms in $O_{\sigma_i}(G/N)$. We say also, following [7, 2.1.18], that G satisfies N_p if whenever N is a soluble normal subgroup of G, p'-elements of G induce power automorphisms in $O_p(G/N)$.

Corollary 1.6 (See Proposition 2.1.1 in [7]). Let G be a PST-group. Then:

(i) G is an SC-group, and

(ii) G of satisfies N_p for every prime p.

Definition 1.7. We say that $(D, Z(D); U_1, \ldots, U_k)$ is a *Robinson* σ -complex (a *Robinson complex*) in the case $\sigma = \sigma^0$) of G if the following fold:

(i) D is a σ -perfect normal subgroup of G,

(ii) $D/Z(D) = U_1/Z(D) \times \cdots \times U_k/Z(D)$, where $U_i/Z(D)$ is a non-abelian simple chief factor of G for all i,

(iii) every chief factor of G below Z(D) is cyclic, and

(iv) $D^0 \leq D$ for every normal subgroup D^0 of G satisfying Conditions (i), (ii) and (iii).

Example 1.8. Let $G = SL(2,7) \times A_7 \times A_5 \times B$ be the group in Example 1.5(iv) and $\sigma = \{\{2,3,5\},\{7,43\},\{2,3,5,7,43\}'\}$. Then

 $(SL(2,7) \times A_7, Z(SL(2,7)); SL(2,7), A_7Z(SL(2,7)))$

is a Robinson σ -complex of G and

 $(SL(2,7) \times A_7 \times A_5, Z(SL(2,7)); SL(2,7), A_7Z(SL(2,7)), A_5Z(SL(2,7))))$

is a Robinson complex of G.

Being based on Theorems A and B and using some ideas in [10, 23, 24, 25], in the given paper we prove the following

Theorem C. Suppose that G possesses a complete Hall σ -set \mathcal{H} whose members are PST-groups. Then G is a $P\sigma T$ -group if and only if G has a σ -perfect normal subgroup D such that:

(i) G/D is a σ -soluble $P\sigma T$ -group.

(ii) If $D \neq 1$, then G has a Robinson σ -complex of the form $(D, Z(D); U_1, \ldots, U_k)$, and

(iii) If $\{i_1, \ldots, i_r\} \subseteq \{1, \ldots, k\}$, where $1 \leq r < k$, then G and $G/U'_{i_1} \cdots U'_{i_r}$ satisfy N_{σ_i} for all i such that $\sigma_i \cap \pi(\mathbb{Z}(D)) \neq \emptyset$.

Corollary 1.9 (Robinson [10]). A group G is a PST-group if and only if G has a perfect normal subgroup D such that:

(i) G/D is a soluble PST-group.

(ii) If $D \neq 1$, then G has a Robinson complex of the form $(D, Z(D); U_1, \ldots, U_k)$, and

(iii) If $\{i_1, \ldots, i_r\} \subseteq \{1, \ldots, k\}$, where $1 \leq r < k$, then G and $G/U'_{i_1} \cdots U'_{i_r}$ satisfy N_p for all $p \in \pi(Z(D))$.

The class $1 \in \mathfrak{F}$ is said to be a *formation* if every homomorphic image of $G/G^{\mathfrak{F}}$ belongs to \mathfrak{F} for every group G, that is, if $G \in \mathfrak{F}$, then also every homomorphic image of G belongs to \mathfrak{F} and $G/N \cap R \in \mathfrak{F}$ whenever $G/N \in \mathfrak{F}$ and $G/R \in \mathfrak{F}$. The formation \mathfrak{F} is said to *(normally) hereditary* if $H \in \mathfrak{F}$ whenever $G \in \mathfrak{F}$ and H is a (normal) subgroup of G.

We prove Proposition A and Theorem C in Section 3. But before, in Section 2, we study properties of σ -supersoluble groups and σ -SC-groups. In particular, we prove the following two results.

Proposition B. For any partition σ of \mathbb{P} the following hold:

(i) The class $\mathfrak{U}_{c\sigma}$ is a normally hereditary formation.

(ii) The class \mathfrak{U}_{σ} is a hereditary formation.

Theorem D Let $N = G^{\mathfrak{N}_{\sigma}}$ and let $D = N^{\mathfrak{S}}$ be the soluble residual of N. Then G is a σ -SC-group if and only if the following hold:

(i) $D = G^{\mathfrak{U}_{\sigma}}$, and

(ii) if $D \neq 1$, then G has a Robinson complex of the form $(D, Z(D); U_1, \ldots, U_k)$, where $Z(D) = D_{\mathfrak{S}}$ is the soluble radical of D.

Corollary 1.10 (Robinson [10]). A group G is an SC-group if and only if G satisfies:

(i) $G/G^{\mathfrak{S}}$ is supersoluble.

(ii) If $D = G^{\mathfrak{S}} \neq 1$, then G has a Robinson complex of the form $(D, Z(D); U_1, \ldots, U_k)$.

2 Proofs of Proposition B and Theorem B

The following lemma collects the properties of σ -nilpotent groups which we use in our proofs.

Lemma 2.1 (See Corollary 2.4 and Lemma 2.5 in [3]). The class of all σ -nilpotent groups \mathfrak{N}_{σ} is closed under taking products of normal subgroups, homomorphic images and subgroups.

Lemma 2.2 (See [27, 2.2.8]). If \mathfrak{F} is a formation and N, R are subgroups of G, where N is normal in G, then

(i) $(G/N)^{\mathfrak{F}} = G^{\mathfrak{N}}N/N$, and

(ii) $G^{\mathfrak{N}}N = R^{\mathfrak{N}}N$ provided G = RN.

Proof of Proposition B. (i) Let $D = G^{\mathfrak{N}_{\sigma}}$. First note that if R is a normal subgroup of G, then $(G/R)^{\mathfrak{N}_{\sigma}} = DR/R$ by Lemmas 2.1 and 2.2 and so from the G-isomorphism $DR/R \simeq D/(D \cap R)$ we get that every chief factor of G/R below $(G/R)^{\mathfrak{N}_{\sigma}}$ is simple if and only if every chief factor of G between D and $D \cap R$ is simple. Therefore if $G \in \mathfrak{U}_{c\sigma}$, then $G/R \in \mathfrak{U}_{c\sigma}$. Hence the class $\mathfrak{U}_{c\sigma}$ is closed under taking homomorphic images.

Now we show that if G/R, $G/N \in \mathfrak{U}_{c\sigma}$, then $G/(R \cap N) \in \mathfrak{U}_{c\sigma}$. We can assume without loss of generality that $R \cap N = 1$. Since $G/R \in \mathfrak{U}_{c\sigma}$, every chief factor of G between D and $D \cap R$ is simple. Also, every chief factor of G between D and $D \cap N$ is simple. Now let H/K be any chief factor of G below $D \cap R$. Then $H \cap D \cap N = 1$ and hence from the G-isomorphism

$$H(D \cap N)/K(D \cap N) \simeq H/(H \cap K(D \cap N)) = H/K(H \cap D \cap N) = H/K$$

we get that H/K is simple since $D \cap N \leq K(D \cap N) \leq D$. On the other hand, every chief factor of G between D and $D \cap R$ is also simple. Therefore the Jordan-Hölder theorem for groups with operators [28, A, 3.2] implies that every chief factor of G below D is simple. Hence $G \in \mathfrak{U}_{c\sigma}$, so the class $\mathfrak{U}_{c\sigma}$ is closed under taking subdirect products.

Finally, if $H \leq G \in \mathfrak{U}_{c\sigma}$, then from Lemmas 2.1 and 2.2 and the isomorphism

$$H/(H \cap D) \simeq HD/D \in \mathfrak{N}_{\sigma}$$

we get that $H^{\mathfrak{N}_{\sigma}} \leq H \cap D$ and so every chief factor of H below $H^{\mathfrak{N}_{\sigma}}$ is simple since every chief factor of G below D is simple. Hence $H \in \mathfrak{U}_{c\sigma}$, so the class $\mathfrak{U}_{c\sigma}$ is closed under taking normal subgroups.

(ii) See the proof of (i).

The proposition is proved.

Lemma 2.3. Let H/K be a non-abelian chief factor of G. If H/K is simple, then $G/HC_G(H/K)$ is soluble.

Proof. Since $C_G(H/K)/K = C_{G/K}(H/K)$, we can assume without loss of generality that K = 1. Then

$$G/C_G(H) \simeq V \leq \operatorname{Aut}(H)$$

and

$$H/(H \cap C_G(H)) \simeq HC_G(H)/C_G(H) \simeq \operatorname{Inn}(H)$$

since $C_G(H) \cap H = 1$. Hence

$$G/HC_G(H) \simeq (G/C_G(H))/(HC_G(H)/C_G(H)) \simeq W \leq \operatorname{Aut}(H)/\operatorname{Inn}(H)$$

From the validity of the Schreier conjecture, it follows that $G/HC_G(H/K)$ is soluble. The lemma is proved.

Proof of Theorem D. First note that D is characteristic in N and $R = D_{\mathfrak{S}}$ is a characteristic subgroup of D, so both these subgroups are normal in G.

Necessity. In view of Proposition B(ii), $G/G^{\mathfrak{U}_{\sigma}}$ is σ -supersoluble and $G^{\mathfrak{U}_{\sigma}}$ is contained in every normal subgroup E of G with σ -supersoluble quotient G/E. By Lemmas 2.1 and 2.2, $N/D = (G/N)^{\mathfrak{N}_{\sigma}}$. On the other hand, every chief factor of G between N and D is abelian and so cyclic and hence G/D is σ -supersoluble. Therefore $G^{\mathfrak{U}_{\sigma}} \leq D$. Moreover, from Lemma 2.2 and Proposition B(ii) we also get that

$$N/G^{\mathfrak{U}_{\sigma}} = (G/G^{\mathfrak{U}_{\sigma}})^{\mathfrak{N}_{\sigma}},$$

so every chief factor of G between N and $G^{\mathfrak{U}_{\sigma}}$ is cyclic and hence $D \leq G^{\mathfrak{U}_{\sigma}}$. Thus $D = G^{\mathfrak{U}_{\sigma}}$, so if D = 1, then G is σ -supersoluble.

Now suppose that $D \neq 1$. We show that in this case G has a Robinson complex of the form $(D, Z(D); U_1, \ldots, U_k)$, where Z(D) = R. It is clear that every chief factor of G below R is cyclic, so $G/C_G(R)$ is supersoluble by [28, IV, 6.10]. Hence $D = G^{\mathfrak{U}_{\sigma}} \leq C_G(R)$, so $R \leq Z(D) \leq D_{\mathfrak{S}} = R$ and therefore we have Z(D) = R.

Now let H/K be any chief factor of G below D. Then $H \leq N$ and so in the case when H/K is abelian, this factor is cyclic, which implies that $D = G^{\mathfrak{U}_{\sigma}} \leq C_G(H/K)$. On the other hand, if H/K is a non-abelian simple group, then Lemma 2.3 implies that $G/HC_G(H/K)$ is soluble. Then

$$DHC_G(H/K)/HC_G(H/K) \simeq D/(D \cap HC_G(H/K)) = D/HC_D(H/K)$$

is soluble, so $D = HC_D(H/K)$ since D is evidently perfect. Therefore, in both cases, every element of D induces an inner automorphism on H/K. Therefore D is quasinilpotent. Hence in view of [29, X, 13.6], G has a Robinson complex of the form $(D, Z(D), U_1, \ldots, U_k)$.

Sufficiency. From Conditions (i), (ii) and (iii), it follows that all factors below N of any chief series of G passing through N are simple. Therefore the Jordan-Hölder theorem for groups with operators [28, A, 3.2] implies that every chief factor of G below N is simple. Therefore G is a σ -SC-group.

The theorem is proved. '

3 Proofs of Proposition A and Theorem A

Recall that a subgroup A of G is called σ -subnormal in G [3] if there is a subgroup chain

$$A = A_0 \le A_1 \le \dots \le A_n = G$$

such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \ldots, n$.

Lemma 3.1 (See Remark 1.1 and [Proposition 2.6]arivII). G is σ -nilpotent if and only if every subgroup of G σ -subnormal in G.

Lemma 3.2. Let A, K and N be subgroups of G. Suppose that A is σ -subnormal in G and N is normal in G.

- (1) $A \cap K$ is σ -subnormal in K.
- (2) AN/N is σ -subnormal in G/N.
- (3) If $N \leq K$ and K/N is σ -subnormal in G/N, then K is σ -subnormal in G.

(4) If $H \neq 1$ is a Hall σ_i -subgroup of G and A is not a σ'_i -group, then $A \cap H \neq 1$ is a Hall i-subgroup of A.

- (5) If A is a σ_i -group, then $A \leq O_{\sigma_i}(G)$.
- (6) If A is a Hall σ_i -subgroup of G, then A is normal in G.
- (7) If |G:A| is a σ_i -number, then $O^{\sigma_i}(A) = O^{\sigma_i}(G)$.
- (8) If G is σ -perfect, then A is subnormal in G.
- (9) $A^{\mathfrak{N}_{\sigma}}$ is subnormal in G.

Proof. Assume that this lemma is false and let G be a counterexample of minimal order. By hypothesis, there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_r = G$ such that either $A_{i-1} \leq A_i$

or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all i = 1, ..., r. Let $M = A_{r-1}$. We can assume without loss of generality that $M \neq G$.

(1)-(7) See Lemma 2.6 in [3].

(8) A is subnormal in M by the choice of G. On the other hand, since G is σ -perfect, G/M_G is not σ -primary. Hence M is normal in G and so A is subnormal in G.

(9) A is σ -subnormal in $AM_G \leq M$ by Part (1), so the choice of G implies that $A^{\mathfrak{N}_{\sigma}}$ is subnormal in AM_G . Hence G/M_G is a σ_i -group for some i, so $M_G A/M_G \simeq A/A \cap M_G$ is a σ_i -group. Hence $A^{\mathfrak{N}_{\sigma}} \leq M_G$, so $A^{\mathfrak{N}_{\sigma}}$ is subnormal in M_G and hence $A^{\mathfrak{N}_{\sigma}}$ is subnormal in G.

Lemma is proved.

The following lemma, in fact, is a corollary of Theorem A and Lemmas 3.1 and 3.2(3).

Lemma 3.3. The following statements hold:

(i) G is a $P\sigma T$ -group if and only if every σ -subnormal subgroup of G is σ -permutable in G.

(ii) If G is a $P\sigma T$ -group, then every quotient G/N of G is also a $P\sigma T$ -group.

Lemma 3.4. Let A and B be subgroups of G, where A is σ -permutable G.

(1) If $A \leq B$ and B is σ -subnormal in G, then A is σ -permutable B.

(2) Suppose that B is a σ_i -group. Then B is σ -permutable in G if and only if $O^{\sigma_i}(G) \leq N_G(B)$.

Proof. (1) By hypothesis, G possesses a complete Hall σ -set $\mathcal{H} = \{H_1, \ldots, H_t\}$. Then $\mathcal{H}_0 = \{H_1 \cap B, \ldots, H_t \cap B\}$ is a complete Hall σ -set of B by Lemma 3.2(4). Moreover, for every $x \in B$ and $H \in \mathcal{H}$ we have $AH^x = H^xA$, so

$$AH^x \cap B = A(H^x \cap B) = A(H \cap B)^x = (H \cap B)^x A.$$

Hence A is σ -permutable in B by Remark 1.2.

(2) See Lemma 3.1 in [3].

The lemma is proved.

Proof of Proposition A. Let $\mathcal{H} = \{H_1, \ldots, H_t\}$ and $N = G^{\mathfrak{N}_{\sigma}}$ be the σ -nilpotent residual of G. Then $D \leq N$.

(1) Statement (i) holds for G.

Suppose that this is false and let G be a counterexample of minimal order. If D = 1, then G is σ -soluble and so G is a σ -SC-group by Theorem B. Therefore $D \neq 1$. Let R be a minimal normal subgroup of G contained in D. Then G/R is a $P\sigma T$ -group by Lemma 3.3(ii). Therefore the choice of G implies that G/R is a σ -SC-group. Since $(G/R)^{\mathfrak{N}_{\sigma}} = N/R$ by Lemmas 2.1 and 2.2, every chief factor of G/R below N/R is simple. Hence every chief factor of G between $G^{\mathfrak{N}_{\sigma}}$ and R is simple. Therefore, in view of the Jordan-Hölder theorem for groups with operators [28, A, 3.2], it is enough to show that R is simple. Suppose that this is false. Let L be a minimal normal subgroup of R.

Then 1 < L < R and L is σ -permutable in G by Lemma 3.3(i) since G is a $P\sigma T$ -group. Moreover, $L_G = 1$ and so L is σ -nilpotent by Theorem A. Therefore R is a σ_i -group for some i, so for some kwe have $R \leq H_k$. Now let V be a maximal subgroup of R. Then V is σ -subnormal in G, so V is σ -permutable in G and hence

$$R \le D \le O^{\sigma_i}(G) \le N_G(V)$$

by Lemma 3.4(2). Thus R is nilpotent, so R is a p-group for some $p \in \sigma_i$. Now let V be a maximal subgroup of R such that V is normal in a Sylow p-subgroup of P of H_k . By hypothesis, H_k is a PST-group and so V is S-permutable in H_k since it is subnormal in H_k . Then, by Lemma 3.4(2) (taking in the case $\sigma = \{\{2\}, \{3\}, \ldots\}$), we have $H_k = PO^p(H_k) \leq N_G(V)$. Therefore, in view of Lemma 3.4(2), we have

$$G = H_k O^{\sigma_i}(G) \le N_G(V).$$

Hence V = 1 and so |R| = p, a contradiction. Thus we have (1).

(2) Statement (ii) holds for G.

It is clear that D is σ -perfect and G/D is σ -soluble. In view of Lemma 3.3(ii), G/D is a $P\sigma T$ group. It is also clear that $D \leq G^{\mathfrak{U}_{\sigma}}$. On the other hand, G/D is σ -supersoluble by Theorem B. Therefore $G^{\mathfrak{U}_{\sigma}} \leq D$ and so we have $D = G^{\mathfrak{U}_{\sigma}}$. Hence we have (2).

(3) Statement (iii) holds for G.

Let L be a σ -soluble normal subgroup of G and let x be a σ'_i -element of G. Let $V/L \leq O_{\sigma_i}(G/L)$. Then V/L is σ -subnormal in G/L, so V/L is σ -permutable in G/L by Lemma 3.3(i) since G/L is a $P\sigma T$ -group by Lemma 3.3(ii). Therefore

$$xL \in O^{\sigma_i}(G/L) \le N_{G/L}(V/L)$$

by Lemma 3.4(2). Hence Statement (iii) holds for G.

The proposition is proved.

Lemma 3.5. Let G be a non- σ -supersoluble σ -full σ -SC-group and let $(D, Z(D); U_1, \ldots, U_k)$ be a Robinson complex G, where $D = G^{\mathfrak{U}_{\sigma}}$. Let U be a non- σ -permutable σ -subnormal subgroup of G of minimal order. Suppose that S/Z(S) is σ -perfect. Then:

(i) If US'_i/U'_i is σ -permutable in G/U'_i for all *i*, then U is σ -supersoluble.

(ii) If U is σ -supersoluble and UL/L is σ -permutable in G/L for all non-trivial nilpotent normal subgroups L of G, then U is a cyclic p-group for some prime p.

Proof. Suppose that this lemma is false and let G be a counterexample of minimal order. By hypothesis, for some i and for some Hall σ_i -subgroup H of G we have $UH \neq HU$.

(i) Assume that this is false. Then $U \cap D \neq 1$ since $UD/D \simeq U/(U \cap D)$ is σ -supersoluble by Proposition B(ii). Moreover, Lemma 3.2(1)(2), implies that $(U \cap D)Z(D)/Z(D)$ is σ -subnormal in D/Z(D) and so $(U \cap D)Z(D)/Z(D)$ is a non-trivial subnormal subgroup of D/Z(D) by Lemma 3.2(8) since D/Z(D) is σ -perfect by hypothesis. Hence for some *i* we have

$$U_i/Z(D) \le (U \cap D)Z(D)/Z(D),$$

OPWHID

so $U_i \leq (U \cap D)Z(D)$. But then

$$U'_i \le ((U \cap D)Z(D))' \le U \cap D.$$

By hypothesis, $UU_i'/U_i'=U/U_i'$ is $\sigma\text{-permutable}$ in G/U_i' and so

$$UH/U'_i = (U/U'_i)(HU'_i/U'_i) = (HU'_i/U'_i)(U/U'_i) = HU/U'_i.$$

Hence UH = HU, a contradiction. Therefore Statement (i) holds.

(ii) Let $N = U^{\mathfrak{N}_{\sigma}}$. Then D is subnormal in G by Lemma 3.2(9). Since U is σ -supersoluble by hypothesis, N < U. By Lemmas 2.1, 2.2 and 3.2(3), every proper subgroup V of U with $N \leq V$ is σ -subnormal in G, so the minimality of U implies that VH = HV. Therefore, if U has at least two distinct maximal subgroups V and W such that $N \leq V \cap W$, then $U = \langle V, W \rangle$ is permutes with H by [28, A, 1.6], contrary to our assumption on U and H. Hence U/N is a cyclic p-group for some prime p.

First assume that $p \in \sigma_i$. Lemma 3.2(4) implies that $H \cap U$ is a Hall σ_i -subgroup of U, so $U = N(H \cap U) = (H \cap U)N$. Hence

$$UH = (H \cap U)NH = H(H \cap U)N = HU,$$

a contradiction. Thus $p \in \sigma_j$ for some $j \neq i$.

Now we show that U is a $P\sigma T$ -group. Let V be a proper σ -subnormal subgroup of U. Then V is σ -subnormal in G since U is σ -subnormal in G. The minimality of U implies that V is σ -permutable in G, so V is σ -permutable in U by Lemma 3.4(1). Hence U is a σ -soluble $P\sigma T$ -group by Lemma 3.3(i), so N is abelian by Theorem B.

Therefore N is a σ'_j -group, so $N \leq O = O_{\sigma'_j}(F(G))$ by Lemma 3.2(5) (taking in the case $\sigma = \{\{2\}, \{3\}, \ldots\}$). By hypothesis, OU/O permutes with OH/O. By Lemma 3.2(1)(2), OU/O is σ -subnormal in

$$(OU/O)(OH/O) = (OH/O)(OU/O) = OHU/O,$$

where $OU/O \simeq U/U \cap O$ is a σ_j -group and $OH/O \simeq H/H \cap O$ is a σ_i -group. Hence UO/O is normal in OHU/O by Lemma 3.2(6). Hence $H \leq N_G(OU)$

$$H \le N_G(O^{\sigma'_j}(OU)) = N_G(O^{\sigma'_j}(U))$$

by Lemma 3.2(7) since $p \in \sigma_j$ implies that $O^{\sigma'_j}(U) = U$. But then HU = UH, a contradiction. Therefore Statement (ii) holds.

The lemma is proved.

Lemma 3.6. Suppose that G has a Robinson σ -complex $(D, Z(D); U_1, \ldots, U_k)$, and let N be a normal subgroup of G.

(i) If $N = U'_i$, then

$$(D/N, Z(D/N) = U_i/N; U_1N/N, \dots, U_{i-1}N/N, U_{i+1}N/N, \dots, U_kN/N, U_i/N)$$

is a Robinson σ -complex of G/N, where $U_i/U'_i \simeq Z(D)/(Z(D) \cap U'_i)$.

(ii) If N is nilpotent, then

$$(DN/N, Z(DN/N) = Z(D)N/N; U_1N/N, \dots, U_kN/N)$$

is a Robinson σ -complex of G/N.

Proof. See Remark 1.6.8 in [7].

Lemma 3.7 (See Knyagina and Monakhov [31]). Let H, K and N be pairwise permutable subgroups of G and H is a Hall subgroup of G. Then

$$N \cap HK = (N \cap H)(N \cap K).$$

Lemma 3.8. If G satisfies N_{σ_i} , then G/R satisfies N_{σ_i} for every normal σ -soluble subgroup R of G.

Proof. Let N/R be a normal σ -soluble subgroup of G/R and let

$$(V/R)/(N/R) \le O_{\sigma_i}((G/R)/(N/R)).$$

Then N is a normal σ -soluble subgroup of G and $V/N \leq O_{\sigma_i}(G/N)$. Moreover, for every σ'_i -element $xR \in G/R$ there is a σ'_i -element $y \in G$ such that xR = yR and so $yN \leq N_{G/N}(V/N)$, which implies that

 $xR(N/R) \in N_{(G/R)/(N/R)}((V/R)/(N/R)).$

Hence G/R satisfies N_{σ_i} , as required.

By the analogy with the notation $\pi(n)$, we will write $\sigma(n)$ to denote the set $\{\sigma_i | \sigma_i \cap \pi(n) \neq \emptyset\}$; $\sigma(G) = \sigma(|G|)$.

Proof of Theorem C. First assume that G is a $P\sigma T$ -group and let $D = G^{\mathfrak{S}_{\sigma}}$ be the σ soluble residual of G. Then D is clearly σ -perfect and, by Proposition A, G is a σ -SC-group and
Statements (i) and (iii) hold for G. Moreover, Theorem B implies that D coincides with the σ supersoluble residual $G^{\mathfrak{U}_{\sigma}}$ of G and if $D \neq 1$, then G possesses a Robinson σ -complex of the form $(D, Z(D); U_1, \ldots U_k)$. Therefore the necessity of the condition of the theorem holds for G.

Now assume that G has a normal σ -perfect subgroup D and D satisfies Conditions (i), (ii) and (iii). We show that G is a $P\sigma T$ -group. Suppose that this is false and let G be a counterexample of

minimal order. Then $D \neq 1$ and G has a σ -subnormal subgroup U such that $UH \neq HU$ for some i and some Hall σ_i -subgroup H of G and also every σ -subnormal subgroup U_0 of G with $U_0 < U$ is σ -permutable in G. Finally, note that $D = G^{\mathfrak{U}_{\sigma}}$ by Condition (i) and Theorem B.

(1) U is σ -supersoluble.

In view of Lemma 3.5(i), it is enough to show that the hypothesis holds on G/U'_i for all $i = 1, \ldots, k$. Let $N = U'_i$. We can assume without loss of generality that i = 1. Then

$$(D/N)^{\mathfrak{N}_{\sigma}} = D^{\mathfrak{N}_{\sigma}} N/N = D/N$$

by Lemmas 2.1 and 2.2, so D/N is a normal σ -perfect subgroup of G/N. Moreover, $(G/N)/(D/N) \simeq D/D$ is a σ -soluble $P\sigma T$ -group. Now assume that $D/N \neq 1$. Then, by Lemma 3.6(i),

$$(D/N, Z(D/N); U_2N/N, \dots U_kN/N)$$

is a Robinson σ -complex of G/N, where $Z(D/N) = U_1/N$. Moreover, if $\{i_1, \ldots, i_r\} \subseteq \{2, \ldots, k\}$, where $2 \leq r < k$, then the quotients $G/N = G/U'_1$ and

$$(G/N)/(U_{i_1}N/N)'\cdots(U_{i_r}N/N)' = (G/N)/(U'_{i_1}\cdots U'_{i_r}U'_1/N) \simeq G/U'_{i_1}\cdots U'_{i_r}U'_1$$

satisfy N_{σ_l} for all

$$\sigma_l \in \sigma(U_1/N) = \sigma(Z(D/N)) \subseteq \sigma(Z(D)/(Z(D) \cap U_1')).$$

Therefore the hypothesis holds for G/R, so we have (1).

(2) U is a cyclic p-group for some prime $p \in \sigma_j$, where $j \neq i$.

First we show that U is a cyclic *p*-group for some prime. In view of Claim (1) and Lemma 3.5(ii), it is enough to show that the hypothesis holds on G/N for every normal nilpotent subgroup N of G. First note that

$$(DN/N)^{\mathfrak{N}_{\sigma}} = D^{\mathfrak{N}_{\sigma}}N/N = DN/N$$

y Lemma 2.2(ii), so D/N is a normal $\sigma\text{-perfect subgroup of }G/N.$ Moreover,

$$(DN/N, Z(DN/N) = Z(D)N/N; U_1N/N, \dots, U_kN/N)$$

is a Robinson σ -complex of G/N by Lemma 3.6(ii). Finally, if V/N is a normal σ -soluble subgroup of G/N, then V is a normal σ -soluble subgroup of G and so for $\{i_1, \ldots, i_r\} \subseteq \{1, \ldots, t\}$, where $1 \leq r < k$, the quotient G/N and, by Lemma 3.8, the quotient

$$(G/N)/(U_{i_1}N/N)'\cdots(U_{i_r}N/N)' = (G/N)/(U'_{i_1}\cdots U'_{i_r}N/N)$$

$$\simeq G/U'_{i_1}\cdots U'_{i_r}N \simeq (G/U'_{i_1}\cdots U'_{i_r})/(U'_{i_1}\cdots U'_{i_r}N/U'_{i_1}\cdots U'_{i_r})$$

satisfy N_{σ_l} for all for all

$$\sigma_l \in \sigma(Z(DN/N)) = \sigma(Z(D)N/N) \subseteq \sigma(Z(D))$$

since $U'_{i_1} \cdots U'_{i_r} N/U'_{i_1} \cdots U'_{i_r} \simeq N/(N \cap U'_{i_1} \cdots U'_{i_r})$ is σ -soluble.

Therefore the hypothesis holds on G/N, so U is a cyclic p-group for some prime $p \in \sigma_j$. Finally, Lemma 3.2(4) implies that in the case i = j we have $U \leq H$, so UH = H = HU. Therefore $j \neq i$. Finally, again by Lemma 3.2(4), $U \leq O_{\sigma_j}(G)$.

(3) $O_{\sigma_i}(G) \cap D = 1.$

Suppose that $L = O_{\sigma_j}(G) \cap D \neq 1$. Then, since D/Z(D) is σ -perfect, $L \leq Z(D)$ and so G satisfies N_{σ_j} by Condition (iii). Therefore $H \leq N_G(U)$ since $i \neq j, U \leq O_{\sigma_j}(G)$ and H is a σ_i -group. But then HU = UH, a contradiction. Hence we have (3).

Final contradiction for the sufficiency. By Lemma 3.2(2), UD/D is σ -subnormal in G/D. On the other hand, HD/D is a Hall σ_i -subgroup of G/D. Hence

$$(UD/D)(HD/D) = (HD/D)(UD/D) = HUD/D$$

by Condition (i) and Lemma 3.3(i), so HUD is a subgroup of G. Therefore, by Claims (2), (3) and Lemma 3.7,

$$\begin{split} UHD \cap HO_{\sigma_j}(G) &= UH(D \cap HO_{\sigma_j}(G))) = UH(D \cap H)(D \cap O_{\sigma_j}(G))) \\ &= UH(D \cap H) = UH \end{split}$$

is a subgroup of G and so HU = UH, a contradiction.

The theorem is proved.

References

- A. N. Skiba, A generalization of a Hall theorem, J. Algebra and its Application, 15(4) (2015), 21–36.
- [2] A.N. Skiba, On some results in the theory of finite partially soluble groups, Commun. Math. Stat., 4(3) (2016), 281–309.
- 3] A.N. Skiba, On σ -subnormal and σ -permutable subgroups of finite groups, J. Algebra, 436 (2015), 1–16.
- [4] Alexander N. Skiba, On the lattice of the σ -permutable subgroups of a finite group, arXiv:1703.01773 [math.GR].
- [5] L.A. Shemetkov, Formations of finite groups, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, 1978.
- [6] W. Guo, A.N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, J. Group Theory, 18 (2015), 191–200.

- [7] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of Finite Groups*, Walter de Gruyter, Berlin-New York, 2010.
- [8] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
- [9] R.K. Agrawal, Finite groups whose subnormal subgroups permute with all Sylow subgroups, Proc. Amer. Math. Soc., 47 (1975), 77–83.
- [10] D.J.S. Robinson, The structure of finite groups in which permutability is a transitive relation, J. Austral. Math. Soc., 70 (2001), 143–159.
- [11] R.A. Brice, J. Cossey, The Wielandt subgroup of a finite soluble groups, J. London Math. Soc., 40 (1989), 244–256.
- [12] J.C. Beidleman, B. Brewster, D.J.S. Robinson, Criteria for permutability to be transitive in finite groups, J. Algebra, 222 (1999), 400–412.
- [13] M.J. Alejandre, A. Ballester-Bolinches, M.C. Pedraza-Aguielera, Finite soluble group with permutable subnormal subgroups, J. Algebra, 240 (2001), 705–722.
- [14] A. Ballester-Bolinches, R. Esteban-Romero, Sylow permutable subnormal subgroups, J. Algebra, 251 (2002), 727–738.
- [15] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, Groups in which Sylow subgroups and subnormal subgroups permute, *Illinois J. Math.*, 47 (2003), 63–69.
- [16] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, A local approach to certain classes of finite groups, *Comm. Algebra*, **31** (2003), 5931–5942.
- [17] M. Asaad, Finite groups in which normality or quasinormality is transitive, Arch. Math., 83 (4) (2004), 289–296.
- [18] A. Ballester-Bolinches, J. Cossey, Totally permutable products of finite groups satisfying SC or PST, Monatsh. Math., 145 (2005), 89–93.
- [19] K. Al-Sharo, J.C. Beidleman, H. Heineken, et al. Some characterizations of finite groups in which semipermutability is a transitive relation, *Forum Math.*, **22** (2010), 855–862.
- [20] J.C. Beidleman, M.F. Ragland, Subnormal, permutable, and embedded subgroups in finite groups, *Central Eur. J. Math.*, 9(4) (2011), 915–921.
- [21] X. Yi, A.N. Skiba, Some new characterizations of *PST*-groups, J. Algebra, **399** (2014), 39–54.
- [22] Alexander N. Skiba, Characterizations of some classes of finite σ -soluble $P\sigma T$ -groups, arXiv:1704.02509 [math.GR].

- [23] A.N. Skiba, On finite groups for which the lattice of S-permutable subgroups is distributive, Arch. Math., **109** (2017), 9-17.
- [24] J. C. Beidleman, A. N. Skiba, On τ_{σ} -quasinormal subgroups of finite groups, J. Group Theory, DOI 10.1515/jgth-2017-0016.
- [25] W. Guo, A. N. Skiba, On Π-quasinormal subgroups of finite groups, Monatsh. Math., DOI 10.1007/s00605-016-1007-9.
- [26] V.A. Vedernikov, On some classes of finite groups, Dokl. Akad. Nauk Belarusi, 32(10) (1988), 872–875.
- [27] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite groups, Springer, Dordrecht, 2006.
- [28] K. Doerk, T. Hawkes, *Finite Soluble Groups*. Walter de Gruyter, Berlin-New York, 1992.
- [29] B. Huppert, N. Blackburn, Finite Groups III, Springer-Verlag, Berlin, New-York, 1982.
- [30] Wenbin Guo, Alexander N. Skiba, Finite groups whose n-maximal subgroups are σ -subnormal, arXiv:1608.03353 [math.GR].
- [31] B.N. Knyagina, V.S. Monakhov, On π' -properties of finite groups having a Hall π -subgroup, Siberian Math. J., **522** (2011), 398–309.

Contorning