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Abstract

Let o = {o;|i € I} be some partition of the set of all primes P and II a non-empty subset
of the set 0. A set H of subgroups of.a finite group G is said to be a complete Hall T1-set of
G if every member of I is a Hall g;-subgroup of G for some o; € II and JH contains exact one
Hall g;-subgroup of G for every_g; €\l such that o; N 7(G) # 0. A subgroup H of G is called
IT-quasinormal or II-permutable imG if G possesses a complete Hall IT-set H = {Hy, ..., H;} such
that AH? = H?A for any"? and all x € G. We study the embedding properties of H under the
hypothesis that H is II-permutable in G. Some known results are generalized.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, P is the
set of all'primes, 7 C P and #’ = P\ w. If n is an integer, the symbol m(n) denotes the set of all
primes dividing |n|; as usual, 7(G) = 7(|G|), the set of all primes dividing the order of G.

In ‘what follows, o = {0;|i € I} is some partition of P, that is, P = U;c70; and o; Noj = 0 for all
i #.7; I1 is always supposed to be a non-empty subset of the set o and II' = ¢ \ II.

In practice, we often deal with two limited cases: o = {{2},{3},{5},...} and o = {7, 7'}

Recall that o(G) = {o;|o; N 7(G) # 0} [1]. G is called: a I-group if o(G) C II; o-primary [2] if

G is a II-group for some one-element set II.
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A set H of subgroups of G is said to be a complete Hall I1-set of G if every member of H is a
Hall o;-subgroup of G for some o; € Il and H contains exact one Hall o;-subgroup of G for every
o; € IINo(G). We say also that G is:  II-full if G possesses a complete Hall I1-set; a II-full group
of Sylow type if every subgroup of G is a D,,-group for all o; € II.

Let £ be some non-empty set of subgroups of G and E a subgroup of G. Then a§ubgroup A of
G is called L-permutable if AH = HA for all H € £; LF-permutable if AH* = H® Aor all H € £
and all x € F.

If 8 is a complete Sylow 7-set of G (that is, every member of 8 is a Sylow p-subgroup for some
p € mand 8 contains exact one Sylow p-subgroup for every p € 7), then an L&permutable subgroup
is called w-permutable or w-quasinormal (Kegel [3]) in G. The 7(G)-permutable subgroups are also

called S-permutable or S-quasinormal.
In this note we study the following generalization of w-permutability.

Definition 1.1. We say that a subgroup H of G is'Il-quasinormal or Il-permutable in G if G
possesses a complete Hall II-set H such that H is HEpérntutable.

Before continuing, consider some examples.

Example 1.2. (1) G is called o-soluble [2\Nif every chief factor of G is o-primary. In view of

Theorem A in [I], every o-soluble groupsis.a II-full group of Sylow type for each II C o. .

(2) G is called o-nilpotent [4] if G pessesses a complete Hall o-set H = {H1,..., H;} such that
G = Hy x --- x Hy. Therefore every subgroup of every o-nilpotent group G is II-permutable in G for
each II C o.

(3) Now let p > g > r be primes, where ¢ divides p — 1 and r divides ¢ — 1. Let H = @ x R be
a non-abelian group of‘order ¢r, P a simple IF, H-module which is faithful for H, and G = P x H.
Let 0 = {01, 02}, wherejoi = {p,r} and o2 = {p,r}’. Then G is not o-nilpotent and |P| > p. Since
q divides p — 14/P() is'supersoluble. Hence for some normal subgroup L of PQ) we have 1 < L < P.
Then for every Hall o1-subgroup V of G we have L < P <V, so LV =V = VL. On the other hand,
for every/Hall\gs-subgroup Q% of G we have Q¥ < PQ, so LQ* = Q*L. Hence L is o-permutable in
G. Itristalsesclear that L is not normal in G, so LR # RL, which implies that L is not S-permutable
inG.

We will also need the following modification of the main concept in [5]: A subgroup A of G is

called: o-subnormal in G [2] if there is a subgroup chain
A=Ag<A < <A, =G

such that either A;_; is normal in A; or A;/(A;_1)a, is o- primary for all i = 1,...¢.
In this definition (A;_1)4, denotes the product of all normal subgroups of A; contained in A;_;.

We use G to denote the o-nilpotent residual of G, that is, the intersection of all normal

subgroups N of G with o-nilpotent quotient G/N.
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Our main goal here is to prove the following
Theorem 1.3. Let H be a Il-subgroup of G and D = GN°.
(i) If G is TI-full and possesses a complete Hall TI-set 3 such that H is H"-permutabley thén H

is o-subnormal in G and the normal closure HS of H in G is a II-group.

(ii) If H is lI-permutable in G and, in the case when Il # o(G), G possesses.a, complete Hall
II'-set K such that H is K-permutable, then H/Hg is o-nilpotent and the nermalizer Ng(H) of
H is also II-permutable. Moreover, Ng(H) is 3¢ -permutable for each compléte-Hall TI-set H of G
such that H is HE-permutable.

(iii) If G is a II'-full group of Sylow type and H is II'-permutable_in G, then H® possesses a
o-nilpotent Hall I1'-subgroup.

Consider some corollaries of Theorem 1.3.

Theorem 1.3(i) immediately implies

Corollary 1.4 (Kegel [5]). If a w-subgroup H of:-G\iS S=permutable in G, then H is subnormal
in G.

Now, consider some special cases of Theorem™l.3(ii). First note that in the case when o =

{{2},{3},...} we get from Theorem 1.3(ii) the following results.

Corollary 1.5. Let H be a w-subgroup of GG. If H is m-permutable in G and, also, H permutes
with some Sylow p-subgroup of G for each prime p € ©’, then the normalizer Ng(H) of H is -

permutable in G.
In particular, in the case 'when m = P, we have

Corollary 1.6 (Schnud [6]). If a subgroup H of G is S-permutable in G, then the normalizer
Ng(H) of H is also’S-permutable.

Corollary 4.7. Lét H be a w-subgroup of G. If H is m-permutable in G and, also, H permutes
with some Sylow. p-subgroup of G for each prime p € «’, then H/H¢ is nilpotent.

Corollary 1.8 (Deskins [7]). If a subgroup H of G is S-permutable in G, then H/H¢ is nilpotent.

Recall that G is said to be a w-decomposable if G = Or(G) x On(G), that is, G is the direct
product of its Hall m-subgroup and Hall 7’-subgroup.

In the case when o = {7, 7'} we get from Theorem 1.3(ii) the following

Corollary 1.9. Suppose that G is w-separable. If a subgroup H of G permutes with all Hall
n-subgroups of G and with Hall '-subgroups of G, then H® /Hg is m-decomposable.

In particular, we have

Corollary 1.10. Suppose that G is p-soluble. If a subgroup H of G permutes with all Sylow
p-subgroups of G and with all p-complements of G, then H® /Hg is p-decomposable.

Finally, in the case when II = o, we get from Theorem 1.3(ii) the following
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Corollary 1.11 (Skiba [2]). Suppose that G is a o-full group and let H be a subgroup of G. If
H is o-permutable in G, then H% /H is o-nilpotent.

From Theorem 1.3(iii) we get

Corollary 1.12. Let H be a w-subgroup of G. If H permutes with every Sylow p-subgroup of

G for p € 7', then HS possesses a nilpotent m-complement.

A subgroup H of G is called a S-semipermutable in G if H permutes with all.Sylow subgroups P
of G such that (|H|,|P|) = 1. If H is S-semipermutable in G and 7 = 7(H ), theén H-is 7’-permutable

in G. Hence from Corollary 1.12 we get the following known result.

Corollary 1.13 (Tsaacs [§]). Ifa w-subgroup H of G is S-semipermutable in G, then H® possesses

a nilpotent m-complement.

Note that in the group G = C7 x Aut(C7) a subgroup ofsorder, 3 is ’'-permutable in G, where
m = {2,3}, but it is not S-semipermutable.

2 Preliminaries

We use: O'(G) to denote the subgroup of G generated by all its II-subgroups; Or(G) to denote the
subgroup of G generated by all its normal-Il-subgroups. A subgroup H of G is said to be: a Hall
I-subgroup of G [1] if |H| is a TI-number (that is, 7(H) C U, e 0i) and |G : H| is a II'-number.

Lemma 2.1. Let A, K and N bewsubgroups of G. Suppose that A is o-subnormal in G and N

is normal in G.
(1) AN K is o-subnormal in* K.
(2) If K is a o-subnotmal subgroup of A, then K is o-subnormal in G.
(3) If K is gs8ubnormal in G, then AN K and (A, K) are o-subnormal in G.
(4) AN/N\is o-subnormal in G/N.
(5) If N~<"K and K/N is o-subnormal in G/N, then K is o-subnormal in G.
(6) If K < A and A is o-nilpotent, then K is o-subnormal in G.

(7) If H # 1 is a Hall TI-subgroup of G and A is not a IlI'-group, then AN H # 1 is a Hall
Il-subgroup of A.

(8) If |G : A| is a Il-number, then O'(A) = O™(G).
(9) If G is TI-full and A is a II-group, then A < Op(QG).
Proof. Statements (1)—(8) are known [2, Lemma 2.6]).

(9) Assume that this assertion is false and let G be a counterexample of minimal order. By
hypothesis, there is a subgroup chain A = Ag < A; < --- < A, = G such that either A;_; is normal

in A; or A;/(Ai—1)a, is o-primary for all i = 1,...,r. Let M = A,_;. We can assume without loss
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of generality that M # G. Let D = AN Mg.

First note that A is not o-primary. Indeed, assume that A is a o;-group. By hypothesis,\&@
has a Hall o;-subgroup, say H. Then, by Assertion (7), for any x € G we have A < H”.“Hénee
A% < Hg < On(G), a contradiction. Hence |o(A)| > 1.

Suppose that D # 1. The subgroup D is o-subnormal in Mg by Lemma 2.1(1)(3)s0 the choice
of G implies that D < O (Mg). Hence On(Mg) # 1. But since Or(Mg) is characteristic in Mg, we
have that Or(Mg) < On(G). The hypothesis holds for (G/On(G), AOn(G)/Ou(G)) by Assertion
(4). Therefore AO(G)/On(G)) < On(G/0n(G)) = 1. It follows that A < On(G), a contradiction.
Hence AN Mg =1, so M is not normal in G. Therefore, G/Mg is a oj-group for some j € I. But
then A ~ AM¢ /Mg is o-primary. This contradiction completes the proof.

The first three statements in the next lemma can be provediby the direct calculations and the
last statement see [0, A, 1.6(a)].

Lemma 2.2. Let H, K and N be subgroups of G#'Let H = {Hy,...,H;} be a complete Hall
II-set of of G and £ = H¥. Suppose that H is L-permutable and N is normal in G.

(1) IfH < E < G, then H is £*-permutable, where'L* = {H\NE, ..., H,NE}YS"E . In particular,
if H is II-permutable in G and either G is a II-full group of Sylow type or E is normal in G, then H
is II-permutable in F.

(2) The subgroup HN/N is £**-pérmutable, where £** = {H,N/N, ... H,N/N}YKN/N,

(3) If G is a II-full group of Sylow, type and E/N is a II-permutable subgroup of G/N, then E
is II-permutable in G.

(4) If K is L-permutable, then (H, K) is L-permutable.

Lemma 2.3 (See.Lemma 2.2 in [I]). Let H be a normal subgroup of G. If H/H N ®(G) is a
II-group, then H  has a Hall Il-subgroup, say E, and E is normal in G.

We say that a‘group G is II-closed if Op(G) is a Hall II-subgroup of G. Two integers n and m
are called g *coprime if o(n) No(m) = 0.

Lemma 2.4. If a o-soluble group G has three Il-closed subgroups A, B and C' whose indices
|G Al, |G : B|, |G : C| are pairwise o-coprime, then G is Il-closed.

Proof. Suppose that this lemma is false and let G be a counterexample with |G| minimal. Let
Nbe a minimal normal subgroup of G. Then the hypothesis holds for G/N, so G/N is Il-closed by
the choice of G. Therefore N is not a II-group. Moreover, N is the unique minimal normal subgroup
of G and, by Lemma 2.3, N £ ®(G). Hence Cg(N) < N. Since G is o-soluble by hypothesis, N is
o-primary, say N is a o;-group. Then o; € IT'.

Since |G : A|, |G : B|, |G : C| are pairwise o-coprime, there are at least two subgroups, say A
and B, such that N < AN B. Then Op(A4) < Cg(N) < N, so O(A) = 1. But by hypothesis, A is
II-closed, hence A is a IT'-group. Similarly we get that B is a IT'-group and so G = AB is a IT'-group.



But then G is Il-closed. This contradiction completes the proof of the lemma.

Recall that G is called a Schmidt group if G is not nilpotent but every proper subgroup of Ghi§

nilpotent.

Proposition 2.5. Let G be a o-soluble group. Suppose that G is not o}-closed butall proper

subgroups of G are o,-closed. Then G is a o;-closed Schmidt group.

Proof. Suppose that this proposition is false and let G be a counterexample'of minimal order.
Let R be a minimal normal subgroup of G and {Hy,..., H;} a complete Hall'g=set of G. Without

loss of generality we can assume that H; is a g;-group.
(1) |o(G)| = 2. Hence G = H1 Hs.

It is clear that |o(G)| > 1. Suppose that |o(G)| > 2. Then, since Giis o-soluble, there are maximal
subgroups M, My and M3 whose indices |G : My], |G : Maf and\|G : Mj| are o-coprime. Hence
G = MMy = MyMs = My Ms. But the subgroups M, Myvand M; are o)-closed by hypothesis.
Hence G is o}-closed by Lemma 2.4, a contradiction. Thus [6(G)| = 2.

(2) If either R < ®(G) or R < Hs, then G/R is a'gj=closed Schmidt group.

Lemma 2.3 and the choice of G imply that|G/R is not o}-closed. On the other hand, every
maximal subgroup M/R of G/R is o}-closéd sinee M is oj-closed. Hence the hypothesis holds for
G/R. The choice of G implies that G/R is"a 0;-closed Schmidt group.

(3) ®(G) =1, R is the unique ntininal normal subgroup of G and R < H;.

Suppose that R < ®(G).” Then R is a r-group for some prime r and, in view of Claim (1),
Lemma 2.3 and [10, IV, 5.4])\G"= Hy x Hy = P x ), where Hy = P is a p-group and Hy = @ is a
g-group for some different,primes p and ¢. Assume that R < ) and take a subgroup L of order ¢ in
RNZ(Q). Then it is.clear that R < @, so PR < G and hence PR = P x @ is p-nilpotent. Therefore
L<Z(G),so R=L < Z(G). But for every maximal subgroup M of G we have R < M and M/R is
nilpotent. HentCe ‘every maximal subgroup of G is nilpotent and so G is a o0;-closed Schmidt group,
a contradiction. \Similarly, we get that G is a o;-closed Schmidt group in the case when R < P.
Therefore R @ (G).

Now assume that G has a minimal normal subgroup L # R. Then by (3), there are maximal
subgroups M and T of G such that LM = G and RT = G. By hypothesis, M and T are o,-closed.
Hence G/L ~ LM/L ~ M/M N L is o-closed. Similarly, G/R is o-closed and so G ~ G/LNR is

oi-nilpotent, a contradiction. Hence R is the unique minimal normal subgroup of G, and so R < H;.

Final contradiction. In view of Claim (3), Cq(R) < R. Hence |H»| is a prime and RHy = G since
R < H; and every proper subgroup of G is oj-closed. Therefore R = Hy, so R is not abelian since G
is a not a og;-closed Schmidt group. By Claim (1) and Theorem 3.5 in [I1]], for any prime p dividing
|R| there is a Sylow p-subgroup P of G such that PHy = HyP. But HoP < G, so HoP = Hy x P.
This implies that R < Ng(Hz) and thereby G = R x Hy = Hj X Hs. This final contradiction

completes the proof of the result.



Corollary 2.6. Let G be a minimal non-c-nilpotent group, that is, G is not o-nilpotent, but

every proper subgroup of G is o-nilpotent. If G is a g-soluble, then G is a Schmidt group.

Proof. It is clear that G is o-nilpotent if and only if G is o}-closed for all o; € o. Hefice] for
some i, G is not o)-closed. On the other hand, every proper subgroup of G is o}-closed. Hence G is

a Schmidt group by Proposition 2.5.
Proposition 2.7. Let G be a II-full group of Sylow type. If G possesses a o-nilpotent Hall 11-

subgroup H, then every o-soluble Il-subgroup of GG is contained in a conjugate of H. In particular,

any two o-soluble Hall TI-subgroups of G are conjugate.

Proof. Suppose that this proposition is false and let G be a counterexample of minimal order.
Then some o-soluble II-subgroup K of G is not contained in H® for all * € G. We can assume
without loss of generality that every proper subgroup V of K iS\contained in a conjugate of H, so
V' is o-nilpotent. Hence either K is o-nilpotent or K is a minimal non-o-nilpotent group. Then in
view of Corollary 2.6 and [10, IV, 5.4], K has a normal Hallg;-subgroup L for some o; € o(K). Now
arguing as in the proof of Wielandt’s theorem [12), (10:149))s one can show that for some y € G we
have K < HY. This contradiction completes the proof of the result.

Corollary 2.8. Let G be a Il-full group+of|Sylow type. Suppose that every chief factor of G
possesses a o-nilpotent Hall I1-subgroup. Then G possesses a o-soluble Hall I1-subgroup.

Proof. Let R be a minimal normal subgroup of G, H a o-nilpotent Hall II-subgroup of R and
N = N¢(H). By induction, G/R has a‘e-soluble Hall II-subgroup, say U/R. Therefore if R is a
II-group, then U is a o-soluble Hall II*subgroup of G. On the other hand, if R is a IT’-group, then
U = R x V by the Schur-Zagsenhas theorem, where V' ~ U/R is a o-soluble Hall II-subgroup of G.
Now suppose that 1 < H <|R. Proposition 2.7 and the Ftattini argument imply that G = RN,
where |G : N| = |R/RMWN| is a IT'-number and N < G. Then N/N N R ~ G/R possesses a o-soluble
Hall II-subgroup., Hence in view Proposition 2.7, the hypothesis holds for IV, so IV possesses a o-
soluble Hall II<subgroup W by induction. It is clear now that W is a Hall II-subgroup of G. The

corollary is«<proved.

3 . 'Proof of Theorem 1.3

Suppose that this theorem is false and let (G, H) be a counterexample with |G|+ |G : H| as small
ds possible. Then H # HC.

(i), (ii) By hypothesis, G possesses a complete Hall II-set, say H = {Hq, ..., H;}. We can assume
without loss of generality that H; is a oy-group for all i = 1,...,t. Let E = HY ... HE.

Suppose that Assertion (i) is false. Then in view of Lemma 2.1(9), H is not o-subnormal in G.
Moreover, in this case we have E = (. Indeed, since the class of all o-nilpotent groups is closed under

taking subgroups, homomorphic images and the direct products, E/E N D ~ DE/D is o-nilpotent.



Hence ENe < D. It follows that the hypothesis holds for (£, H). Thus in the case when E < G the
choice of (G, H) implies that H is o-subnormal in F and so H is o-subnormal in G, a contradictions
Therefore E = G. Since H # H, it follows that for some z € G and H; € H we have H¥ % Ne(H).
Now, arguing as in Claim (2) of the proof of Theorem B in [2], one can show that H is o-subnormal

in G. This contradiction completes the proof of (i).
(ii) Suppose that this assertion is false. Then:
(1) The hypothesis holds for (G/Hq,H/Hg), so Hg = 1.

First note that the hypothesis holds for (G/Hq, H/H¢) by Lemma 2.2(2). Assume that Hg # 1.
Then the choice of (G, H) implies that H%/H¢ is o-nilpotent and Ng/u,(H/Hg) = Ng(H)/Hg is
H*-permutable by Lemma 2.2(2), where

H* = {H\Hg/Hg, ..., HHg/Ha} ¢
But then, clearly, Ng(H) is H®-permutable. This shows that Assertion (ii) is true. Therefore the
choice of (G, H) implies that Hg = 1.
(2) t>1.

Assume that ¢ = 1, that is, H is a opgroup. Then HHY = H{H = HY for all z € G, so
HE < (H))g < Oy, (G), which implies“that H is o-nilpotent. Hence H is o-subnormal in G
by Lemma 2.1(6). Note also that forany Hall of-subgroup V of G such that HV = VH we
have H = VH N Oy, (G), so V < Ng(H). Therefore if H is II-permutable in G and also, in the
case when II # o(G), H is K-permutable, then |G : Ng(H)| is a oj-number, which implies that
Nq(H)HY = G = Hf{Ng(H) forall x € G. This means that Ng(H) is II-permutable in G. Thus

Assertion (ii) is true, aontradiction. Therefore ¢ > 1.
Let L; = O% (H), forall i = 1,...,t. Then H = Ly --- Ly and Ng(H) = Ng(L1) N --- N Ng(Ly).
Let
Wom HE oo 1S, HE.
foralli=1x.0,t,and W =WiN--- N W,
(8) Wi < Ng(L;) foralli =1,...,t, so W < Ng(H).

Indeed, since H is o-subnormal in G by Part (i), Lemma 2.1(8) implies that HY < N (0% (H)) for
allL.z € G. This means that HY < Ng (0% (H)). Hence HY < Ng(L;) for all j # i, so W; < Ng(L;)
foralli=1,...,t.

(4) HY is o-nilpotent.

Suppose that this is false. Let K = Hy--- H;W. Then:

(a) K is a subgroup of G, H < K and |K : W| is a II-number.
First note that (H;W/W)&/W = HEW/W and



WW; NHEW =W (W; N HEW) =W W; NHE (W N---NWy)) =
—WW;NnWin---NAWi i "Wy N--- AW NWHE) =W (W NE)=W.

Therefore

E/W = (HW/W)W ... (HW/W)GW,
This means that [H;W/W, H;W/W] =1, for all i # j. Hence K = Hy--- HHW = (HW) - - - (HW)
is the product of pairwise permutable subgroups, which implies that K is a,stubgroup of G. It is also

clear that K /W is a Hall II-subgroup of G/W. Hence |K : W| is a II-number.and WH/W < K/W
by Lemma 2.1(4)(7), so we have (a).

(b) The hypothesis holds for (K, H).

Let X = {Ky,...,K,}. Since |K : W| is a II-number, K; R K is a Hall o;-subgroup of K and
hence B = {K1NK,...,K,NK} is a complete Hall IT'-set 'of K» On the other hand, for any K; € X
we have HK;NK = (K;NK)H and so H is B-permutable! Einally, it is clear that H is II-permutable
in K. Hence the hypothesis holds for (K, H).

(c) K <G@.

Suppose that K = G. Then, since |K :W| = |G : W| is a II-number by Claim (4), for every
K; € K and every x € G we have K< W.< Ng(H) by Claim (3), so K*H = HK?. Therefore
H is o-permutable in G and so H¥~ H¢/Hg is o-nilpotent by Theorem B in [2], contrary to our
assumption on H. Hence K </G.

(d) |G : Ng(H)| is a II-nnuber (Since H is a o-subnormal IT-subgroup of G, this follows from
Lemma 2.1(8)).

(e) Conclusion for (4):

Since K <G by*€laim (c), we have that H* /Hf is o-nilpotent. Because |G : Ng(H)| is a
[T-number by Glaim (d), G = KNg(H). Hence H® ~ H/1 = H®/Hg = HX /Hf is o-nilpotent.
This contradietion shows that HS is o-nilpotent.

Final\contradiction for (ii).

Since HY is o-nilpotent by (4), H is also o-nilpotent. Hence H possesses a complete Hall o-set
{Viy...,V;} such that H = V; x --- x V;. Without loss of generality we can assume that V; is a
gi-group for all t = 1,...,t. Let N = Ng(H) and N; = Ng(V;). Then N = NyN---N Ny. Moreover,
it is clear that L; = V; for alli =1,...,t. Hence W; < Ng(V;) for alli =1,...,¢ by Claim (3). It is
also clear that |G : N;| is a o;-number, so G = N; H;. Hence for any z € G and H; € H we have

NHY =(N1nN---NN)H =NH NNy N NN;_1 NNy N--- NNy =

:GﬂNlﬂ"'ﬁNi_lﬁNi+1ﬂ"'ﬁNt:Nlﬂ"-ﬁNi_lﬁNi+1ﬂ---ﬁNt:HZ-IN



and so N is H%-permutable. Therefore Assertion (ii) is true. This contradiction completes the proof

of Assertion (ii).

(iii) Let £ = {L1,..., Ly} be a complete Hall II'-set of G such that H is £%permutable./Tet
E = H® and R a minimal normal subgroup of G. First note that m > 1, Indeed, if m,= 1y, then
Li N E is a o-nilpotent Hall II'-subgroup of G, which contradicts the choice of (G, H).

(1) ER/R possesses a o-nilpotent Hall TI'-subgroup U/R. Therefore R < E.

From Lemma 2.2(2) and the choice of G it follows that (HR/R)“/® = BERJR possesses a o-
nilpotent Hall IT'-subgroup, say U/R. Therefore, if R £ E, then E ~ ER/R possesses a o-nilpotent
Hall TI'-subgroup, a contradiction. Hence we have (1).

(2) On(G) =1.

Assume that R < Op(G). Then, by the Schur-Zassenhaus theéerem, R has a complement V' in
U,soV ~U/R is a o-nilpotent Hall II'-subgroup of E, a contradiction. Hence we have (2).

(3) LY £ Cg(E) for alli=1,...,t.

Assume that LY < Cg(E) and let N be a minimal‘\nermal subgroup of G contained in L§. Then
N < F and E/N possesses a o-nilpotent Hall II-subgroup, say U/N, by Claim (1). On the other
hand, N < Z(U), so U is o-nilpotent. Butia Hall II'-subgroup of U is a Hall II'-subgroup of FE, a

contradiction. Hence we have (3).
(4) R is the unique minimal norinal subgroup of G.

Suppose that G has a mimimal normal subgroup N # R. Then N < E and G/N possesses a
o-nilpotent Hall II'-subgroup by Claim (1). Therefore (E/R) x (E/N) possesses a o-nilpotent Hall
ITI'-subgroup V. But E > (E/R) X (E/N) since RNN = 1. Hence E possesses a o-nilpotent Hall
IT'-subgroup. Moreoyernsince N ~ RN/R possesses a o-nilpotent Hall IT'-subgroup, E possesses a
Hall IT'-subgroup, . by Corollary 2.8. But then, by Proposition 2.7, for some x € G we have U < V7

and so U is o-nilpotent, contrary to the choice of G. Hence we have (4).
Final contradiction for (iii).

Letw,y € G and A = H*. Then
ALY = (HLY" )" = (L¥" H)" = LYA
by, hypothesis. Let L = A% N LA. Then L is a subnormal subgroup of G by [I3] 7.2.5]. Suppose
that L # 1 and let Ly be a minimal subnormal subgroup of G contained in L. Then V = LygN L; is
a Hall II"-subgroup of Ly since L < AL;. Moreover, in view of Claim (2), V # 1 (see, for example,
[14, Chapter 1, Lemma 5.35(5)]). We now show that L; N R is a non-identity Hall II'-subgroup of R.
Indeed, if Ly is abelian, then Ly < O,,(G), where 0; = w(L;), so R is a o;-group by Claim (4). On
the other hand, if Ly is non-abelian, L§ is a minimal normal subgroup of G' and so, by Claim (4),
L; N R is a non-identity Hall II'-subgroup of R.

Since m > 1, Claim (2) implies that there is j # i such that for every z,y € G we have
10



(LH" N (H*)% =1 and so
(LY, 1) < (L™, (H")5] = 1.
Therefore LJ-G < Cg(FE), contrary Claim (3). Hence Statement (iii) holds.

The theorem is proved.
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