Algebra and Discrete Mathematics Number 2. (2008). pp. 50 – 64 © Journal "Algebra and Discrete Mathematics"

On well *p*-embedded subgroups of finite groups

Nataliya V. Hutsko and Alexander N. Skiba

Communicated by L. A. Shemetkov

ABSTRACT. Let G be a finite group, H a subgroup of G and H_{sG} the subgroup of H genarated by all those subgroups of H which are s-permutable in G. Then we say that H is well pembedded in G if G has a quasinormal subgroup T such that HT =G and $T \cap H \leq H_{sG}$. In the present article we use the well pembedded groups to obtain new characterizations for some class of finite soluble, supersoluble, metanilpotent and dispersive groups.

Introduction

All groups under study in this article are finite. Ore considered [10] two generalizations of normality that still pique the unwaning interest of researchers. Note first of all that quasinormal subgroups were introduced in [10] into the practice of mathematicians for the first time. Following [10], we say that a subgroup H of a groups G is quasinormal in G if H commutes with every subgroup of G (i.e. HT = TH for all subgroups T of G). It turned out that quasinormal subgroups possess a series of interesting properties [2, 6, 9, 10, 11, 16, 17] and that actually they are not much different from normal subgroups. Note, in particular, that according to [9] for each quasinormal subgroups H we have $H^G/H_G \subseteq Z_{\infty}(G/H_G)$, and by [12, Theorem 2.1.3], quasinormal subgroups are precisely those subnormal subgroups of G that are modular elements in the lattice of all subgroups of G.

²⁰⁰⁰ Mathematics Subject Classification: 20D10, 20D20, 20E28.

Key words and phrases: quasinormal group, s-permutable group, well pembedded group.

It is clear that if a subgroup H of G is normal in G, then G must have some subgroup T that satisfies the condition

G = HT and both subgroups T and $T \cap H$ are normal in G. (*)

Therefore, (*) is another generalization of normality. This idea appeared firstly in [10] too, where it is shown in particular that *G* is soluble if and only if all maximal subgroups of *G* satisfy (*) (in this regard, also see the article of Baer [1]). Later the subgroups satisfying (*) were called *c*-normal in [18]. In this article a nice theory of *c*-normal subgroups was presented and some of its applications were given to the questions of classification of groups with some distinguished systems of subgroups.

Recall that a subgroup H of G is said to be *s*-permutable or *s*quasinormal [10] in G if HP = PH for all Sylow subgroups P of G.

In the present article we exemine the following concept which generalizes the conditions of quasinormality as well as *c*-normality for subgroups.

Definiton 1. Let H be a subgroup of G. Then we say that H is well p-embedded in G if G has a quasinormal subgroup T such that HT = G and $T \cap H \leq H_{sG}$.

In this definition H_{sG} denotes the s-core of H [14], that is the subgroup of H genarated by all those subgroups of H which are s-permutable in G.

It is clear that every s-permutable subgroup and c-normal subgroup are well p-embedded. The following simple example shows that, in general, a well p-embedded subgroup need not be quasinormal or c-normal.

Example 1. Consider $P = M_m(2) = \langle x, y | x^{2^{m-1}} = y^2 = 1, x^y = x^{1+2^{m-2}} \rangle$, where m > 3, and take $A = \langle x \rangle$ and $B = \langle y \rangle$. Then P = [A]B and |B| = 2. Since Z(P) is a cyclic group of order 2^{m-2} , it follows that B is normal in Z(P)B. Given a group Z_3 of prime order 3, take $G = Z_3 i P = [K]P$, where K is the base of the regular wreath product G. Since G = (KB)A, so $A \cap KB = 1$ and P is a modular group. It follows that KB is quasinormal in G. Hence A is well p-embedded in G, but not quasinormal and not c-normal in G.

In the present article we use the well *p*-embedded groups to obtain new characterizations for some class of finite soluble, supersoluble, metanilpotent and dispersive groups.

1. Preliminaries

Let G be a group and $p_1 > p_2 > \ldots > p_t$ are different prime divisors of the order of G. Then the group G is said to be *dispersive* (in sence Ore [10]) if there are subgroups P_1, P_2, \ldots, P_t such that P_k is a Sylow p_k -subgroup of G and the subgroup $P_1P_2 \ldots P_k$ is normal in G for all $k = 1, 2, \ldots, t$.

The following known results about subnormal subgroups will be used in the paper several times.

NHD

Lemma 1.1. Let G be a group and $A \leq K \leq G$, $B \leq G$. Then

(1) If A and B are subnormal in G, then $\langle A, B \rangle$ is subnormal in G [3, A, Lemma 14.4].

(2) Suppose that A is normal in G. Then K/A is subnormal in G/A if and only if K is subnormal in G [3, A, Lemma 14.1].

(3) If A is subnormal in G, then $A \cap B$ is subnormal in B [3, A, Lemma 14.1].

(4) If A is a subnormal Hall subgroup of G, then A is normal in G [19].

(5) If A is subnormal in G and B is a Hall π -subgroup of G, then $A \cap B$ is a Hall π -subgroup of A [19].

(6) If A is subnormal in G and A is a π -subgroup of G, then $A \leq O_{\pi}(G)$ [19].

(7) If A is subnormal in G and B is a minimal normal subgroup of G, then $B \leq N_G(A)$ [3, A, Lemma 14.5].

(8) If A is a subnormal soluble (nilpotent) subgroup of G, then A is contained in some soluble (respectively in some nilpotent) normal subgroup of G [19].

We will need to know a few facts about s-permutable subgroups.

Lemma 1.2. [8] Let G be a group and $H \leq K \leq G$. Then

(1) If H is s-permutable in G, then H is s-permutable in K.

(2) Suppose that H is normal in G. Then K/H is s-permutable in G if and only if K is s-permutable in G.

(3) If H is s-permutable in G, then H is subnormal in G.

From Lemma 1.2 we directly have.

Lemma 1.3. Let G be a group and $H \leq K \leq G$. Then the following statements hold:

(1) H_{sG} is a s-permutable subgroup of G and $H_G \leq H_{sG}$.

(2) $H_{sG} \leq H_{sK}$.

(3) Suppose that H is normal in G. Then $(K/H)_{s(G/H)} = K_{sG}/H$.

(4) If H is either a Sylow subgroup of G or a maximal subgroup of G, then $H_{sG} = H_G$.

Proof. Statements (1-3) are evident. By Lemmas 2(1) and 3(1), H_{sG} is subnormal in G and so in the case when H is a Sylow subgroup of G, $H_{sG} = H_G$, by Lemma 1(6).

Now assume that H is a maximal subgroup of G. If $D = H_G \neq 1$, then by induction $(H/D)_{\pi(G/D)} = (H/D)_{(G/D)} = D/D$. Hence $H_{sG} = D$. Let D = 1 and let N be a minimal normal subgroup of G. Then by [3], we know that either N is the only minimal normal subgroup of G and $C = C_G(N) \leq N$ or G has precisely two minimal normal subgroups Nand R say, $N \simeq R$ is non-abelian, R = C and $N \cap H = 1 = R \cap H$. Let L be a minimal subnormal subgroup of G contained in H. If $L \leq N$, then $L^G = L^{NH} = L^H \leq D = 1$, a contradiction. Hence $L \not\subseteq N$ and analogously $L \not\subseteq R$. Hence $L \cap N = 1 = L \cap R$. But by Lemma 1(7), $NL = N \times L$, so $L \leq C$, a contradiction. Thus $H_{sG} = 1 = D$.

Lemma 1.4. Let G be a group and $H \leq K \leq G$. Then

(1) Suppose that H is normal in G. Then K/H is well p-embedded in G/H if and only if K is well p-embedded in G.

(2) If H is well p-embedded in G, then H is well p-embedded in K.

(3) Suppose that H is normal in G. Then the subgroup HE/H is well p-embedded in G/H for every well p-embedded in G subgroup E satisfying (|H|, |E|) = 1.

Proof. (1) Necessity. Suppose first that K/H is well *p*-embedded in G/H and let T/H be a quasinormal subgroup of G/H such that

(K/H)(T/H) = G/H and $(T/H) \cap (K/H) \leq (K/H)_{s(G/H)}$. By Lemma 2(3), T/H is subnormal in G/H. By Lemma 1(2), T is subnormal in G. Besides, we have KT = G and $T \cap K \leq K_{sG}$, by Lemma 3(3). Hence K is well p-embedded in G.

Sufficiency. Now assume that for some quasinormal subgroup T of G we have KT = G and $T \cap K \leq K_{sG}$. Then by Lemma 1(1), HT is subnormal in G, so by Lemma 1(2), HT/H is subnormal in G/H. Besides, we have (HT/H)(K/H) = G/H and $(HT/H) \cap (K/H) = (HT \cap K)/H = H(T \cap K)/H \leq HK_{sG}/H = K_{sG}/H = (K/H)_{s(G/H)}$, by Lemma 3(3). Thus K/H is well p-embedded in G/H.

(2) Let T be a quasinormal subgroup of G such that HT = G and $T \cap H \leq H_{sG}$. Then $K = K \cap HT = H(K \cap T)$ and $K \cap T$ is quasinormal in K. By Lemma 3(2), we also see that $(K \cap T) \cap H \leq H_{sG} \leq H_{sK}$. Hence H is well p-embedded in K.

(3) Assume that E is well p-embedded in G and let T be a quasinormal subgroup of G such that ET = G and $T \cap E \leq E_{sG}$. Clearly, $H \leq T$,

so $T \cap HE = H(T \cap E) \leq H(E_{sG}) \leq (HE)_{sG}$. Hence HE is well *p*-embedded in *G*. By (2), HE/H is well *p*-embedded in *G/H*.

The following Lemmas will be necessary for the proof of theorems in Section 2.

Lemma 1.5. If every maximal subgroup of group G has complement, which is a quasinormal subgroup in G, then G is nilpotent.

1410

Proof. Suppose that this is false and that G is a counterexample of minimal order. Then |G| is not prime, so G is not simple group. Let N be any proper normal subgroup of G and M/N a maximal subgroup in G/N. And let T be a permutable subgroup in G such that G = MT and $M \cap T = 1$. Then TN/N is permutable in G/N, (TN/N)(M/N) = G/N and $(TN/N) \cap (M/N) = (TN \cap M)/N = N(T \cap M)/N = N/N$. As the class of all nilpotent groups is the saturated formation, we see that G has only minimal normal subgroup. Let N be only minimal normal subgroup of G. Then $C_G(N) = N$. Let M be a maximal subgroup of group G such that $N \leq M$. And let T be permutable in G such that G = TM and $T \cap M = 1$. By Lemma 1(7), $N \leq N_G(T)$ and $NT = N \times T$. Then $T \leq C_G(N) = N$. The received contradiction finishes the proof of lemma.

Lemma 1.6. Suppose that G = AB and A is a subnormal subgroup of G, B a nilpotent subgroup. If every Sylow subgroup of A has a quasinormal complement in G, then G is nilpotent.

Proof. Suppose that this is false and let G be a counterexample of minimal order. Then

(1) A and every proper subgroup of G containing A are nilpotent.

Let $A \leq M \leq G$ with $M \neq G$. Then $M = M \cap AB = A(M \cap B)$, where $M \cap B$ is nilpotent in G, A is a subnormal subgroup in M. Let A_p be a Sylow subgroup of A and T a subnormal complement for A_p in G. In view of Lemma 1(3), $M \cap T$ is subnormal in M, so $M = M \cap A_p T = A_p(M \cap T)$. Thus the hypothesis of the theorem is true for M. But |M| < |G|, contrary to the choice of G. Thus M is nilpotent. Clearly, A is nilpotent. (2) G is soluble.

By the condition, A is subnormal in G. Then in view of (1) and Lemma 1(8), A contains in some soluble normal subgroup N of G. But $G/N \simeq B/B \cap N$ is nilpotent, so G is soluble.

(3) G/P is nilpotent for every normal p-subgroup P of G, containing Sylow p-subgroup of A.

We shall show that the hypothesis of the theorem is true for G/P. Clearly, that (AP/P)(BP/P) = G/P, where BP/P is nilpotent and

54

AP/P a subnormal in G/P. Let Q/P be a Sylow q-subgroup of $AP/P \simeq A/A \cap P$. Then (q, |P|) = 1 and $Q = A_q P$ for some Sylow q-subgroups A_q of A. In view of (1), A is nilpotent, so A_q is subnormal in G and $Q = A_q \times P$. Let T be a subnormal complement for A_q in G. Let $D = Q \cap TP = Q_1 \times P_1$, where Q_1 is a Sylow q-subgroup of D and $P_1 \leq P$. Clearly, $Q_1 \leq A_q$. Since (q, |P|) = 1, $Q_1 \leq T_q$ for any Sylow q-subgroups T_q of T and therefore $Q_1 \leq T \cap A_q = 1$. Thus $D = P_1$ and hence $TP/P \cap Q/P = 1$. It follows that TP/P is the subnormal complement for Q/P in G/P. At the choice of G we conclude that G/P is nilpotent.

(4) $A \leq F(G)$ and F(G) is a r-group for some prime r.

Let P be a Sylow r-subgroup of A. Then in view of (1), P is subnormal in G. By Lemma 1(6), $P \leq O_r(G)$. According to (3), $G/O_r(G)$ is nilpotent. Since G is not nilpotent group, $A \leq F(G) = O_r(G)$.

(5) $|G| = p^a q$ for some primes p and q and Sylow p-subgroup of G is normal.

Let M be a normal subgroup of group G such that $A \leq M$ and G/Ma simple group. In view of (2), |G:M| = q is a prime. According to (1), M is nilpotent. As every Sylow subgroup P of M is characteristic in M, P is normal in G and in view of (4), M = P.

(6) A is a p-group.

It directly follows from (4) and (5).

Final contradiction.

Let T be a subnormal complement to a subgroup A in G. Then by Lemma 1(5), the Sylow q-subgroup Q of B contains in T. Let D = AQ. Then by Lemma 1(3), $T \cap D = Q(T \cap A) = Q$ is subnormal in D. Thus $D = A \times Q$, so $A \leq N_G(Q)$. Hence $B \leq N_G(Q)$. Then Q is normal in G. Hence in view of (5), G is nilpotent. The received contradiction finishes the proof of the lemma.

Lemma 1.7. If G = AB, where every Sylow subgroup of A is well p-embedded in G and B is a Hall nilpotent subgroup in G, then G is soluble.

Proof. Suppose that this is not true and that G is a counterexample of minimal order. Then every minimal normal subgroup of G contained in A is not abelian. Indeed, if for some abelian the minimal normal subgroup L we have $L \leq A$, then by Lemma 4, the hypothesis of lemma is true for G/L. Consequently to the choice of group G, G/L is metanilpotent. It then follows that G is soluble, contrary to the choice of G.

Now assume that A = G and let P be any Sylow subgroup in G. Let $D = P_{qG}$. By Lemma 2(3), the subgroup D is subnormal in G. By [13, II,

Corollary 7.7.2], $D \leq F(G)$. But G has not the abelian minimal normal subgroups and therefore D = F(G) = 1. According to the condition, a subgroup P is well p-embedded in G, so G has such permutable subgroup T that is the complement to P in G. It is clear that T is subnormal in G and consequently T is a normal subgroup in G. Thus every Sylow subgroup of G has normal complement in G. But then G is a nilpotent group, a contradiction.

Lemma 1.8. Suppose that G = [P]M and P is a Sylow p-subgroup in G, M is a soluble group. If all maximal subgroups of P are well p-embedded in G, then G is p-supersoluble.

1410

Proof. Suppose that this is not true and that G is a counterexample of minimal order.

(1) If N is a minimal normal subgroup of G, then G/N is a p-supersoluble group.

Indeed, G/N = [PN/N](MN/N), where PN/N is a Sylow

p-subgroup in G/N, MN/N is a soluble group. Let K/N be any maximal subgroup of PN/N.

We shall show that a subgroup K/N is well *p*-embedded in G/N. Since *P* is a Sylow *p*-subgroup in *G*, so $K = K \cap PN = N(K \cap P)$. We shall show first that $K \cap P$ is a maximal subgroups of *P*. Note that $K \cap P \neq P$. Indeed, if $K \cap P = P$, then $P \subseteq K$ and K/N = PN/N, contrary to the choice of K/N. Now assume that exists a subgroup *T* such that $K \cap P \subset T \subset P$. Then $K = N(K \cap P) \subseteq TN \subseteq PN$. But *K* is a maximal subgroup of *P*, so either K = TN or TN = NP. If K = TN, then $T \subseteq K \cap P \subset T$ that is impossible. Hence TN = NP, so $P = P \cap TN = T(P \cap N) \subseteq T(P \cap K) = T$. This gives a contradiction. So $K \cap P$ is a maximal subgroup of *P*.

By condition of lemma, $K \cap P_p$ is well *p*-embedded in *G*. Thus by Lemma 4(2), $(K \cap P_p)N/N$ is well *p*-embedded in GN/N, so K/N is a well *p*-embedded subgroup. Thus the hypothesis is still true for G/N. By the choice of G, G/N is a *p*-supersoluble group.

(2) N is the only minimal normal subgroup of G and N is a p-group. Since the class of all p-supersoluble groups is the saturated formation (see [13, p. 35]), so N is the only minimal normal subgroup of G. Since G is p-supersoluble, so either N is a p'-group or N a p-group. If N is a p'-group, then G is p-supersoluble. Hence N is a p-group.

(3) N = P.

Since $N \nleq \Phi(G)$, there exists a subgroup L of G such that G = [N]L. We show that $N = O_p(G)$. Indeed, $O_p(G) = O_p(G) \cap NL = N(O_p(G) \cap L)$. Since $O_p(G) \leq F(G) \leq C_G(N)$, so $O_p(G) \cap L$ is normal in G. It follows that $O_p(G) \cap L = 1$. Hence $N = O_p(G) = P$. Final contradiction.

Let K be a maximal subgroup of P. Then by hypothesis, G has a quasinormal subgroup T such that KT = G and $T \cap K \leq K_{sG}$. Since $K \leq N$, so NT = G. If $N \cap T = 1$, then $KT \neq G$. Hence $N \cap T \leq N$. If $N \cap T < N$, then we have a contradiction to the minimality of N. Thus $N \cap T = N$, so $N \leq T$ and T = G. But K is well p-embedded in G, so $K \cap T = K \leq K_{sG}$. Hence K is s-permutable in G, a contradiction. \square

2. Characterizations of finite soluble, supersoluble, metanilpotent and dispersive groups

Theorem 2.1. *G* is soluble if and only if G = AB, where *A*, *B* are subgroups of *G* sutisfying every maximal subgroup of *A* and every maximal subgroup of *B* are well *p*-embedded in *G*.

Proof. Necessity. Suppose that this is false and let G be a counterexample of minimal order.

(1) If N is a minimal normal subgroup of G contained in $A \cap B$, then G/N is soluble (it directly follows from Lemma 4(1)).

(2) $A \neq G \neq B$.

Indeed, let A = G. Let R be a minimal normal subgroup of G. Then the hypothesis of our theorem is true for G/R = (G/R)(G/R). In view of (1), G/R is soluble. Thus R is the only minimal normal subgroup of $G, R \not\leq \Phi(G)$ and $R = A_1 \times \ldots \times A_t$, where $A_1 \simeq \ldots \simeq A_t$ is a simple non-abelian group. Let p be a prime divisor of the order |R| and M a maximal subgroup of G containing $N = N_G(P)$, where P is a Sylow psubgroup of R. Then by Frattini's Lemma, G = RM, so $M_G = 1$. Let Tbe a quasinormal subgroup in G such that G = TM and $M \cap T \leq M_{sG}$. By Lemma 3(4), $M \cap T \leq M_{sG} = M_G = 1$. Hence T is a complement for M in G. Clearly, p does not divide |G:M|, so (p, |T|) = 1. It follows that $T \cap R = 1$. By [3, A, Lemma 14.3], $TR = T \times R$. Since R is the only minimal normal subgroup of G and R is not abelian, $T \leq C_G(R) = 1$. Hence G = TM = M. This is a contradiction.

(3) A, B are solube (it follows from (2) and a choice of group G). Final contradiction.

Let R be a largest normal soluble subgroup of G. We shall show, that AR/R is nilpotent. If $A \leq R$ it is obvious. Let now $A \not\subseteq R$ and $R \cap A \leq M$, where M is the maximal subgroup of A. Let T be a quasinormal subgroup of G such that G = MT and $M \cap T \leq M_{sG}$. Then $A = A \cap MT = M(A \cap T)$ and $A \cap T$ is a quasinormal subgroup in A. Since $T \cap M$ is a s-permutable subgroup in G, so by lemma 2(3), $T \cap M$ is a subnormal subgroup in G. In view of (3), $T \cap M$ is soluble. Hence $T \cap M \leq R$. Then we have

 $(R \cap A)(T \cap A) \cap M = (R \cap A)(T \cap A \cap M) = (R \cap A)(T \cap M) \le R \cap A.$

Hence by Lemma 5, $A/R \cap A$ is nilpotent, so $AR/R \simeq A/R \cap A$ is nilpotent. It is similarly possible to show that BR/R is nilpotent. Hence by [7, Theorem 3], G/R = (AR/R)(BR/R) is soluble. Thus G is soluble, a contradiction.

Hp

Sufficiency. Suppose G is soluble and let M be a maximal subgroup of group G. Then by [3, A, Theorem 15.6], M/M_G has a normal complement in G/M_G and therefore M/M_G is well p-embedded in G/M_G . Thus by Lemma 4(1), M is well p-embedded in G.

Corollary 1. G is soluble if and only if all maximal subgroups are well p-embedded in G.

Theorem 2.2. G is metanilpotent if and only if G = AB, where A is a subnormal subgroup in G, B is a Hall abelian subgroup in G and every Sylow subgroup of A is well p-embedded in G.

Proof. Necessity. Suppose that this is false and let G be a counterexample of minimal order. By Lemma 7, G is soluble. Then following statements hold.

(1) Let N be a minimal normal subgroup in G, being p-subgroup for some prime p. If either $N \leq A$ or (p, |A|) = 1, then a quatient G/N is metanilpotent.

Clear, A/N is subnormal in G/N, $BN/N \simeq B/B \cap N$ is a Hall abelian subgroup in G/N and G/N = (A/N)(BN/N). Let P/N be a Sylow q-subgroup in AN/N. Let Q be a Sylow subgroup in AN such that P = QN. By [13, III, Lemma 11.6], $Q = A_q N_q$ for some Sylow q-subgroups A_q of A and for Sylow q-subgroups N_q of N. Since group G is soluble, N is the abelian p-group for some prime p. And if either $N \leq A$ or (p, |A|) = 1, $A_q N/N$ is a Sylow q-subgroup in AN/N. By Lemma 4(1), $A_q N/N$ is well p-embedded in G/N. Thus the hypothesis of the theorem is true for G/N. Thus the quotient G/N is metanilpotent according to the choice of G.

(2) $P_{sG} = P_G$ for any Sylow *p*-subgroup *P* of *A* (it directly follows from Lemma 3(4)).

(3) $A_G \neq 1$.

Assume that $A_G = 1$. By hypothesis, B is the abelian group, so $(A \cap B)^G = (A \cap B)BA = (A \cap B)^A \leq A$ and $A \cap B = 1$. Since G = AB and by [13, III, Lemma 11.6], for any prime p will be such Sylow p-subgroups A_p , B_p and G_p in A, B and G, respectively, that $G_p = A_p B_p$.

Since B is a Hall subgroup, it then follows from equality $A \cap B = 1$ that A is a Hall subgroup in G. By hypothesis, A is subnormal in G. In view of [13, II, Corollary 7.7.2 (1)], A is normal in G. The received contradiction finishes the proof of the statement (3).

(4) In G there is the only minimal normal subgroup L contained in A and L is a p-group for some prime number p.

Indeed, by (3), one of the minimal normal subgroups L of G contains in A. Since the class of all metanilpotent groups is the saturated formation (see [13, II, p. 36]), L is the only minimal normal subgroup of Gcontained in A. But G is soluble, so L is a p-group for some prime p.

(5) Every Sylow q-subgroup of A has a quasinormal supplement in G with $q \neq p$.

Let Q be a Sylow q-subgroup in A with $q \neq p$. By hypothesis of our theorem, G has a quasinormal subgroup T such that G = QT and $Q \cap T \leq Q_{sG}$. In view of (2) and (4), $Q_{sG} = 1$. Thus T is a quasinormal supplement to Q in G.

Final contradiction.

Let A_p be a Sylow *p*-subgroup in A and $P = (A_p)_{sG} = A_G$. We shall consider a quotient group G/P = (A/P)(BP/P). By hypothesis, G has a quasinormal subgroup T such that $TA_p = G$ and $T \cap A_p \leq P$. Then $(A_p/P)(TP/P) = G/P$ and $A_p/P \cap TP/P = P(A_p \cap T)/P = P/P$, so TP/P is a quasinormal supplement to A_p/P in G/P. On the other hand, if Q/N is a Sylow *q*-subgroup in A/N with $q \neq p$, then in view of (5), Q/P has a quasinormal supplement in G/P (see the proof of the statement (3) Lemmas 6). Thus by Lemma 6, G/P is nilpotent. Hence G is metanilpotent. The received contradiction finishes the proof of the metanilpotently of G.

Sufficiency. Suppose that G is metanilpotent. We shall show that every Sylow subgroup of G is well p-embedded in G. Suppose that is false and let G be a counterexample of minimal order. Then G has a Sylow subgroup P which is not well p-embedded in G. Let N be any minimal normal subgroup in G and F is a Fitting subgroup of G. Suppose that $N \leq P$. Then P/N is well p-embedded in G/N. By Lemma 4(1), P is well p-embedded in G, a contradiction.

Thus $P_G = 1$, so $F \cap P \leq P_{sG} = P_G = 1$. Since G is metanipotent and FP/F is a Sylow subgroup in G, we see that FP/F has a normal supplement T/F in G/F. But F and T/F are p'-groups, so T is a normal supplement to P in G. Hence P is well p-embedded in G. The received contradiction shows that every Sylow subgroup of G is well p-embedded in G. **Corollary 2.** *G* is metanilpotent if and only if every Sylow subgroup is well *p*-embedded in *G*.

Theorem 2.3. Suppose that G = AB and A is a quasinormal subgroup in G, B is a dispersive. If every maximal subgroup of any non-cyclic Sylow subgroup of A is well p-embedded in G, then G is dispersive.

Proof. Suppose that this theorem is not true and let G be a counterexample of minimal order.

NHD

(1) Every proper subgroup M of G containing A is dispersive.

Let $A \leq M \leq G$ and $M \neq G$. Then $M = M \cap AB = A(M \cap B)$, where $M \cap B$ is dispersive and A is s-quasinormal in M. By Lemma 4(2), any maximal subgroup of every non-cyclic Sylow subgroup of A is well p-embedded in M and |M| < |G|, then by the choice of group G, we have (1).

(2) Let H be not uniqueal normal subgroup in G being p-group for some prime p. Suppose either H contains a Sylow p-subgroup P of A or P is cyclic or $H \leq A$. Then G/H is dispersive.

If $A \leq H$, then $G/H = BH/H \simeq B/B \cap H$ is dispersive. Let now $A \not\subseteq H$. Since |G/H| < |G|, we need to be shown that hypothesis of the theorem is true for G/H. Clearly, G/H = (HA/H)(BH/H), where HA/H is s-quasinormal in G/H and BH/H is dispersive. Let Q/H be a Sylow q-subgroup of AH/H and M/H any maximal subgroup in Q/H. Let Q_1 be a Sylow q-subgroup of Q such that $Q = HQ_1$. Clearly, Q_1 is a Sylow q-subgroup of AH. Thus $Q = A_q H$ for some Sylow q-subgroup A_q of A. Assume that Q/H is not a cyclic subgroup. Then A_q is not cyclic. We shall show that M/H is well p-embedded in G/H. If $H \leq A$, it directly follows from Lemma 4. Admit that either Sylow p-subgroup P of A cyclic or $P \leq H$. Then $p \neq q$. We shall show $M \cap A_q$ is maximal in A_q . Since $M \neq Q$ and $A_q H = Q$, we see that $M \cap A_q \neq A_q$. Assume that for some subgroup T of G we have $M \cap A_q \leq T \leq A_q$, where $M \cap A_q \neq \overline{T} \neq A_q$. Then $M = H(M \cap A_q) \leq HT \leq HA_q = Q$. Since M is maximal in Q, or M = TH or $TH = HA_q$. If M = TH, then $T \leq M \cap A_q$, contrary to the choice of T. Thus $TH = HA_q$ and we have $A_q = A_q \cap TH = T(A_q \cap H) \leq T(M \cap A_q) = T$, a contradiction. Hence $M \cap A_q$ is a maximal subgroup in A_q . By hypothesis, $M \cap A_q$ is well *p*-embedded in G. Therefore $M/H = (M \cap A_q)H/H$ is well *p*-embedded in G/H. Hence the conditions of the theorem are true for G/H.

(3) If p is a prime and (p, |A|) = 1, then $O_p(G) = 1$.

Let $H = O_p(G) \neq 1$. Then in view of (2), G/H is dispersive. On the other hand, if π is a set of all prime divisors |A|, then in view of [10] and [13, II, Corollary 7.7.2], $A \leq E$, where E is a normal π -subgroup in G. Thus $G/E \simeq B/B \cap E$ is dispersive. But then $G \simeq G/H \cap E$ is dispersive, the contradiction.

(4) G is soluble.

By hypothesis, A is s-quasinormal in G. In view of [10] and [13, II, Corollary 7.7.2], A contains in some soluble normal subgroup E of G. Since $G/E \simeq B/B \cap E$ is dispersive, G is soluble.

(5) $A_G \neq 1$.

Suppose that $A_G = 1$. Then by [8], A is nilpotent. Let P be a Sylow p-subgroup of A. Since A is subnormal in G, so P is subnormal in G. Thus by [13, II, Corollary 7.7.2], $P \leq O_p(G)$. But in view of (2), $G/O_p(G)$ is dispersive. By the choice of G, P = A. Let q be a smallest prime divisor $|G/O_p(G)|$. Then G has a normal maximal subgroup Msuch that $P \leq M$ and |G:M| = q. Let r be a largest prime divisor |G|and R be a Sylow r-subgroup of M. Then in view of (1), R is normal in M, so $R \triangleleft G$. If $r \neq q$, R is a Sylow r-subgroup of G and G/R dispersive. It follows that G is dispersive, a contradiction. Hence r = q. But then $G/O_p(G)$ is a r-group. Let B_r be a Sylow r-subgroup in B. Then B_r is a Sylow r-subgroup in G. Since AB_q is a subgroup of G and in view of (1), we have AB_q is dispersive and $B_q \triangleleft AB_q$. As B is dispersive, $B_q \triangleleft B$ and $B_q \triangleleft G$. Hence G is dispersive. The received contradiction proves (5).

Final contradiction.

Let H be a minimal normal subgroup of G containing in A. Let H be a p-group and P a Sylow p-subgroup of A. In view of (2), G/H is dispersive. Let q be a smallest prime divisor |G/H|. Then G has a normal maximal subgroup M such that $P \leq M$ and |G:M| = q. Let r be a largest prime divisor |G|, R be a Sylow r-subgroup of M. Then in view of (1), R is normal in M and so $R \triangleleft G$. As above we see r = q. Then G/H is a r-group. Thus H = A. By Theorem 1.4 in [15], G is dispersive, a contradiction.

Theorem 2.4. If G = AB, where A is a subnormal subgroup in G and B is a Hall subgroup in G, which all Sylow subgroups are cyclic groups and any maximal subgroup of every non-cyclic Sylow subgroup of A is well p-embedded in G, then G is supersoluble.

Proof. Suppose that this is false and that G is a counterexample of minimal order.

(1) Each proper subgroup M of G containing A is supersoluble.

Let $A \leq M \leq G$ and $M \neq G$. Then $M = M \cap AB = A(M \cap B)$, where $M \cap B$ is nilpotent and A is a subnormal in M. By Lemma 4(2), any maximal subgroup of every non-cyclic Sylow subgroup of A is well *p*-embedded in M and |M| < |G|, then by the choice of group G, we have (1). (2) Let H be a non-uniqueal normal subgroup in G. Suppose that H is a p-group. Admit that H contains Sylow p-subgroup P of A or P is cyclic or $H \leq A$. Then G/H is supersoluble (see the proof of the statement (2) Theorems 2.3).

(3) One of the Sylow subgroup of A is not cyclic.

Indeed, easily to see, that any Sylow subgroup of G contains or in some subgroup interfaced with A or in some subgroup interfaced with B. If all Sylow subgroups of A are the cyclic groups, then every Sylow subgroup of G is cyclic. But then by [5, VI, Theorem 10.3], G is supersoluble, contrary to the choice of G.

(4) G is soluble.

Assume that $A \neq G$. Then by view of (1), A is supersoluble. By [13, II, Corollary 7.7.2 (4)], A contains in some normal soluble subgroup R of G. But $G/R = RB/R \simeq B/B \cap R$ is supersoluble group, so G is soluble.

Now assume that A = G. If there is such prime p and such maximal subgroup M in some Sylow subgroup G_p of G that $M_{sG} \neq 1$, then $O_p(G) \neq 1$, this attracts resolvability of group G in view of (2). Thus we can assume that for any Sylow subgroup G_p of G and for its any maximal subgroup M we have $M_{sG} = 1$. Then M has a quasinormal supplement T in G and the order Sylow p-subgroup of T is equal p. By Lemma 4(2), condition of the theorem is true for T. Then by view of the choice of group G, T is supersoluble. But it again attracts resolvability of group G.

(5) A is supersoluble. \checkmark

Let A = G be a soluble group in which for any non-cyclic Sylow subgroup G_p all its maximal subgroups are well *p*-embedded in *G*. Since the class of all supersoluble groups is the saturated formation (see [13, p. 35]), there is the only minimal normal subgroup *N*. Thus $N = C_G(N) \not\subseteq$ $\Phi(G)$. By [5, III, Lemma 3.3(a)], $N \not\subseteq \Phi(G_p)$. Since $N \not\subseteq \Phi(G)$, so G =[N]E for some maximal subgroup *E* of *G*. Thus $M_{sG}E = EM_{sG}$. But $N \not\subseteq M$, so $M_{sG} \neq N$. If $M_{sG} \neq 1$, in view of maximality of a subgroup *E*, then $M_{sG} = G$, that attracts $N = N \cap M_{sG}E = M_{sG}(N \cap E) = M_{sG}$, a contradiction. Hence $M_{sG} = 1$ and *M* has a quasinormal supplement *T* in *G*.

It is clear that the order Sylow *p*-subgroup of *T* is equal *p*. Hence in view of Lemma 4(2), the condition of the theorem is true for *T*. By the choice of group *G*, *T* is a supersoluble group. Let *q* be a largest prime divisor of the order of *T*. And let T_q be a Sylow *q*-subgroup in *T*. We shall admit that $q \neq p$. Then T_q is a Sylow *q*-subgroup in *G*. Since *T* is subnormal in *G*, so $T_q \triangleleft G$. Then $T_q \leq C_G(N) = N$, a contradiction. Hence q = p is the largest prime divisor of the order of *G*. In view of [13, I, Lemma 3.9], $O_p(G/C_G(N)) = O_p(G/N) = 1$. Hence by view of (2), $N = G_p$, a contradiction.

(6) $A_G \neq 1$.

Let p be a largest prime divisor of the order of A and A_p be a Sylow p-subgroup in A. By (5), a group A is supersoluble and $A_p \triangleleft A$. By [13, II, Corollary 7.7.2 (1)], $A_p \leq O_p(G)$. In view of (2), $G/O_p(G)$ is a supersoluble group and $O_p(G)$ non-cyclic group by the choice of group G. It follows that $A_p \not\subseteq B^x$ for all $x \in G$. Therefore A_p is a Sylow subgroup in G, so $A_p = O_p(G)$.

(7) Let N be a minimal normal subgroup of group G contained in A. Then $N = A_p = G_p$ is a Sylow subgroup in G, where p is the largest prime divisor of the order of A.

Let N be a minimal normal subgroup of G contained in A. And let p be the largest prime divisor of A. If p divides $|B|, G_p \leq B$, where G_p is a Sylow p-subgroup of G. By the condition, G_p is a cyclic group. But $N \leq G_p$, so N is a cyclic group. In view of (2), G is supersoluble. The received contradiction with a choice of group G shows, that p does not divide |B|. Thus in view of (5), $O_p(G) = O_p(A) = A_p$, where A_p is a Sylow p-subgroup of A. Since $O_p(A) \subseteq C_G(N) = N$, we have $N = A_p$ is a Sylow subgroup in G.

(8) G is p-supersoluble (it directly follows from Lemma 8). Final contradiction.

By (2), G/N is supersoluble. By (8), |N| = p. Hence G is supersoluble. The received contradiction finishes the proof of the theorem.

References

- R. Baer, Classes of finite groups and their propeties, Illinois Math. Journal 1, 1957, pp. 115-187.
- [2] W.E. Deskins, On quasinormal subgroups of finite groups, Math. Z. 82, 1963, pp. 125-132.
- [3] K. Doerk and T. Hawkes, *Finite soluble groups*, Walter de Gruyter. Berlin New York, 1992.
- [4] D. Gorenstein, *Finite groups, 2nd edn.*, Chelsea. New York, 1980.
- [5] B. Huppert, Endliche Gruppen I., Springer. Berlin Heidelberg New York, 1967.
- [6] N. Ito, J. Szép, Uber die Quasinormalteiler von endlichen Gruppen, Act. Sci. Math. 23, 1962, pp. 168-170.
- [7] O.H. Kegel, Produkte nilpotenter Gruppen, Arch. Math. 12, 1961, pp. 90-93.
- [8] O.H. Kegel, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, Math. Z. 78, 1962, pp. 205-221.
- R. Maier, P. Schmid, The embedding of permutable subgroups in finite groups, Z. Math. 131, 1973, pp. 269-272.
- [10] O. Ore, Contributions in the theory of groups of finite order, Duke Math. J. 5, 1939, pp. 431-460.

- P. Schmid, Subgroups permutable with all Sylow subgroups, J. Algebra 207, 1998, pp. 285-293.
- [12] R. Schmidt, Subgroup Lattices of Groups. Vol. 14: De Gruyter Expositions in Mathematics, Walter de Gruyter. Berlin - New York, 1994.
- [13] L.A. Shemetkov, Formations of finite groups, Nauka. Minsk, 1978.
- [14] A.N. Skiba, On weakly s-permutable subgroups of finite groups, J. Algebra 315, 2007, pp. 192-209.
- [15] A.N. Skiba, O.V. Titov, editors Finite groups with the weakly quasinormal subgroups, GGU im. F. Skoriny. Gomel, 2006.
- [16] S.E. Stonehewer, Permutable subgroups in Infinite Groups, Math. Z. 125, 1972, pp. 1-16.
- [17] J.G. Thompson, An example of core-free quasinormal subgroups of p-groups, Math. Z. 96(2), 1967, pp. 226-227.
- [18] Y. Wang, c-normality of groups and its properties, J. Algebra 180, 1995, pp. 954-965.
- [19] H. Wielandt, Subnormal subgroups and permutation groups. Lectures given at the Ohio State University, Columbus. Ohio, 1971.

CONTACT INFORMATION

N. V. Hutsko

Gomel State University of F.Skorina, Belarus, 246019, Gomel, Sovetskaya Str., 104 *E-Mail:* GutskoN@tut.by

A. N. Skiba

Gomel State University of F.Skorina, Belarus, 246019, Gomel, Sovetskaya Str., 104 *E-Mail:* Skiba@gsu.unibel.by

Received by the editors: 30.08.2007 and in final form 30.08.2007.