Available online at www.sciencedirect.com

. . . JOURNAL OF
ScienceDirect Algebra

¥

ELSEIE Journal of Algebra 315 (2007) 31-41

www.elsevier.com/locate/jalgebra

X-semipermutable subgroups of finite groups

Wenbin Guo ®!, K.P. Shum ?*?, Alexander N. Skiba ¢

& Department of Mathematics, Xuzhou Normal University, Xuzhou 221116, PR China
b Faculty of Science, The Chinese University of Hong Kong, Shatin, Hong Kong, China
¢ Department of Mathematics, Gomel State University of F. Skorina, Gomel 246028, Belarus

Received 2 March 2005
Available online 8 June 2007

Communicated by Efim Zelmanov

Abstract

Let X be a non-empty subset of a group G. Then'we call a subgroup A of G a X-semipermutable sub-
group of G if A has a supplement 7" in G such that forevery subgroup 77 of T there exists an element x € X
such that AT = Tlx A. In this paper, we study-the properties of X-semipermutable subgroups. In particular,
anew version of the famous Schur—Zassenhaus Theorem in terms of X -semipermutable subgroups is given.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this paper, all groups are finite.

A subgroup A of a group G is said to be permutable with a subgroup B if AB = BA. A sub-
grotip*A s said to be a permutable or a quasinormal subgroup of G if A is permutable with all
subgroups of G. But we often meet the situation AB # BA, nevertheless there exists an element
x&G such that AB* = B* A, for instance, we have the following cases:
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(1) Let G = AB be a group. If A, and B, are Sylow p-subgroups of A and of B respectively,
then A, B, # B, A, in general, but G has an element x such that AI,B; = B;AP.

(2) If A and B are Hall subgroups of a soluble group G, then there exists an element x € G such
that AB* = B¥A (cf. [1, I, (4.11)]).

(3) If A and B are normally embedded subgroups (see Definition (7.1) in [1, I]) of a soluble
group, then A is permutable with some conjugate of B (cf. [1, I, (4.17)]).

(4) If |G : Al is a prime power, then in every conjugacy class of Sylow subgroups of G, there,is
a subgroup P such that AP = PA.

Let A, B be subgroups of a group G and X a non-empty subset of G. Then by«the above
examples and some other examples of such kind, the following definitions are inspired:

Definition 1.1.

(1) A is said to be X-permutable with B if there exists some x € X such that AB* = B* A,

(2) A issaid to be X-permutable in G if A is X-permutable with all,subgroups of G;

(3) A is said to be X-semipermutable in G if A is X-permutable ‘with all subgroups of some
supplement 7' of A in G.

It is clear that our definition of X-semipermutable subgroups is a generalization of the usual
definition of permutable subgroups.

Throughout this paper, we will use X (A) to denote the set of all supplements 7 of A in the
group G such that A is X-permutable with all subgroups of 7. Thus A is X-semipermutable in
G if and only if X(A) # @.

The properties of X-permutable subgroups and some of its applications have already been
considered in our previous papers (s€e [2=6]). In this paper, we consider the applications of X-
semipermutable subgroups in the structure of a given group G. First of all, we give the following
mew version of Schur—Zassenhaus Theorem in finite groups in terms of X-semipermutable sub-
groups.

Theorem 1.2. Let A be a'Hall subgroup of a group G and X = F(G) the Fitting subgroup of G.
Suppose that A is X-semipermutable in G. Then A is complemented in G. Any two complements
of A in G are conjugate under the condition that X (A) contains a soluble group.

We say«that.a subgroup M of a group G has non-primary index if |G : M| has at least two
different,prime divisors. A subgroup H of a group G is said to be a 2-maximal subgroup (see
[10,%p. 24]) or a second maximal subgroup of G if H is a maximal subgroup of some maxi-
mal’subgroup M of G. The following theorems give further applications of X-semipermutable
subgroups.

Theorem 1.3. Let G be a group and X = F(G) N G’. Then the following statements are equiva-
lent.

(1) For every 2-maximal subgroup E of G of non-primary index in G with the property that
G/ Eg is not a supersoluble group satisfying the condition |F(G/Eg)| =10,(G/Eg)| > p,
where p is a prime, the set X (E) contains a supersoluble group.

(2) G is supersoluble.
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(3) For every 2-maximal subgroup E of G, G/E¢ is supersoluble, and if E satisfies that
|F(G/Eg)| is a prime or |F(G/Eg)| has at least two distinct prime divisors, then
T € X (E), for any minimal supplement T of E in G.

It is not difficult to show that, in any supersoluble group G, any its 2-maximal subgroup E
of non-primary index with |F(G/Eg)| =10,(G/Eg)| > p, where p is a prime, is not F(G)-
semipermutable in G.

Theorem 1.4. Let G be a group and X = F(G). Then G is nilpotent if and only if X (E){contains
a nilpotent group for every 2-maximal subgroup E of G having non-primary index,

2. The basic lemmas

In this section, we give some general properties of X-semipermutable’Subgroups.
The statements of the following two lemmas are evident.

Lemma 2.1. Let A, B, X be subgroups of G and K < G. Then the following statements hold:

(1) If A is X-permutable with B, then B is X -permutablewith A.

(2) If A is X-permutable with B, then AK /K is X K | Kspermutable with BK /K in G/K.

(3) If K < A, then A/K is XK /K -permutable with BK'/K in G/K if and only if A is X-
permutable with B in G.

(4) If A is X-permutable with B and X < M < G then A is M -permutable with B.

(5) If A is X-permutable with B and X < NG(A) then A is permutable with B.

(6) If F is a permutable subgroup of G and\A is X -permutable with B then AF is X -permutable
with B.

Lemma 2.2. Let G = AT and/Ty, be a subgroup of T. Assume that A is G-permutable with Tj.
Then A is T -permutable with Ty,

The following lemma is also well known.

Lemma 2.3. Let/A, B-be proper subgroups of a group G with G = AB. Then G = AB* and
G # AAY, forall x € G.

For the X -semipermutable subgroups, we have the following lemma:
Lemma 2.4. Let A and X be subgroups of G. Then the following statements hold:

(Y If N is a permutable subgroup of G and A is X -semipermutable in G, then N A is a X -semi-
permutable subgroup of G.

2) If N <G, A is X-semipermutable in G and T € X(A), then AN/N is XN /N -semi-
permutable in G/N and TN/N € (XN/N)(AN/N).

(3) If A/N is XN /N-semipermutable in G/N and T/N € (XN/N)(A/N), then A is X-semi-
permutable in G and T € X (A).

4) If A is X-semipermutable in G and A < D < G, X < D, then A is X -semipermutable in D.

(5) If A is a maximal subgroup of G, T is a minimal supplement of A in G and T € G(A), then
T = (a) is a cyclic p-group, for some prime p and a? € A.
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©) IfT € X(A) and A < Ng(X), then T* € X(A), forall x € G.
(7) If A is X-semipermutable in G and X < D, then A is D-semipermutable in G.

Proof. (1) The proof of this part follows directly from Lemma 2.1(6).

(2) It is obvious that TN /N is a supplement of AN/N in G/N.If T /N is a subgroup of
TN/N,thenT;/N=(T1"NNT)/N=N(T1NT)/N and so AN/N is XN /N -permutable with
T)/N in G/N by Lemma 2.1(2). Hence, TN/N € (XN/N)(AN/N).

(3) The proof of this part is the same as the proof in (2).

(4) This part is evident.

(5) Let M be a maximal subgroup of 7. Then, by Lemma 2.2, there exists ¢ € T, such*that
AM" = M'A. Since T is a minimal supplement of A in G, AM # G and so AM' # G by
Lemma 2.3. Since A is a maximal subgroup of G, M’ < A. Suppose that T{ has) a maximal
subgroup M; which is not a conjugate of M. Then, by using the same arguments as above,
we can easily show that Mil < A, for some t; € T. It is clear that M' # M{l, and hence T =
(M, M?) < A. Thus, it follows that G = AT = A, a contradiction. This shows that 7 must be a
cyclic group of prime power order and M < A.

(6) By Lemma 2.3, T is a supplement of A in G. Let Ty, be a“subgroup of 7*. We now
proceed to show that A is X-permutable with T7. Since G =AT,w =at forsomeac A,t €T,
and hence T* = T“. Note that Tffl <Tand A = A“_1 . Noew; for some d € X, by our hypothesis,
we have A(T® )4 = (T4 )44 = A%(d=1)a(T8 H)2dhe AT = T A, where d* € X since
A € Ng(X). This shows that T* € X (A).

(7) This part is evident. O

3. The proof of Theorem 1.2
To start with, we first cite the following result of H. Wielandt (see Theorem 3.8 in [11]).

Lemma 3.1. Let P be a Sylow, p-subgroup of a group G. Assume that p?* divides |G| and every
subgroup of P is the intersectiomof P with some normal subgroup of G. Then G is p-soluble.

By using Lemma 3.1s.we have proved the following result in [2].

Lemma 3.2. (See’[2, Theorem 3.7].) Let G = AT, where A is a Hall w-subgroup of a group
G and T is a.nilpotent Hall ww'-subgroup of G. Assume that A is F(G)-permutable with all
subgroups of T.'Then G is p-supersoluble, for every prime p such that p* divides |T|.

Proof.of Theorem 1.2. Let 7 be the set of all different primes dividing |A|. We first prove that
if 7is asminimal supplement of A in G such that T € X(A), then T is a complement of A
ifh G. Suppose that this assertion is false and let G be a counterexample of minimal order. Let
D =ANT. Since A is a Hall w-subgroup of G and |G : A| =|T : AN T|, we can easily observe
that D is a Hall -subgroup of 7. Assume that p divides |X| for some prime p € 7" and let P
be a Sylow p-subgroup of X. Since PcharX <G, P <G andso P < T.lItis clear that T/P is
a minimal supplement of AP/P in G/P and T/P € (XP/P)(AP/P) by Lemma 2.4(2). Since
XP/P < F(G/P), we see that our hypothesis is still valid for G/P. Hence, by the choice of G,
T/P is a complement of AP/P in G/P and so T/P is a Hall ’-subgroup of G/P. Since P
is a 7/-subgroup of G, T is a Hall 7’-subgroup of G and so T is a complement of A in G.
This contradiction shows that X is a w-group. It follows that X < A and so by Lemma 2.1(5),
A is permutable with all subgroups of 7. Now let M be a maximal subgroup of 7. Assume that
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D Z M. Then, wehave TNAM =M(TNA)=MD =DM =T andso G = AT = ADM =
AM , which contradicts the minimality of 7. This shows that D < @(T'). However, since D is a
Hall 7 -subgroup of T, we deduce that D = 1 and hence T is a complement of A in G.

Now suppose that there exists a soluble group 7' € X (A). Then, without loss of generality, we
may suppose that 7 is a minimal supplement of A in G and so T is a Hall ’-subgroup of G.
We now prove that any two complements 77 and 7> of A in G are conjugate in G. Assume that
this statement is false and G is a counterexample of minimal order. We proceed the proof by,the
following steps.

(1) D= 0,(G)=1.

Assume that D # 1. Then, it is clear that D < A and A/D is a Hall w-subgfoup of G/D. By
Lemma 2.4, we see that the hypothesis still holds for A/D in G/D. Hence, by |G/D| < |G| and
by the choice of G, we see that 71 D/D and T D/D are conjugate in G/D; thatis, 1D =T*D,
for some x € G. However, since the group 7* D is evidently 7r’-soluble, j_and T* are conjugate
in the group 77 D (cf. [7, VI, 1.7]). It follows that 77 and T are conjugate in G. Analogously, we
can prove that 75 and T are also conjugate in G. Therefore, T and 7> are conjugate in G. This
contradiction shows that (1) holds.

(2) On/(G) = 1. (This equality can be proved by using the same arguments as in (1).)
3) X=1.

Indeed, if X # 1 and let L be a minimal normal*subgroup of G contained in X, then either
L < 04(G) or L < O;/(G). But these two cases are impossible in view of (1) and (2).

(4) T has at least one non-cyclic Sylow subgroup.

Assume that all Sylow subgroups.of T are cyclic. Then, T7, 7> and T are supersoluble (cf.
[7, VI, 10.3]) and so T and Tj.have normal Sylow p-subgroups P and P; respectively, where p
is the largest prime divisor of \\I| = |T1|. Let N = Ng(P) and N; = Ng(Py). Since P;, P are
Sylow p-subgroups of G P.= P for some x € G. It follows that N = Ny and so 7" < N.
Since N =N NAT =T(ANN), T and T are complements of AN N in N. Now let Ty be a
subgroup of 7. Then by (3) and by our hypothesis, ATy = ToA and so AToN N =To(ANN) =
(A N N)Tp. Thus, the hypothesis still holds for N N A in N. But in view (1) and (2), we can
see that N1 # G % N. Now, by the choice of G, T and T}" are conjugate in N. It follows that
T and T areeonjugate in G. Analogously, we can prove that 7> and T are also conjugate in G.
Therefore,\TT and 75 are conjugate in G. This contradiction shows that (4) holds.

(5)\For*some prime divisor p of |T|, T has a p-subgroup P such that 1 ¢ O,(T) < P and
1P| > p.

Let F = F(T). Since T is soluble, F' # 1. If F has a Sylow g-subgroup Q such that Q # T,
where T, is a Sylow g-subgroup of T', we can take P = T,. Suppose that the order of any Sylow
subgroup of F is a prime. Then, we just write |F| = p, a prime. In this case, T/C7(F) is a
cyclic group of order dividing p — 1 because it is isomorphic to some subgroup of Aut(F).
But since T is soluble, C7(F) < F. It follows that all Sylow subgroups of T are cyclic which
contradicts (4). Hence, F has at least two distinct Sylow subgroups, say P; and P,. Let N;
be the normal closure of P; in G and let D = N1 N N,. Since AP; = P; A, by our hypothesis
and (3), we have N; = Pl.G = PI.AT = PiA < AP;, i =1,2, and consequently, D is a w-group.
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This leads to D < O (G). Thus, by (1), D =1, and thereby A g N;, for some N;. Let, for
example, A ¢ Nj. Then, by using the same arguments as in the proof of (1), we can show that
E = N1T = N\ T}, for some x € G. Let Ty be a subgroup of 7. Then ATy = TpA and it is
easy to see that EN ATy = To(N1T N A) =To(N1 N A) = (N1 N A)Tp. On the other hand, since
G =AT,wehave E=ENAT =T(N1T NA) =T (N1 N A). This shows that the hypothesis
still holds on E. Since |E| < |G|, T and T;' are conjugate in G by our choice of G. Analogously,
T, and T are conjugate in G. Therefore, T} and T3 are conjugate in G. This contradiction shows
that (5) holds.

(6) Final contradiction.

Let D be the normal closure of the subgroup O = O, (T) in G. Then D = 09 =04T = 04.
Now, by our hypothesis and (3), P A is a subgroup of G and A is permutable with every subgroup
of P. Then, by (5) and Lemma 3.2, AP is a p-supersoluble group. Since D.< AP, D is p-
supersoluble. Hence, either O, (D) # 1 or Op(D) # 1. Assume that the former case holds.
Then, O, (D) char D 4 G and hence O, (D) < G. However, since O, (D) < A, we have
07 (G) # 1, this contradicts (1). In the second case, we can similarlyderive a contradiction by
using (2). This completes the proof. O

4. The proofs of Theorems 1.3 and 1.4
In proving Theorem 1.3, we need the followingsknown results.

Lemma 4.1. (See [8, Theorem 3].) Let A and B\be subgroups of a group G such that G # AB
and AB* = B A, forall x € G. Then G has.aproper normal subgroup N such that either A < N
or B<N.

Lemma 4.2. (See [9, Theorem 3/4}.) A group G is soluble if G = AB, where A is a supersoluble
subgroup, B is a cyclic subgroup.of G of odd order.

We need also the following two lemmas.

Lemma 4.3. Let G be_a/group and X a normal soluble subgroup of G. Then G is soluble if
any its 2-maximal subgroup E of non-primary index in G with the property that G/E¢ is not a
supersoluble_group'satisfying |F(G/Eg)| =10,(G/Eg)| > p, where p is a prime, is X -semi-
permutable'in G.

Proof.“Asstume that the lemma is false and let G be a counterexample of minimal order. Then
(1) G is not a simple group.

Assume that G is a simple non-abelian group. Then X = 1 and G has a non-supersoluble
maximal subgroup, say M, by [7, VI, 9.6]. Assume that M has non-primary index in G and
T is a maximal subgroup of M. Then, it is obvious that 7 is a 2-maximal subgroup of G sat-
isfying the conditions in the lemma. Hence, by our hypothesis, T is X-semipermutable in G.
This implies that T is also X-semipermutable in M by Lemma 2.4(4), and so |M : T| is a prime
by Lemma 2.4(5). This shows that every maximal subgroup of M has prime index, and conse-
quently M is supersoluble by the well-known Huppert’s Theorem [7, VI, 9.5]. This contradiction
shows that |G : M| = p“, for some prime p. Evidently, M has a maximal subgroup 7" such that
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(p,|M :T|)=1. Since G is a simple non-abelian group, G/T =~ G is not supersoluble. Thus
T is X-semipermutable in G by our hypothesis. Let A € X(T), where A is a minimal supple-
ment of T in G, and let A; be a proper subgroup of A. Then G =T A and T A is a proper
subgroup of G. Let x € G and x = at, wheret € T and a € A. Since X =1, T(A)* = (AT
and so ((A1)*T)! = (A1)*T is a subgroup of G. Therefore, G is not simple by Lemma 4.1. This
contradiction completes the proof of (1).

(2) For every minimal normal subgroup N of G, the quotient group G /N is soluble.

Indeed, let M /N be a 2-maximal subgroup of G/N of non-primary index inyG/N with
the property that (G/N)/(M/N)g,n is not a supersoluble group satisfying~the condition
|[F((G/N)/(M/N)g/n)| = 10,((G/N)/(M/N)G/n)| > p, where p is a prime. Then, since
G/Mg ~(G/N)/(Mg/N) =(G/N)/(M/N)g N, we have that M is X-semipermutable in G
by using our hypothesis. Hence, by Lemma 2.4(2), M/N is X N/N-semipermutable in G/N,
where X N/N is a normal soluble subgroup of G/N. This shows that our hypothesis still holds
on G/N. Thus, by the choice of G, G/N is soluble.

(3) G has a unique minimal normal subgroup L. (This part follows directly from (2).)
(4) Final contradiction.

By the above claim (2), we only need to prove that L is soluble. Assume that this assertion
is not true. Then by our claim (3), we have X = Ix, By (1), G is not simple and hence L # G.
By (2), G has a normal maximal subgroup M“such that L < M and consequently |G : M| is a
prime. Let |G : M| = p. Now, we claim-that there exists a maximal subgroup 7" of M such that
M = LT and (|M : T|, p) = 1. Indeedsif p"divides |L|, L, is a Sylow p-subgroup of L and P
is a Sylow subgroup of G containing L, then P < N = Ng(L ). By using the usual Frattini
argument, we have G = LN and'M = M N LN = L(M N N). Since L is not soluble, N # G.
Therefore, M N N # M. Let T\be a maximal subgroup of M containing M N N. Then, M = LT
and (|[M : T|, p) = 1. Next, we assume that (|L|, p) = 1. Then, it is clear that L ;{ @ (G) and so
L & @(M). Hence, there‘exists a maximal subgroup T of M such that M = LT. It follows that
p does not divideAM : T| = |L|/|L N T|. Hence, our claim is established. This shows that T is
a 2-maximal subgroup of G having non-primary index. Since L ¢ T, Tg =l and so G/Tg ~ G
is not supersoluble. Thus, by our hypothesis, 7 is X-semipermutable in G. Since X =1 and T
is maximal subgroup of M, we may take a € M \ T such that (a) is a minimal supplement of
T in M. Then, it is easy to see that |[M : T| =¢q and so |G : T| = pgq, for some prime g # p.
Let"A%e X (T) and A be a minimal supplement of 7 in G. Then G =TA and ANT < ®(A).
Thus, Ais a {p, g}-group. Let A, be a Sylow p-subgroupof A.Since X =1, D =TA, =A,T.
Clearly, |G : D| = q. Moreover, since |G : M| = p and M = LT, we see that L £ D. Thus
D¢ =1, and by considering the permutation representation of G on the right cosets of D, we
see that G is isomorphic with some subgroup of the symmetric group S, of degree g. It follows
that D is a Hall ¢’-subgroup of G and G = DZ,, where Z, is a subgroup of order g. Now
we have seen that every maximal subgroup of D is a 2-maximal subgroup of G satisfying the
condition of the lemma, hence it is X-semipermutable in G, and consequently, by Lemma 2.4
(4), every maximal subgroup of D is X-semipermutable in D. It follows that the index of every
maximal subgroup of D is a prime. Hence, D is supersoluble and thereby G is a soluble group
by Lemma 4.2. This contradiction completes the proof. O
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Lemma 4.4. Consider a soluble group G = [L1M, where L is a non-cyclic minimal normal
subgroup of G. Let L be a p-group and M has a maximal subgroup E such that |M : E|=q # p
is a prime and let T be a minimal supplement of E in G having a normal maximal subgroup K
of T. If E is L-permutable with all maximal subgroups of T, then |T : K| # p.

Proof. Suppose that |7 : K| = p. Let D=ENT and D, be a Sylow p-subgroup of D. If
D K,then KD=T andso G = ET = EDK = EK, this clearly contradicts the minimality,
of T.Hence D < K.Let x € L and form V = Elgf‘ = K*E. Since G =ET, weilllave X =.et,
for some e € E and t € T. Hence, we obtain V¢ = EK'=FEK.LetY =V¢ and Yy, be
a Sylow p-subgroup of Y. Now, let G, be a Sylow p-subgroup of G containing=Y.. Then,
|Gp Yyl =EpTpl/IDpl) : (IEp|IKpl/1Dpl) = p, where E, is a Sylow p-subgroup of E. On
the other hand, since |G : LE| = g, we have |G| = |L||E}|. Thus, L £ Y and 'L N}Y # 1. This
result leads to G = LY and so Y N L is normal in G which contradicts the 'minimality of L.
Hence, the lemma is proved. O

Proof of Theorem 1.3. (1) = (2). Suppose that the assertion is'false*and let G be a coun-
terexample of minimal order. Let L be a minimal normal subgroup of G. By making use of
Lemma 2.4(3), it is not difficult to see that our hypothesis stillkholds on the quotient group G/L,
and so by the choice of G, G/L is supersoluble. Since the‘class of all supersoluble groups is
a saturated formation, L is a unique minimal normal subgroup of G and L ¢ @(G). Let M be
a maximal subgroup of G such that L ¢ M. Then, by llemma 4.3, G is a soluble group and
hence G = [L]M. It is easy to see that L = C =Cg(L) = F(G) = O,(G), for some prime p,
and |L| # p. Hence L = X. Since M >~ G/L is supersoluble, M contains a maximal subgroup
E such that |M : E|=¢g # p. Since L Z E, Eg =1 and so G/Eg =~ G is not supersoluble.
Therefore, by our hypothesis, E is L-semipermutable in G and the set L(E) contains a supersol-
uble group, say T. Without loss of generality, we may assume that 7 is a minimal supplement
of £ in G. Obviously, E # 1. LetlD = ENT and D, be a Sylow p-subgroup of D. Then, since
|G : E| =|L|q, we have |T : D\ p“q, where |L| = p? and a > 1. Let r be the largest prime
divisor of |G|. Assume that »= p. Because G/L is a supersoluble group and O,(G/L) =1, we
see that L is a Sylow subgroup of G. It is now clear that L < 7. Let L be a maximal subgroup
of L. Then by our hypothesis again, we have A = L1 E = EL;. Evidently, |G : A| = pq and
Ag = 1. Hence, Adis L=seémipermutable in G. If 71 € L(A) and Q is a Sylow g-subgroup of 77,
then B = Q*A =AQ", for some x € L. However, since |G : B| = p, we have LB = G. This
shows that J&5| % |L N B| # 1 and L N B < G, which contradicts the minimality of L. Thus,
without less of generality, we may assume that » = g. Let K be a maximal subgroup of T such
that |Z. %K |,= p. Since G is soluble, it is clear that T is a {p, g}-group. Since p < g and T is
supérsoluble, K is normal in 7, which contradicts Lemma 4.4. Thus, the contradiction shows
that’G ‘is supersoluble.

(2) = (3). Let E be a 2-maximal subgroup of G such that either |F(G/Eg)| is a prime
or |F(G/Eg)| has at least two distinct prime divisors. Let 7 be a minimal supplement of E
in G. We now going to prove, by using induction on |G|, that E is G’-permutable with all
subgroups of T'. For this purpose, we let 77 be a subgroup of 7. We first suppose that Eg # 1.
Then the assertion is obviously true for G/Eg and therefore E/Eg is (G/Eg) -permutable with
T\Eg/Eg. But, since (G/Eg) = G'Eg/Eg, by Lemma 2.1(3), E is G’-permutable with T}.

Now we assume that Eg = 1. Let F = F(G) and w = 7w (F) be the set of all prime divisors
of |F|. We first suppose that |G : E| = p? for some prime p. Since Eg = 1, it is obvious that
F is a Sylow p-subgroup of G because G is a supersoluble group. Hence, by our hypothesis,
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|F| is a prime. This shows that |G : E| = p? is impossible. Now suppose that |G : E| = pq with
p>gq.If |r| > 2 and R is a Sylow d-subgroup of F, where g # d # p, then, it is clear that
R < Eg, which is impossible because Eg = 1. Hence, m < {p, g}. Since G is supersoluble,
G has a normal Sylow r-subgroup, where r is a largest prime divisor of |G|. It follows that p is
the largest prime divisor of |G|.

Assume that F is a cyclic group of prime power order. Then F is a p-group. Since Eg = 1
and |G : E| = pq, we see that FF € E and so |F| = p. Since G is soluble, ®(G) < F(G). This
leads to @(G) =1 and so G = [F]M, for some maximal subgroup M of G and Cg(K) = F"
Hence M is a cyclic group. Without loss of generality, we may assume that £ < M. \Wewnow
prove that E is G’-permutable with T7. In fact, if A is a Hall p’-subgroup of T}, then T} = PA,
where P =T} N F is a Sylow p-subgroup of Tj. Since any two Hall p’-subgroups{of a soluble
group are conjugate, by G = F(G)M, we see that A* C M, for some x € G’ Therefore, ETIX =
E(TNF)A*=(T1NF)A*E =T}E.

Next, we assume that || =2, and let F, and F;; be the Sylow p-subgtoup and the Sylow
g-subgroup of F, respectively. Then, it is clear that G = FE. Let R be a Sylow r-subgroup
of F.If |[R| >r,then D=RNE # 1. Since R char F < G, R < G. Obviously, |R: D| =r and
so D < R.Let F =R x Q, where Q is the another Sylow subgroup of F. Then Q € Ng (D).
It follows that D is a normal subgroup of G. Because Eg\= I we have D = 1. This shows
that |F| = pg. Assume that ¢ divides |E| and ¢, p divide }T1|. Let {E>, ..., E;} be a Sylow
system of E and {D1, D} a Sylow system of 71, wher€ Dj is a p-group. Then, by [7, VI, 2.3,
2.4], G has Sylow systems X = {Py, ..., P/} and =101, ..., O;} such that E; < P;, for all
i=2,...,tand D; < Q; for i = 1,2. Moreover,the systems X~ and X are conjugate, i.e. G
has an element x such that Qf = P;, for alli=1,...,¢. It is clear that P = Dy is a Sylow
p-subgroup of G and E3 = P3,..., E,=F,. If D] < M, then T\"E = P{E = ET{". On the
other hand, if D; &£ E, then by |G 1E| = pg, we have | P, : E>| = ¢ and hence P, = Dy E. It
follows that T E =G =E Tlx. Since by [7, VI, 11.10], we know that Ng(X') covers all central
chief factors of G, we have G '= G'N5 (X)), and consequently, x = fn, where f € G’ and
n € Ng(X1). Therefore, we have proved that E Tlf = Tlf E. Analogously, we can also consider
the cases either (|E|, g) =J‘or (|T1], p) = 1.

Finally, since G is.a supersoluble group, we have G’ < F(G) and so X = G’'. Therefore, E
is indeed X-permutable with all subgroups of 7. Hence every minimal supplement of E in G is
contained in X (E)

The implication (3) = (2) is evident. The implication (2) = (1) is, indeed, a special case of
the implication (2) = (3). Thus the proof of the theorem is completed. O

Corollary 4.5. Let G be a group and X = F(G) N G'. Then G is a nilpotent group if and only
if for, every 2-maximal subgroup M of G having non-primary index, the set X (M) contains
asupersoluble group and every minimal subgroup of G is contained in the hypercenter of its
normalizer.

A group G is called p-decomposable if G = 0,(G) x Oy (G).
Theorem 1.4 is a direct corollary of the following theorem.

Theorem 4.6. Let G be a group, X = F(G) and p a prime. Suppose that for every 2-maximal
subgroup E of G of non-primary index, the set X (E) contains a p-decomposable group. Then
the group G is p-decomposable.



40 W. Guo et al. / Journal of Algebra 315 (2007) 31-41

Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. Then
p divides |G|. Let L be a minimal normal subgroup of G. It is not difficult to show that the
hypothesis of the theorem still holds on G /L and so by our choice of G, G/L is p-decomposable.
It is well known that the class of all p-decomposable groups is a saturated formation. Hence L
is the only minimal normal subgroup of G and L ¢ &(G). Let M be a maximal subgroup of
G such that L Q M. By Lemma 4.3, G is soluble group. Hence, G = [L]M and L = Cg(L) =
F(G) = X = 04(G), for some prime g. It is clear that M = 1 and for some maximal subgroup
E of M, we have (|M : E|, q) = 1. Hence by our hypothesis, E is L-semipermutable in G and
the set L(E) contains a p-decomposable subgroup 7', which is a minimal supplement of E.\in,G.
Let T), and T}, be a Sylow p-subgroup and a Hall p’-subgroup of T, respectively. Itis,clear that
E has a non-primary index in G. Hence T)y # 1 and T =T}, x T)y. Assume that p= q. Then
since L = 0,(G) and G/L is p-decomposable, L is the Sylow p-subgroup of. G. It follows that
L<Tandso Ty <Cg(L)=L.If|L| =gq,thensince G/L ~ Aut(L), L is aSylow g-subgroup
of G. Hence, we can also see that L < T and so T,y < Cg(L) = L. This contradiction shows that
p # q and |L| # q. Hence, without loss of generality, we may assume that [M : E| = p. Since G
is soluble, any minimal supplement of E in G is a {p, q}-group. Henge; T, is a Sylow g-sub-
group of T. This shows that 7" has a normal maximal subgroup, K such that |7 : K| = g, which
is impossible by Lemma 4.4. This completes the proof. O

5. Remarks and questions

We make the following remarks and questions:

(1) The example of the group As shows that in\Theorem 1.2, the subgroup A may be non-
normal in G and G is not necessary either 7 “soluble or 7’-soluble, where 7 is the set of all prime
divisors of |A].

(2) In connection with Theorem 1.2, the following question naturally arises.

Question 5.1. Let A be a Hall soluble subgroup of a group G and X = F(G). Assume that A is
X-semipermutable in G. Is it frue‘that any two complements of A in G are conjugate?

(3) In connection with*“Fheorem 1.3, it is naturally to ask the following question:

Question 5.2. Is agroup-G supersoluble if all its 2-maximal subgroups of non-primary index are
F (G)-semipermutable in G?

(4) By usingjthe same arguments as in the proof of Theorem 1.3, the following result may be
obtained

Theorem 5.3. A group G is supersoluble if and only if every maximal subgroup of G is F(G)-
semipermutable in G.

(5) In the supersoluble group G = S3 x Z3, where S3 is the symmetric group of degree 3 and
|Z3| = 3, there exists a 2-maximal subgroup E of order 3 which is not G-permutable with any
Sylow 2-subgroups of G. Hence E is not G-semipermutable in G.

(6) Finally, we give the following application of Theorem 1.2.

a

Theorem 5.4. Let |G| = p{'p5*--- p{", where py > py > --- > p;. Let mi ={p1,..., pi} for
alli=1,2,...,t and X = F(G). Then G is a Sylow tower group if and only if G has a Hall
;i -subgroup which is X -semipermutable in G, foralli =1,2,...,t — 1.
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Proof. In fact, we only need to prove that if A is a Hall X-semipermutable subgroup of G and
p > g, for all primes p and ¢ such that p divides |A| and ¢ divides |G : A|, then A is normal
in G. We now prove this assertion by using induction on |G|. We first let  be the set of all prime
divisors of |A].

We first claim that AL < G, for any non-identity normal subgroup L of G. Indeed, the hy-
pothesis of the theorem still holds for G/L by Lemma 2.4(2), and so AL/L is normal in G/L
by induction, which implies that AL < G. If L is a w-group, then AL = A < G. Hence, we may
assume that O (G) = 1. Since O, (X) char X < G, X is a ’-group. Let T € X (A), where T is
a minimal supplement of A in G. Then T is a complement of A in G (see the proof of'the, first
statement in Theorem 1.2). Thus, T is a Hall ’-group of G. Suppose that X # 1. Thenyit is clear
that X < T and so the hypothesis of the theorem still holds on AX, by Lemma 2.4(4){If AX # G,
then A is normal in AX by induction, and so that A is normal in G because A char AX < G.
Now, let AX =G. Then, X =T. Let Z = Z(X). Assume that Z # X. Then.AZ is a proper
normal subgroup of G. Since our hypothesis holds on AZ, by induction, A°J AZ. It follows
that A < G. Now let Z = X. Then, in this case, our hypothesis still holds'on AD, where D is
any proper subgroup of X. Thus D < Ng(A) by induction. Now, Without loss of generality, we
may assume that X has prime power order. If X is a non-cyelic group, then, it is obvious that
A < AZ. Hence we may assume that T = X = F(G) = Op(G)= Cg(T) is a cyclic p-group,
for some prime p. In this case, G/T is an abelian group. dt\follows that G is supersoluble and
so A < G. Finally, suppose that X = 1 and let M bela,maximal subgroup of 7. Then, same as
above, one can also see that A char AM. But AM is'mormal in G because |G : AM| = p; is the
smallest prime divisor of |G|. Hence, we also obtainthat A << G. This completes the proof. O

The following corollary is immediate,

Corollary 5.5. Let p the largest prime divisor of a group G and X = F(G). Then G is p-closed
if and only if a Sylow p-subgroup.of G is X -semipermutable in G.
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