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Abstract

Let σ = {σi|i ∈ I} be some partition of the set of all primes P and Π a non-empty subset
of the set σ. A set H of subgroups of a finite group G is said to be a complete Hall Π-set of
G if every member of H is a Hall σi-subgroup of G for some σi ∈ Π and H contains exact one
Hall σi-subgroup of G for every σi ∈ Π such that σi ∩ π(G) 6= ∅. A subgroup H of G is called
Π-quasinormal or Π-permutable in G if G possesses a complete Hall Π-set H = {H1, . . . , Ht} such
that AHx

i
= Hx

i
A for any i and all x ∈ G. We study the embedding properties of H under the

hypothesis that H is Π-permutable in G. Some known results are generalized.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. Moreover, P is the

set of all primes, π ⊆ P and π′ = P \ π. If n is an integer, the symbol π(n) denotes the set of all

primes dividing |n|; as usual, π(G) = π(|G|), the set of all primes dividing the order of G.

In what follows, σ = {σi|i ∈ I} is some partition of P, that is, P = ∪i∈Iσi and σi ∩ σj = ∅ for all

i 6= j; Π is always supposed to be a non-empty subset of the set σ and Π′ = σ \ Π.

In practice, we often deal with two limited cases: σ = {{2}, {3}, {5}, . . .} and σ = {π, π′}.

Recall that σ(G) = {σi|σi ∩ π(G) 6= ∅} [1]. G is called: a Π-group if σ(G) ⊆ Π; σ-primary [2] if

G is a Π-group for some one-element set Π.
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A set H of subgroups of G is said to be a complete Hall Π-set of G if every member of H is a

Hall σi-subgroup of G for some σi ∈ Π and H contains exact one Hall σi-subgroup of G for every

σi ∈ Π ∩ σ(G). We say also that G is: Π-full if G possesses a complete Hall Π-set ; a Π-full group

of Sylow type if every subgroup of G is a Dσi
-group for all σi ∈ Π.

Let L be some non-empty set of subgroups of G and E a subgroup of G. Then a subgroup A of

G is called L-permutable if AH = HA for all H ∈ L; LE-permutable if AHx = HxA for all H ∈ L

and all x ∈ E.

If S is a complete Sylow π-set of G (that is, every member of S is a Sylow p-subgroup for some

p ∈ π and S contains exact one Sylow p-subgroup for every p ∈ π), then an L
G-permutable subgroup

is called π-permutable or π-quasinormal (Kegel [3]) in G. The π(G)-permutable subgroups are also

called S-permutable or S-quasinormal.

In this note we study the following generalization of π-permutability.

Definition 1.1. We say that a subgroup H of G is Π-quasinormal or Π-permutable in G if G

possesses a complete Hall Π-set H such that H is HG-permutable.

Before continuing, consider some examples.

Example 1.2. (1) G is called σ-soluble [2] if every chief factor of G is σ-primary. In view of

Theorem A in [1], every σ-soluble group is a Π-full group of Sylow type for each Π ⊆ σ. .

(2) G is called σ-nilpotent [4] if G possesses a complete Hall σ-set H = {H1, . . . ,Ht} such that

G = H1×· · · ×Ht. Therefore every subgroup of every σ-nilpotent group G is Π-permutable in G for

each Π ⊆ σ.

(3) Now let p > q > r be primes, where q divides p − 1 and r divides q − 1. Let H = Q⋊ R be

a non-abelian group of order qr, P a simple FpH-module which is faithful for H, and G = P ⋊H.

Let σ = {σ1, σ2}, where σ1 = {p, r} and σ2 = {p, r}′. Then G is not σ-nilpotent and |P | > p. Since

q divides p− 1, PQ is supersoluble. Hence for some normal subgroup L of PQ we have 1 < L < P .

Then for every Hall σ1-subgroup V of G we have L ≤ P ≤ V , so LV = V = V L. On the other hand,

for every Hall σ2-subgroup Qx of G we have Qx ≤ PQ, so LQx = QxL. Hence L is σ-permutable in

G. It is also clear that L is not normal in G, so LR 6= RL, which implies that L is not S-permutable

in G.

We will also need the following modification of the main concept in [5]: A subgroup A of G is

called: σ-subnormal in G [2] if there is a subgroup chain

A = A0 ≤ A1 ≤ · · · ≤ An = G

such that either Ai−1 is normal in Ai or Ai/(Ai−1)Ai
is σ- primary for all i = 1, . . . t.

In this definition (Ai−1)Ai
denotes the product of all normal subgroups of Ai contained in Ai−1.

We use GNσ to denote the σ-nilpotent residual of G, that is, the intersection of all normal

subgroups N of G with σ-nilpotent quotient G/N .
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Our main goal here is to prove the following

Theorem 1.3. Let H be a Π-subgroup of G and D = GNσ .

(i) If G is Π-full and possesses a complete Hall Π-set H such that H is HD-permutable, then H

is σ-subnormal in G and the normal closure HG of H in G is a Π-group.

(ii) If H is Π-permutable in G and, in the case when Π 6= σ(G), G possesses a complete Hall

Π′-set K such that H is K-permutable, then HG/HG is σ-nilpotent and the normalizer NG(H) of

H is also Π-permutable. Moreover, NG(H) is HG-permutable for each complete Hall Π-set H of G

such that H is HG-permutable.

(iii) If G is a Π′-full group of Sylow type and H is Π′-permutable in G, then HG possesses a

σ-nilpotent Hall Π′-subgroup.

Consider some corollaries of Theorem 1.3.

Theorem 1.3(i) immediately implies

Corollary 1.4 (Kegel [5]). If a π-subgroup H of G is S-permutable in G, then H is subnormal

in G.

Now, consider some special cases of Theorem 1.3(ii). First note that in the case when σ =

{{2}, {3}, . . .} we get from Theorem 1.3(ii) the following results.

Corollary 1.5. Let H be a π-subgroup of G. If H is π-permutable in G and, also, H permutes

with some Sylow p-subgroup of G for each prime p ∈ π′, then the normalizer NG(H) of H is π-

permutable in G.

In particular, in the case when π = P, we have

Corollary 1.6 (Schmid [6]). If a subgroup H of G is S-permutable in G, then the normalizer

NG(H) of H is also S-permutable.

Corollary 1.7. Let H be a π-subgroup of G. If H is π-permutable in G and, also, H permutes

with some Sylow p-subgroup of G for each prime p ∈ π′, then H/HG is nilpotent.

Corollary 1.8 (Deskins [7]). If a subgroupH of G is S-permutable in G, then H/HG is nilpotent.

Recall that G is said to be a π-decomposable if G = Oπ(G) × Oπ′(G), that is, G is the direct

product of its Hall π-subgroup and Hall π′-subgroup.

In the case when σ = {π, π′} we get from Theorem 1.3(ii) the following

Corollary 1.9. Suppose that G is π-separable. If a subgroup H of G permutes with all Hall

π-subgroups of G and with Hall π′-subgroups of G, then HG/HG is π-decomposable.

In particular, we have

Corollary 1.10. Suppose that G is p-soluble. If a subgroup H of G permutes with all Sylow

p-subgroups of G and with all p-complements of G, then HG/HG is p-decomposable.

Finally, in the case when Π = σ, we get from Theorem 1.3(ii) the following
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Corollary 1.11 (Skiba [2]). Suppose that G is a σ-full group and let H be a subgroup of G. If

H is σ-permutable in G, then HG/HG is σ-nilpotent.

From Theorem 1.3(iii) we get

Corollary 1.12. Let H be a π-subgroup of G. If H permutes with every Sylow p-subgroup of

G for p ∈ π′, then HG possesses a nilpotent π-complement.

A subgroup H of G is called a S-semipermutable in G if H permutes with all Sylow subgroups P

of G such that (|H|, |P |) = 1. If H is S-semipermutable in G and π = π(H), then H is π′-permutable

in G. Hence from Corollary 1.12 we get the following known result.

Corollary 1.13 (Isaacs [8]). If a π-subgroupH ofG is S-semipermutable in G, thenHG possesses

a nilpotent π-complement.

Note that in the group G = C7 ⋊ Aut(C7) a subgroup of order 3 is π′-permutable in G, where

π = {2, 3}, but it is not S-semipermutable.

2 Preliminaries

We use: OΠ(G) to denote the subgroup of G generated by all its Π′-subgroups; OΠ(G) to denote the

subgroup of G generated by all its normal Π-subgroups. A subgroup H of G is said to be: a Hall

Π-subgroup of G [1] if |H| is a Π-number (that is, π(H) ⊆
⋃

σi∈Π
σi) and |G : H| is a Π′-number.

Lemma 2.1. Let A, K and N be subgroups of G. Suppose that A is σ-subnormal in G and N

is normal in G.

(1) A ∩K is σ-subnormal in K.

(2) If K is a σ-subnormal subgroup of A, then K is σ-subnormal in G.

(3) If K is σ-subnormal in G, then A ∩K and 〈A,K〉 are σ-subnormal in G.

(4) AN/N is σ-subnormal in G/N .

(5) If N ≤ K and K/N is σ-subnormal in G/N , then K is σ-subnormal in G.

(6) If K ≤ A and A is σ-nilpotent, then K is σ-subnormal in G.

(7) If H 6= 1 is a Hall Π-subgroup of G and A is not a Π′-group, then A ∩ H 6= 1 is a Hall

Π-subgroup of A.

(8) If |G : A| is a Π-number, then OΠ(A) = OΠ(G).

(9) If G is Π-full and A is a Π-group, then A ≤ OΠ(G).

Proof. Statements (1)–(8) are known [2, Lemma 2.6]).

(9) Assume that this assertion is false and let G be a counterexample of minimal order. By

hypothesis, there is a subgroup chain A = A0 ≤ A1 ≤ · · · ≤ Ar = G such that either Ai−1 is normal

in Ai or Ai/(Ai−1)Ai
is σ-primary for all i = 1, . . . , r. Let M = Ar−1. We can assume without loss
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of generality that M 6= G. Let D = A ∩MG.

First note that A is not σ-primary. Indeed, assume that A is a σi-group. By hypothesis, G

has a Hall σi-subgroup, say H. Then, by Assertion (7), for any x ∈ G we have A ≤ Hx. Hence

AG ≤ HG ≤ OΠ(G), a contradiction. Hence |σ(A)| > 1.

Suppose that D 6= 1. The subgroup D is σ-subnormal in MG by Lemma 2.1(1)(3), so the choice

of G implies that D ≤ OΠ(MG). Hence OΠ(MG) 6= 1. But since OΠ(MG) is characteristic in MG, we

have that OΠ(MG) ≤ OΠ(G). The hypothesis holds for (G/OΠ(G), AOΠ(G)/OΠ(G)) by Assertion

(4). Therefore AOΠ(G)/OΠ(G)) ≤ OΠ(G/OΠ(G)) = 1. It follows that A ≤ OΠ(G), a contradiction.

Hence A ∩MG = 1, so M is not normal in G. Therefore, G/MG is a σj-group for some j ∈ I. But

then A ≃ AMG/MG is σ-primary. This contradiction completes the proof.

The first three statements in the next lemma can be proved by the direct calculations and the

last statement see [9, A, 1.6(a)].

Lemma 2.2. Let H, K and N be subgroups of G. Let H = {H1, . . . ,Ht} be a complete Hall

Π-set of of G and L = H
K . Suppose that H is L-permutable and N is normal in G.

(1) If H ≤ E ≤ G, then H is L∗-permutable, where L∗ = {H1∩E, . . . ,Ht∩E}K∩E . In particular,

if H is Π-permutable in G and either G is a Π-full group of Sylow type or E is normal in G, then H

is Π-permutable in E.

(2) The subgroup HN/N is L∗∗-permutable, where L
∗∗ = {H1N/N, . . . ,HtN/N}KN/N .

(3) If G is a Π-full group of Sylow type and E/N is a Π-permutable subgroup of G/N , then E

is Π-permutable in G.

(4) If K is L-permutable, then 〈H,K〉 is L-permutable.

Lemma 2.3 (See Lemma 2.2 in [1]). Let H be a normal subgroup of G. If H/H ∩ Φ(G) is a

Π-group, then H has a Hall Π-subgroup, say E, and E is normal in G.

We say that a group G is Π-closed if OΠ(G) is a Hall Π-subgroup of G. Two integers n and m

are called σ-coprime if σ(n) ∩ σ(m) = ∅.

Lemma 2.4. If a σ-soluble group G has three Π-closed subgroups A, B and C whose indices

|G : A|, |G : B|, |G : C| are pairwise σ-coprime, then G is Π-closed.

Proof. Suppose that this lemma is false and let G be a counterexample with |G| minimal. Let

N be a minimal normal subgroup of G. Then the hypothesis holds for G/N , so G/N is Π-closed by

the choice of G. Therefore N is not a Π-group. Moreover, N is the unique minimal normal subgroup

of G and, by Lemma 2.3, N � Φ(G). Hence CG(N) ≤ N . Since G is σ-soluble by hypothesis, N is

σ-primary, say N is a σi-group. Then σi ∈ Π′.

Since |G : A|, |G : B|, |G : C| are pairwise σ-coprime, there are at least two subgroups, say A

and B, such that N ≤ A ∩B. Then OΠ(A) ≤ CG(N) ≤ N , so OΠ(A) = 1. But by hypothesis, A is

Π-closed, hence A is a Π′-group. Similarly we get that B is a Π′-group and so G = AB is a Π′-group.
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But then G is Π-closed. This contradiction completes the proof of the lemma.

Recall that G is called a Schmidt group if G is not nilpotent but every proper subgroup of G is

nilpotent.

Proposition 2.5. Let G be a σ-soluble group. Suppose that G is not σ′

i-closed but all proper

subgroups of G are σ′

i-closed. Then G is a σi-closed Schmidt group.

Proof. Suppose that this proposition is false and let G be a counterexample of minimal order.

Let R be a minimal normal subgroup of G and {H1, . . . ,Ht} a complete Hall σ-set of G. Without

loss of generality we can assume that H1 is a σi-group.

(1) |σ(G)| = 2. Hence G = H1H2.

It is clear that |σ(G)| > 1. Suppose that |σ(G)| > 2. Then, since G is σ-soluble, there are maximal

subgroups M1, M2 and M3 whose indices |G : M1|, |G : M2| and |G : M3| are σ-coprime. Hence

G = M1M2 = M2M3 = M1M3. But the subgroups M1, M2 and M3 are σ′

i-closed by hypothesis.

Hence G is σ′

i-closed by Lemma 2.4, a contradiction. Thus |σ(G)| = 2.

(2) If either R ≤ Φ(G) or R ≤ H2, then G/R is a σi-closed Schmidt group.

Lemma 2.3 and the choice of G imply that G/R is not σ′

i-closed. On the other hand, every

maximal subgroup M/R of G/R is σ′

i-closed since M is σ′

i-closed. Hence the hypothesis holds for

G/R. The choice of G implies that G/R is a σi-closed Schmidt group.

(3) Φ(G) = 1, R is the unique minimal normal subgroup of G and R ≤ H1.

Suppose that R ≤ Φ(G). Then R is a r-group for some prime r and, in view of Claim (1),

Lemma 2.3 and [10, IV, 5.4], G = H1 ⋊H2 = P ⋊ Q, where H1 = P is a p-group and H2 = Q is a

q-group for some different primes p and q. Assume that R ≤ Q and take a subgroup L of order q in

R∩Z(Q). Then it is clear that R < Q, so PR < G and hence PR = P ×Q is p-nilpotent. Therefore

L ≤ Z(G), so R = L ≤ Z(G). But for every maximal subgroup M of G we have R ≤ M and M/R is

nilpotent. Hence every maximal subgroup of G is nilpotent and so G is a σi-closed Schmidt group,

a contradiction. Similarly, we get that G is a σi-closed Schmidt group in the case when R ≤ P .

Therefore R � Φ(G).

Now assume that G has a minimal normal subgroup L 6= R. Then by (3), there are maximal

subgroups M and T of G such that LM = G and RT = G. By hypothesis, M and T are σ′

i-closed.

Hence G/L ≃ LM/L ≃ M/M ∩ L is σ′

i-closed. Similarly, G/R is σ′

i-closed and so G ≃ G/L ∩ R is

σi-nilpotent, a contradiction. Hence R is the unique minimal normal subgroup of G, and so R ≤ H1.

Final contradiction. In view of Claim (3), CG(R) ≤ R. Hence |H2| is a prime and RH2 = G since

R ≤ H1 and every proper subgroup of G is σ′

i-closed. Therefore R = H1, so R is not abelian since G

is a not a σi-closed Schmidt group. By Claim (1) and Theorem 3.5 in [11], for any prime p dividing

|R| there is a Sylow p-subgroup P of G such that PH2 = H2P . But H2P < G, so H2P = H2 ⋊ P .

This implies that R ≤ NG(H2) and thereby G = R × H2 = H1 × H2. This final contradiction

completes the proof of the result.
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Corollary 2.6. Let G be a minimal non-σ-nilpotent group, that is, G is not σ-nilpotent, but

every proper subgroup of G is σ-nilpotent. If G is a σ-soluble, then G is a Schmidt group.

Proof. It is clear that G is σ-nilpotent if and only if G is σ′

i-closed for all σi ∈ σ. Hence, for

some i, G is not σ′

i-closed. On the other hand, every proper subgroup of G is σ′

i-closed. Hence G is

a Schmidt group by Proposition 2.5.

Proposition 2.7. Let G be a Π-full group of Sylow type. If G possesses a σ-nilpotent Hall Π-

subgroup H, then every σ-soluble Π-subgroup of G is contained in a conjugate of H. In particular,

any two σ-soluble Hall Π-subgroups of G are conjugate.

Proof. Suppose that this proposition is false and let G be a counterexample of minimal order.

Then some σ-soluble Π-subgroup K of G is not contained in Hx for all x ∈ G. We can assume

without loss of generality that every proper subgroup V of K is contained in a conjugate of H, so

V is σ-nilpotent. Hence either K is σ-nilpotent or K is a minimal non-σ-nilpotent group. Then in

view of Corollary 2.6 and [10, IV, 5.4], K has a normal Hall σi-subgroup L for some σi ∈ σ(K). Now

arguing as in the proof of Wielandt’s theorem [12, (10.1.9)], one can show that for some y ∈ G we

have K ≤ Hy. This contradiction completes the proof of the result.

Corollary 2.8. Let G be a Π-full group of Sylow type. Suppose that every chief factor of G

possesses a σ-nilpotent Hall Π-subgroup. Then G possesses a σ-soluble Hall Π-subgroup.

Proof. Let R be a minimal normal subgroup of G, H a σ-nilpotent Hall Π-subgroup of R and

N = NG(H). By induction, G/R has a σ-soluble Hall Π-subgroup, say U/R. Therefore if R is a

Π-group, then U is a σ-soluble Hall Π-subgroup of G. On the other hand, if R is a Π′-group, then

U = R⋊ V by the Schur-Zassenhas theorem, where V ≃ U/R is a σ-soluble Hall Π-subgroup of G.

Now suppose that 1 < H < R. Proposition 2.7 and the Ftattini argument imply that G = RN ,

where |G : N | = |R/R∩N | is a Π′-number and N < G. Then N/N ∩R ≃ G/R possesses a σ-soluble

Hall Π-subgroup. Hence in view Proposition 2.7, the hypothesis holds for N , so N possesses a σ-

soluble Hall Π-subgroup W by induction. It is clear now that W is a Hall Π-subgroup of G. The

corollary is proved.

3 Proof of Theorem 1.3

Suppose that this theorem is false and let (G,H) be a counterexample with |G| + |G : H| as small

as possible. Then H 6= HG.

(i), (ii) By hypothesis, G possesses a complete Hall Π-set, say H = {H1, . . . ,Ht}. We can assume

without loss of generality that Hi is a σi-group for all i = 1, . . . , t. Let E = HG
1 · · ·HG

t .

Suppose that Assertion (i) is false. Then in view of Lemma 2.1(9), H is not σ-subnormal in G.

Moreover, in this case we have E = G. Indeed, since the class of all σ-nilpotent groups is closed under

taking subgroups, homomorphic images and the direct products, E/E ∩D ≃ DE/D is σ-nilpotent.

7
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Hence ENσ ≤ D. It follows that the hypothesis holds for (E,H). Thus in the case when E < G the

choice of (G,H) implies that H is σ-subnormal in E and so H is σ-subnormal in G, a contradiction.

Therefore E = G. Since H 6= HG, it follows that for some x ∈ G and Hi ∈ H we have Hx
i � NG(H).

Now, arguing as in Claim (2) of the proof of Theorem B in [2], one can show that H is σ-subnormal

in G. This contradiction completes the proof of (i).

(ii) Suppose that this assertion is false. Then:

(1) The hypothesis holds for (G/HG,H/HG), so HG = 1.

First note that the hypothesis holds for (G/HG,H/HG) by Lemma 2.2(2). Assume that HG 6= 1.

Then the choice of (G,H) implies that HG/HG is σ-nilpotent and NG/HG
(H/HG) = NG(H)/HG is

H
∗-permutable by Lemma 2.2(2), where

H
∗ = {H1HG/HG, . . . ,HtHG/HG}

G/HG .

But then, clearly, NG(H) is H
G-permutable. This shows that Assertion (ii) is true. Therefore the

choice of (G,H) implies that HG = 1.

(2) t > 1.

Assume that t = 1, that is, H is a σ1-group. Then HHx
1 = Hx

1H = Hx
1 for all x ∈ G, so

HG ≤ (H1)G ≤ Oσ1
(G), which implies that HG is σ-nilpotent. Hence H is σ-subnormal in G

by Lemma 2.1(6). Note also that for any Hall σ′

1-subgroup V of G such that HV = V H we

have H = V H ∩ Oσ1
(G), so V ≤ NG(H). Therefore if H is Π-permutable in G and also, in the

case when Π 6= σ(G), H is K-permutable, then |G : NG(H)| is a σ1-number, which implies that

NG(H)Hx
1 = G = Hx

1NG(H) for all x ∈ G. This means that NG(H) is Π-permutable in G. Thus

Assertion (ii) is true, a contradiction. Therefore t > 1.

Let Li = Oσ′

i(H), for all i = 1, . . . , t. Then H = L1 · · ·Lt and NG(H) = NG(L1) ∩ · · · ∩NG(Lt).

Let

Wi = HG
1 · · ·HG

i−1H
G
i+1 · · ·H

G
t ,

for all i = 1, . . . , t, and W = W1 ∩ · · · ∩Wt.

(3) Wi ≤ NG(Li) for all i = 1, . . . , t, so W ≤ NG(H).

Indeed, sinceH is σ-subnormal in G by Part (i), Lemma 2.1(8) implies thatHx
i ≤ NG(O

σi(H)) for

all x ∈ G. This means that HG
i ≤ NG(O

σi(H)). Hence HG
i ≤ NG(Lj) for all j 6= i, so Wi ≤ NG(Li)

for all i = 1, . . . , t.

(4) HG is σ-nilpotent.

Suppose that this is false. Let K = H1 · · ·HtW . Then:

(a) K is a subgroup of G, H ≤ K and |K : W | is a Π-number.

First note that (HiW/W )G/W = HG
i W/W and

8
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WWi ∩HG
i W = W (Wi ∩HG

i W ) = W (Wi ∩HG
i (W1 ∩ · · · ∩Wt)) =

= W (Wi ∩W1 ∩ · · · ∩Wi−1 ∩Wi+1 ∩ · · · ∩Wt ∩WiH
G
i ) = W (W ∩E) = W.

Therefore

E/W = (H1W/W )G/W × · · · × (HtW/W )G/W .

This means that [HiW/W,HjW/W ] = 1, for all i 6= j. Hence K = H1 · · ·HtW = (H1W ) · · · (HtW )

is the product of pairwise permutable subgroups, which implies that K is a subgroup of G. It is also

clear that K/W is a Hall Π-subgroup of G/W . Hence |K : W | is a Π-number and WH/W ≤ K/W

by Lemma 2.1(4)(7), so we have (a).

(b) The hypothesis holds for (K,H).

Let K = {K1, . . . ,Kn}. Since |K : W | is a Π-number, Ki ∩ K is a Hall σi-subgroup of K and

hence B = {K1∩K, . . . ,Kn ∩K} is a complete Hall Π′-set of K. On the other hand, for any Ki ∈ K

we have HKi∩K = (Ki∩K)H and so H is B-permutable. Finally, it is clear that H is Π-permutable

in K. Hence the hypothesis holds for (K,H).

(c) K < G.

Suppose that K = G. Then, since |K : W | = |G : W | is a Π-number by Claim (4), for every

Ki ∈ K and every x ∈ G we have Kx
i ≤ W ≤ NG(H) by Claim (3), so Kx

i H = HKx
i . Therefore

H is σ-permutable in G and so HG ≃ HG/HG is σ-nilpotent by Theorem B in [2], contrary to our

assumption on H. Hence K < G.

(d) |G : NG(H)| is a Π-number (Since H is a σ-subnormal Π-subgroup of G, this follows from

Lemma 2.1(8)).

(e) Conclusion for (4).

Since K < G by Claim (c), we have that HK/HK is σ-nilpotent. Because |G : NG(H)| is a

Π-number by Claim (d), G = KNG(H). Hence HG ≃ H/1 = HG/HG = HK/HK is σ-nilpotent.

This contradiction shows that HG is σ-nilpotent.

Final contradiction for (ii).

Since HG is σ-nilpotent by (4), H is also σ-nilpotent. Hence H possesses a complete Hall σ-set

{V1, . . . , Vt} such that H = V1 × · · · × Vt. Without loss of generality we can assume that Vi is a

σi-group for all i = 1, . . . , t. Let N = NG(H) and Ni = NG(Vi). Then N = N1 ∩ · · · ∩Nt. Moreover,

it is clear that Li = Vi for all i = 1, . . . , t. Hence Wi ≤ NG(Vi) for all i = 1, . . . , t by Claim (3). It is

also clear that |G : Ni| is a σi-number, so G = NiHi. Hence for any x ∈ G and Hi ∈ H we have

NHx
i = (N1 ∩ · · · ∩Nt)H

x
i = NiH

x
i ∩N1 ∩ · · · ∩Ni−1 ∩Ni+1 ∩ · · · ∩Nt =

= G ∩N1 ∩ · · · ∩Ni−1 ∩Ni+1 ∩ · · · ∩Nt = N1 ∩ · · · ∩Ni−1 ∩Ni+1 ∩ · · · ∩Nt = Hx
i N
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and so N is HG-permutable. Therefore Assertion (ii) is true. This contradiction completes the proof

of Assertion (ii).

(iii) Let L = {L1, . . . , Lm} be a complete Hall Π′-set of G such that H is L
G-permutable. Let

E = HG and R a minimal normal subgroup of G. First note that m > 1, Indeed, if m = 1, then

L1 ∩E is a σ-nilpotent Hall Π′-subgroup of G, which contradicts the choice of (G,H).

(1) ER/R possesses a σ-nilpotent Hall Π′-subgroup U/R. Therefore R ≤ E.

From Lemma 2.2(2) and the choice of G it follows that (HR/R)G/R = ER/R possesses a σ-

nilpotent Hall Π′-subgroup, say U/R. Therefore, if R � E, then E ≃ ER/R possesses a σ-nilpotent

Hall Π′-subgroup, a contradiction. Hence we have (1).

(2) OΠ(G) = 1.

Assume that R ≤ OΠ(G). Then, by the Schur-Zassenhaus theorem, R has a complement V in

U , so V ≃ U/R is a σ-nilpotent Hall Π′-subgroup of E, a contradiction. Hence we have (2).

(3) LG
i � CG(E) for all i = 1, . . . , t.

Assume that LG
i ≤ CG(E) and let N be a minimal normal subgroup of G contained in LG

i . Then

N ≤ E and E/N possesses a σ-nilpotent Hall Π′-subgroup, say U/N , by Claim (1). On the other

hand, N ≤ Z(U), so U is σ-nilpotent. But a Hall Π′-subgroup of U is a Hall Π′-subgroup of E, a

contradiction. Hence we have (3).

(4) R is the unique minimal normal subgroup of G.

Suppose that G has a minimal normal subgroup N 6= R. Then N ≤ E and G/N possesses a

σ-nilpotent Hall Π′-subgroup by Claim (1). Therefore (E/R) × (E/N) possesses a σ-nilpotent Hall

Π′-subgroup V . But E ≃ K ≤ (E/R)×(E/N) since R∩N = 1. Hence E possesses a σ-nilpotent Hall

Π′-subgroup. Moreover, since N ≃ RN/R possesses a σ-nilpotent Hall Π′-subgroup, E possesses a

Hall Π′-subgroup U by Corollary 2.8. But then, by Proposition 2.7, for some x ∈ G we have U ≤ V x

and so U is σ-nilpotent, contrary to the choice of G. Hence we have (4).

Final contradiction for (iii).

Let x, y ∈ G and A = Hx. Then

ALy
i = (HLyx−1

i )x = (Lyx−1

i H)x = Ly
iA

by hypothesis. Let L = ALi ∩ LA
i . Then L is a subnormal subgroup of G by [13, 7.2.5]. Suppose

that L 6= 1 and let L0 be a minimal subnormal subgroup of G contained in L. Then V = L0 ∩ Li is

a Hall Π′-subgroup of L0 since L ≤ ALi. Moreover, in view of Claim (2), V 6= 1 (see, for example,

[14, Chapter 1, Lemma 5.35(5)]). We now show that Li ∩R is a non-identity Hall Π′-subgroup of R.

Indeed, if L0 is abelian, then L0 ≤ Oσi
(G), where σi = π(Li), so R is a σi-group by Claim (4). On

the other hand, if L0 is non-abelian, LG
0 is a minimal normal subgroup of G and so, by Claim (4),

Li ∩R is a non-identity Hall Π′-subgroup of R.

Since m > 1, Claim (2) implies that there is j 6= i such that for every x, y ∈ G we have
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(Ly
j )

Hx
∩ (Hx)L

y
j = 1 and so

[Ly
j ,H

x] ≤ [(Ly
j )

Hx

, (Hx)L
y
j ] = 1.

Therefore LG
j ≤ CG(E), contrary Claim (3). Hence Statement (iii) holds.

The theorem is proved.
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