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Abstract

Let X be a non-empty subset of a group G. Then we call a subgroup A of G a X-semipermutable sub-
group of G if A has a supplement T in G such that for every subgroup T1 of T there exists an element x ∈ X

such that AT x
1 = T x

1 A. In this paper, we study the properties of X-semipermutable subgroups. In particular,
a new version of the famous Schur–Zassenhaus Theorem in terms of X-semipermutable subgroups is given.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this paper, all groups are finite.
A subgroup A of a group G is said to be permutable with a subgroup B if AB = BA. A sub-

group A is said to be a permutable or a quasinormal subgroup of G if A is permutable with all
subgroups of G. But we often meet the situation AB �= BA, nevertheless there exists an element
x ∈ G such that ABx = BxA, for instance, we have the following cases:
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(1) Let G = AB be a group. If Ap and Bp are Sylow p-subgroups of A and of B respectively,
then ApBp �= BpAp in general, but G has an element x such that ApBx

p = Bx
pAp.

(2) If A and B are Hall subgroups of a soluble group G, then there exists an element x ∈ G such
that ABx = BxA (cf. [1, I, (4.11)]).

(3) If A and B are normally embedded subgroups (see Definition (7.1) in [1, I]) of a soluble
group, then A is permutable with some conjugate of B (cf. [1, I, (4.17)]).

(4) If |G : A| is a prime power, then in every conjugacy class of Sylow subgroups of G, there is
a subgroup P such that AP = PA.

Let A, B be subgroups of a group G and X a non-empty subset of G. Then by the above
examples and some other examples of such kind, the following definitions are inspired:

Definition 1.1.

(1) A is said to be X-permutable with B if there exists some x ∈ X such that ABx = BxA;
(2) A is said to be X-permutable in G if A is X-permutable with all subgroups of G;
(3) A is said to be X-semipermutable in G if A is X-permutable with all subgroups of some

supplement T of A in G.

It is clear that our definition of X-semipermutable subgroups is a generalization of the usual
definition of permutable subgroups.

Throughout this paper, we will use X(A) to denote the set of all supplements T of A in the
group G such that A is X-permutable with all subgroups of T . Thus A is X-semipermutable in
G if and only if X(A) �= ∅.

The properties of X-permutable subgroups and some of its applications have already been
considered in our previous papers (see [2–6]). In this paper, we consider the applications of X-
semipermutable subgroups in the structure of a given group G. First of all, we give the following
mew version of Schur–Zassenhaus Theorem in finite groups in terms of X-semipermutable sub-
groups.

Theorem 1.2. Let A be a Hall subgroup of a group G and X = F(G) the Fitting subgroup of G.
Suppose that A is X-semipermutable in G. Then A is complemented in G. Any two complements
of A in G are conjugate under the condition that X(A) contains a soluble group.

We say that a subgroup M of a group G has non-primary index if |G : M| has at least two
different prime divisors. A subgroup H of a group G is said to be a 2-maximal subgroup (see
[10, p. 24]) or a second maximal subgroup of G if H is a maximal subgroup of some maxi-
mal subgroup M of G. The following theorems give further applications of X-semipermutable
subgroups.

Theorem 1.3. Let G be a group and X = F(G) ∩ G′. Then the following statements are equiva-
lent.

(1) For every 2-maximal subgroup E of G of non-primary index in G with the property that
G/EG is not a supersoluble group satisfying the condition |F(G/EG)| = |Op(G/EG)| > p,
where p is a prime, the set X(E) contains a supersoluble group.

(2) G is supersoluble.
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(3) For every 2-maximal subgroup E of G, G/EG is supersoluble, and if E satisfies that
|F(G/EG)| is a prime or |F(G/EG)| has at least two distinct prime divisors, then
T ∈ X(E), for any minimal supplement T of E in G.

It is not difficult to show that, in any supersoluble group G, any its 2-maximal subgroup E

of non-primary index with |F(G/EG)| = |Op(G/EG)| > p, where p is a prime, is not F(G)-
semipermutable in G.

Theorem 1.4. Let G be a group and X = F(G). Then G is nilpotent if and only if X(E) contains
a nilpotent group for every 2-maximal subgroup E of G having non-primary index.

2. The basic lemmas

In this section, we give some general properties of X-semipermutable subgroups.
The statements of the following two lemmas are evident.

Lemma 2.1. Let A, B , X be subgroups of G and K � G. Then the following statements hold:

(1) If A is X-permutable with B , then B is X-permutable with A.
(2) If A is X-permutable with B , then AK/K is XK/K-permutable with BK/K in G/K .
(3) If K � A, then A/K is XK/K-permutable with BK/K in G/K if and only if A is X-

permutable with B in G.
(4) If A is X-permutable with B and X � M � G then A is M-permutable with B .
(5) If A is X-permutable with B and X � NG(A) then A is permutable with B .
(6) If F is a permutable subgroup of G and A is X-permutable with B then AF is X-permutable

with B .

Lemma 2.2. Let G = AT and T1 be a subgroup of T . Assume that A is G-permutable with T1.
Then A is T -permutable with T1.

The following lemma is also well known.

Lemma 2.3. Let A,B be proper subgroups of a group G with G = AB . Then G = ABx and
G �= AAx , for all x ∈ G.

For the X-semipermutable subgroups, we have the following lemma:

Lemma 2.4. Let A and X be subgroups of G. Then the following statements hold:

(1) If N is a permutable subgroup of G and A is X-semipermutable in G, then NA is a X-semi-
permutable subgroup of G.

(2) If N � G, A is X-semipermutable in G and T ∈ X(A), then AN/N is XN/N -semi-
permutable in G/N and T N/N ∈ (XN/N)(AN/N).

(3) If A/N is XN/N -semipermutable in G/N and T/N ∈ (XN/N)(A/N), then A is X-semi-
permutable in G and T ∈ X(A).

(4) If A is X-semipermutable in G and A � D � G, X � D, then A is X-semipermutable in D.
(5) If A is a maximal subgroup of G, T is a minimal supplement of A in G and T ∈ G(A), then

T = 〈a〉 is a cyclic p-group, for some prime p and ap ∈ A.

ЕПОЗИТОРИЙ ГГ
У И

МЕНИ Ф
. С

КО
РИНЫ



34 W. Guo et al. / Journal of Algebra 315 (2007) 31–41
(6) If T ∈ X(A) and A � NG(X), then T x ∈ X(A), for all x ∈ G.
(7) If A is X-semipermutable in G and X � D, then A is D-semipermutable in G.

Proof. (1) The proof of this part follows directly from Lemma 2.1(6).
(2) It is obvious that T N/N is a supplement of AN/N in G/N . If T1/N is a subgroup of

T N/N , then T1/N = (T1 ∩ NT )/N = N(T1 ∩ T )/N and so AN/N is XN/N -permutable with
T1/N in G/N by Lemma 2.1(2). Hence, T N/N ∈ (XN/N)(AN/N).

(3) The proof of this part is the same as the proof in (2).
(4) This part is evident.
(5) Let M be a maximal subgroup of T . Then, by Lemma 2.2, there exists t ∈ T such that

AMt = MtA. Since T is a minimal supplement of A in G, AM �= G and so AMt �= G by
Lemma 2.3. Since A is a maximal subgroup of G, Mt � A. Suppose that T has a maximal
subgroup M1 which is not a conjugate of M . Then, by using the same arguments as above,
we can easily show that M

t1
1 � A, for some t1 ∈ T . It is clear that Mt �= M

t1
1 , and hence T =

〈Mt,M
t1
1 〉 � A. Thus, it follows that G = AT = A, a contradiction. This shows that T must be a

cyclic group of prime power order and M � A.

(6) By Lemma 2.3, T x is a supplement of A in G. Let T1 be a subgroup of T x. We now
proceed to show that A is X-permutable with T1. Since G = AT , x = at for some a ∈ A, t ∈ T ,
and hence T x = T a. Note that T a−1

1 � T and A = Aa−1
. Now, for some d ∈ X, by our hypothesis,

we have A(T a−1

1 )d = (T a−1

1 )dA = Aa(d−1)a(T a−1

1 )ada = AT da

1 = T da

1 A, where da ∈ X since
A ∈ NG(X). This shows that T x ∈ X(A).

(7) This part is evident. �
3. The proof of Theorem 1.2

To start with, we first cite the following result of H. Wielandt (see Theorem 3.8 in [11]).

Lemma 3.1. Let P be a Sylow p-subgroup of a group G. Assume that p2 divides |G| and every
subgroup of P is the intersection of P with some normal subgroup of G. Then G is p-soluble.

By using Lemma 3.1, we have proved the following result in [2].

Lemma 3.2. (See [2, Theorem 3.7].) Let G = AT , where A is a Hall π -subgroup of a group
G and T is a nilpotent Hall π ′-subgroup of G. Assume that A is F(G)-permutable with all
subgroups of T . Then G is p-supersoluble, for every prime p such that p2 divides |T |.
Proof of Theorem 1.2. Let π be the set of all different primes dividing |A|. We first prove that
if T is a minimal supplement of A in G such that T ∈ X(A), then T is a complement of A

in G. Suppose that this assertion is false and let G be a counterexample of minimal order. Let
D = A∩ T . Since A is a Hall π -subgroup of G and |G : A| = |T : A∩ T |, we can easily observe
that D is a Hall π -subgroup of T . Assume that p divides |X| for some prime p ∈ π ′ and let P

be a Sylow p-subgroup of X. Since P charX � G, P � G and so P � T . It is clear that T/P is
a minimal supplement of AP/P in G/P and T/P ∈ (XP/P )(AP/P ) by Lemma 2.4(2). Since
XP/P � F(G/P ), we see that our hypothesis is still valid for G/P . Hence, by the choice of G,
T/P is a complement of AP/P in G/P and so T/P is a Hall π ′-subgroup of G/P . Since P

is a π ′-subgroup of G, T is a Hall π ′-subgroup of G and so T is a complement of A in G.
This contradiction shows that X is a π -group. It follows that X � A and so by Lemma 2.1(5),
A is permutable with all subgroups of T . Now let M be a maximal subgroup of T . Assume that
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D �⊆ M . Then, we have T ∩ AM = M(T ∩ A) = MD = DM = T and so G = AT = ADM =
AM , which contradicts the minimality of T . This shows that D � Φ(T ). However, since D is a
Hall π -subgroup of T , we deduce that D = 1 and hence T is a complement of A in G.

Now suppose that there exists a soluble group T ∈ X(A). Then, without loss of generality, we
may suppose that T is a minimal supplement of A in G and so T is a Hall π ′-subgroup of G.
We now prove that any two complements T1 and T2 of A in G are conjugate in G. Assume that
this statement is false and G is a counterexample of minimal order. We proceed the proof by the
following steps.

(1) D = Oπ(G) = 1.

Assume that D �= 1. Then, it is clear that D � A and A/D is a Hall π -subgroup of G/D. By
Lemma 2.4, we see that the hypothesis still holds for A/D in G/D. Hence, by |G/D| < |G| and
by the choice of G, we see that T1D/D and T D/D are conjugate in G/D, that is, T1D = T xD,
for some x ∈ G. However, since the group T xD is evidently π ′-soluble, T1 and T x are conjugate
in the group T1D (cf. [7, VI, 1.7]). It follows that T1 and T are conjugate in G. Analogously, we
can prove that T2 and T are also conjugate in G. Therefore, T1 and T2 are conjugate in G. This
contradiction shows that (1) holds.

(2) Oπ ′(G) = 1. (This equality can be proved by using the same arguments as in (1).)
(3) X = 1.

Indeed, if X �= 1 and let L be a minimal normal subgroup of G contained in X, then either
L � Oπ(G) or L � Oπ ′(G). But these two cases are impossible in view of (1) and (2).

(4) T has at least one non-cyclic Sylow subgroup.

Assume that all Sylow subgroups of T are cyclic. Then, T1, T2 and T are supersoluble (cf.
[7, VI, 10.3]) and so T and T1 have normal Sylow p-subgroups P and P1 respectively, where p

is the largest prime divisor of |T | = |T1|. Let N = NG(P ) and N1 = NG(P1). Since P1, P are
Sylow p-subgroups of G, P = P x

1 for some x ∈ G. It follows that N = Nx
1 and so T x

1 � N .
Since N = N ∩ AT = T (A ∩ N), T and T x

1 are complements of A ∩ N in N . Now let T0 be a
subgroup of T . Then by (3) and by our hypothesis, AT0 = T0A and so AT0 ∩ N = T0(A ∩ N) =
(A ∩ N)T0. Thus, the hypothesis still holds for N ∩ A in N . But in view (1) and (2), we can
see that N1 �= G �= N . Now, by the choice of G, T and T x

1 are conjugate in N . It follows that
T and T1 are conjugate in G. Analogously, we can prove that T2 and T are also conjugate in G.
Therefore, T1 and T2 are conjugate in G. This contradiction shows that (4) holds.

(5) For some prime divisor p of |T |, T has a p-subgroup P such that 1 � Op(T ) � P and
|P | > p.

Let F = F(T ). Since T is soluble, F �= 1. If F has a Sylow q-subgroup Q such that Q �= Tq ,
where Tq is a Sylow q-subgroup of T , we can take P = Tq . Suppose that the order of any Sylow
subgroup of F is a prime. Then, we just write |F | = p, a prime. In this case, T/CT (F ) is a
cyclic group of order dividing p − 1 because it is isomorphic to some subgroup of Aut(F ).
But since T is soluble, CT (F ) � F . It follows that all Sylow subgroups of T are cyclic which
contradicts (4). Hence, F has at least two distinct Sylow subgroups, say P1 and P2. Let Ni

be the normal closure of Pi in G and let D = N1 ∩ N2. Since APi = PiA, by our hypothesis
and (3), we have Ni = P G = P AT = P A � APi , i = 1,2, and consequently, D is a π -group.
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This leads to D � Oπ(G). Thus, by (1), D = 1, and thereby A � Ni , for some Ni . Let, for
example, A � N1. Then, by using the same arguments as in the proof of (1), we can show that
E = N1T = N1T

x
1 , for some x ∈ G. Let T0 be a subgroup of T . Then AT0 = T0A and it is

easy to see that E ∩ AT0 = T0(N1T ∩ A) = T0(N1 ∩ A) = (N1 ∩ A)T0. On the other hand, since
G = AT , we have E = E ∩ AT = T (N1T ∩ A) = T (N1 ∩ A). This shows that the hypothesis
still holds on E. Since |E| < |G|, T and T x

1 are conjugate in G by our choice of G. Analogously,
T2 and T are conjugate in G. Therefore, T1 and T2 are conjugate in G. This contradiction shows
that (5) holds.

(6) Final contradiction.

Let D be the normal closure of the subgroup O = Op(T ) in G. Then D = OG = OAT = OA.
Now, by our hypothesis and (3), PA is a subgroup of G and A is permutable with every subgroup
of P . Then, by (5) and Lemma 3.2, AP is a p-supersoluble group. Since D � AP , D is p-
supersoluble. Hence, either Op′(D) �= 1 or Op(D) �= 1. Assume that the former case holds.
Then, Op′(D) char D � G and hence Op′(D) � G. However, since Op′(D) � A, we have
Oπ(G) �= 1, this contradicts (1). In the second case, we can similarly derive a contradiction by
using (2). This completes the proof. �
4. The proofs of Theorems 1.3 and 1.4

In proving Theorem 1.3, we need the following known results.

Lemma 4.1. (See [8, Theorem 3].) Let A and B be subgroups of a group G such that G �= AB

and ABx = BxA, for all x ∈ G. Then G has a proper normal subgroup N such that either A � N

or B � N .

Lemma 4.2. (See [9, Theorem 3.4].) A group G is soluble if G = AB , where A is a supersoluble
subgroup, B is a cyclic subgroup of G of odd order.

We need also the following two lemmas.

Lemma 4.3. Let G be a group and X a normal soluble subgroup of G. Then G is soluble if
any its 2-maximal subgroup E of non-primary index in G with the property that G/EG is not a
supersoluble group satisfying |F(G/EG)| = |Op(G/EG)| > p, where p is a prime, is X-semi-
permutable in G.

Proof. Assume that the lemma is false and let G be a counterexample of minimal order. Then

(1) G is not a simple group.

Assume that G is a simple non-abelian group. Then X = 1 and G has a non-supersoluble
maximal subgroup, say M , by [7, VI, 9.6]. Assume that M has non-primary index in G and
T is a maximal subgroup of M . Then, it is obvious that T is a 2-maximal subgroup of G sat-
isfying the conditions in the lemma. Hence, by our hypothesis, T is X-semipermutable in G.
This implies that T is also X-semipermutable in M by Lemma 2.4(4), and so |M : T | is a prime
by Lemma 2.4(5). This shows that every maximal subgroup of M has prime index, and conse-
quently M is supersoluble by the well-known Huppert’s Theorem [7, VI, 9.5]. This contradiction
shows that |G : M| = pa , for some prime p. Evidently, M has a maximal subgroup T such that
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(p, |M : T |) = 1. Since G is a simple non-abelian group, G/TG � G is not supersoluble. Thus
T is X-semipermutable in G by our hypothesis. Let A ∈ X(T ), where A is a minimal supple-
ment of T in G, and let A1 be a proper subgroup of A. Then G = T A and T A1 is a proper
subgroup of G. Let x ∈ G and x = at , where t ∈ T and a ∈ A. Since X = 1, T (A1)

a = (A1)
aT

and so ((A1)
aT )t = (A1)

xT is a subgroup of G. Therefore, G is not simple by Lemma 4.1. This
contradiction completes the proof of (1).

(2) For every minimal normal subgroup N of G, the quotient group G/N is soluble.

Indeed, let M/N be a 2-maximal subgroup of G/N of non-primary index in G/N with
the property that (G/N)/(M/N)G/N is not a supersoluble group satisfying the condition
|F((G/N)/(M/N)G/N)| = |Op((G/N)/(M/N)G/N)| > p, where p is a prime. Then, since
G/MG � (G/N)/(MG/N) = (G/N)/(M/N)G/N , we have that M is X-semipermutable in G

by using our hypothesis. Hence, by Lemma 2.4(2), M/N is XN/N -semipermutable in G/N ,
where XN/N is a normal soluble subgroup of G/N . This shows that our hypothesis still holds
on G/N . Thus, by the choice of G, G/N is soluble.

(3) G has a unique minimal normal subgroup L. (This part follows directly from (2).)
(4) Final contradiction.

By the above claim (2), we only need to prove that L is soluble. Assume that this assertion
is not true. Then by our claim (3), we have X = 1. By (1), G is not simple and hence L �= G.
By (2), G has a normal maximal subgroup M such that L � M and consequently |G : M| is a
prime. Let |G : M| = p. Now, we claim that there exists a maximal subgroup T of M such that
M = LT and (|M : T |,p) = 1. Indeed, if p divides |L|, Lp is a Sylow p-subgroup of L and P

is a Sylow subgroup of G containing Lp , then P � N = NG(Lp). By using the usual Frattini
argument, we have G = LN and M = M ∩ LN = L(M ∩ N). Since L is not soluble, N �= G.
Therefore, M ∩ N �= M . Let T be a maximal subgroup of M containing M ∩ N . Then, M = LT

and (|M : T |,p) = 1. Next, we assume that (|L|,p) = 1. Then, it is clear that L � Φ(G) and so
L � Φ(M). Hence, there exists a maximal subgroup T of M such that M = LT . It follows that
p does not divide |M : T | = |L|/|L ∩ T |. Hence, our claim is established. This shows that T is
a 2-maximal subgroup of G having non-primary index. Since L � T , TG = 1 and so G/TG � G

is not supersoluble. Thus, by our hypothesis, T is X-semipermutable in G. Since X = 1 and T

is maximal subgroup of M , we may take a ∈ M \ T such that 〈a〉 is a minimal supplement of
T in M . Then, it is easy to see that |M : T | = q and so |G : T | = pq , for some prime q �= p.
Let A ∈ X(T ) and A be a minimal supplement of T in G. Then G = T A and A ∩ T � Φ(A).
Thus, A is a {p,q}-group. Let Ap be a Sylow p-subgroup of A. Since X = 1, D = T Ap = ApT .
Clearly, |G : D| = q . Moreover, since |G : M| = p and M = LT , we see that L � D. Thus
DG = 1, and by considering the permutation representation of G on the right cosets of D, we
see that G is isomorphic with some subgroup of the symmetric group Sq of degree q . It follows
that D is a Hall q ′-subgroup of G and G = DZq , where Zq is a subgroup of order q . Now
we have seen that every maximal subgroup of D is a 2-maximal subgroup of G satisfying the
condition of the lemma, hence it is X-semipermutable in G, and consequently, by Lemma 2.4
(4), every maximal subgroup of D is X-semipermutable in D. It follows that the index of every
maximal subgroup of D is a prime. Hence, D is supersoluble and thereby G is a soluble group
by Lemma 4.2. This contradiction completes the proof. �
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Lemma 4.4. Consider a soluble group G = [L]M, where L is a non-cyclic minimal normal
subgroup of G. Let L be a p-group and M has a maximal subgroup E such that |M : E| = q �= p

is a prime and let T be a minimal supplement of E in G having a normal maximal subgroup K

of T . If E is L-permutable with all maximal subgroups of T , then |T : K| �= p.

Proof. Suppose that |T : K| = p. Let D = E ∩ T and Dp be a Sylow p-subgroup of D. If
D � K , then KD = T and so G = ET = EDK = EK , this clearly contradicts the minimality
of T . Hence D � K . Let x ∈ L and form V = EKx = KxE. Since G = ET , we have x = et ,
for some e ∈ E and t ∈ T . Hence, we obtain V e−1 = EKt = EK . Let Y = V e−1

and Yp be
a Sylow p-subgroup of Y . Now, let Gp be a Sylow p-subgroup of G containing Yp . Then,
|Gp : Yp| = (|Ep||Tp|/|Dp|) : (|Ep||Kp|/|Dp|) = p, where Ep is a Sylow p-subgroup of E. On
the other hand, since |G : LE| = q , we have |Gp| = |L||Ep|. Thus, L �⊆ Y and L ∩ Y �= 1. This
result leads to G = LY and so Y ∩ L is normal in G which contradicts the minimality of L.
Hence, the lemma is proved. �
Proof of Theorem 1.3. (1) ⇒ (2). Suppose that the assertion is false and let G be a coun-
terexample of minimal order. Let L be a minimal normal subgroup of G. By making use of
Lemma 2.4(3), it is not difficult to see that our hypothesis still holds on the quotient group G/L,
and so by the choice of G, G/L is supersoluble. Since the class of all supersoluble groups is
a saturated formation, L is a unique minimal normal subgroup of G and L � Φ(G). Let M be
a maximal subgroup of G such that L � M . Then, by Lemma 4.3, G is a soluble group and
hence G = [L]M . It is easy to see that L = C = CG(L) = F(G) = Op(G), for some prime p,
and |L| �= p. Hence L = X. Since M � G/L is supersoluble, M contains a maximal subgroup
E such that |M : E| = q �= p. Since L �⊆ E, EG = 1 and so G/EG � G is not supersoluble.
Therefore, by our hypothesis, E is L-semipermutable in G and the set L(E) contains a supersol-
uble group, say T . Without loss of generality, we may assume that T is a minimal supplement
of E in G. Obviously, E �= 1. Let D = E ∩ T and Dp be a Sylow p-subgroup of D. Then, since
|G : E| = |L|q , we have |T : D| = paq , where |L| = pa and a > 1. Let r be the largest prime
divisor of |G|. Assume that r = p. Because G/L is a supersoluble group and Op(G/L) = 1, we
see that L is a Sylow subgroup of G. It is now clear that L � T . Let L1 be a maximal subgroup
of L. Then by our hypothesis again, we have A = L1E = EL1. Evidently, |G : A| = pq and
AG = 1. Hence, A is L-semipermutable in G. If T1 ∈ L(A) and Q is a Sylow q-subgroup of T1,
then B = QxA = AQx , for some x ∈ L. However, since |G : B| = p, we have LB = G. This
shows that |L| �= |L ∩ B| �= 1 and L ∩ B � G, which contradicts the minimality of L. Thus,
without loss of generality, we may assume that r = q. Let K be a maximal subgroup of T such
that |T : K| = p. Since G is soluble, it is clear that T is a {p,q}-group. Since p < q and T is
supersoluble, K is normal in T , which contradicts Lemma 4.4. Thus, the contradiction shows
that G is supersoluble.

(2) ⇒ (3). Let E be a 2-maximal subgroup of G such that either |F(G/EG)| is a prime
or |F(G/EG)| has at least two distinct prime divisors. Let T be a minimal supplement of E

in G. We now going to prove, by using induction on |G|, that E is G′-permutable with all
subgroups of T . For this purpose, we let T1 be a subgroup of T . We first suppose that EG �= 1.
Then the assertion is obviously true for G/EG and therefore E/EG is (G/EG)′-permutable with
T1EG/EG. But, since (G/EG)′ = G′EG/EG, by Lemma 2.1(3), E is G′-permutable with T1.

Now we assume that EG = 1. Let F = F(G) and π = π(F) be the set of all prime divisors
of |F |. We first suppose that |G : E| = p2 for some prime p. Since EG = 1, it is obvious that
F is a Sylow p-subgroup of G because G is a supersoluble group. Hence, by our hypothesis,
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|F | is a prime. This shows that |G : E| = p2 is impossible. Now suppose that |G : E| = pq with
p > q . If |π | > 2 and R is a Sylow d-subgroup of F , where q �= d �= p, then, it is clear that
R � EG, which is impossible because EG = 1. Hence, π ⊆ {p,q}. Since G is supersoluble,
G has a normal Sylow r-subgroup, where r is a largest prime divisor of |G|. It follows that p is
the largest prime divisor of |G|.

Assume that F is a cyclic group of prime power order. Then F is a p-group. Since EG = 1
and |G : E| = pq, we see that F �⊆ E and so |F | = p. Since G is soluble, Φ(G) < F(G). This
leads to Φ(G) = 1 and so G = [F ]M, for some maximal subgroup M of G and CG(F) = F .
Hence M is a cyclic group. Without loss of generality, we may assume that E � M . We now
prove that E is G′-permutable with T1. In fact, if A is a Hall p′-subgroup of T1, then T1 = PA,
where P = T1 ∩ F is a Sylow p-subgroup of T1. Since any two Hall p′-subgroups of a soluble
group are conjugate, by G = F(G)M , we see that Ax ⊆ M , for some x ∈ G′. Therefore, ET x

1 =
E(T1 ∩ F)Ax = (T1 ∩ F)AxE = T x

1 E.
Next, we assume that |π | = 2, and let Fp and Fq be the Sylow p-subgroup and the Sylow

q-subgroup of F , respectively. Then, it is clear that G = FE. Let R be a Sylow r-subgroup
of F . If |R| > r , then D = R ∩ E �= 1. Since R char F � G, R � G. Obviously, |R : D| = r and
so D � R. Let F = R × Q, where Q is the another Sylow subgroup of F. Then Q ⊆ NG(D).
It follows that D is a normal subgroup of G. Because EG = 1, we have D = 1. This shows
that |F | = pq . Assume that q divides |E| and q,p divide |T1|. Let {E2, . . . ,Et } be a Sylow
system of E and {D1,D2} a Sylow system of T1, where D1 is a p-group. Then, by [7, VI, 2.3,
2.4], G has Sylow systems Σ = {P1, . . . ,Pt } and Σ1 = {Q1, . . . ,Qt } such that Ei � Pi , for all
i = 2, . . . , t and Di � Qi for i = 1,2. Moreover, the systems Σ and Σ1 are conjugate, i.e. G

has an element x such that Qx
i = Pi , for all i = 1, . . . , t . It is clear that P1 = D1 is a Sylow

p-subgroup of G and E3 = P3, . . . ,Et = Pt . If Dx
2 � M2, then T1

xE = P1E = ET x
1 . On the

other hand, if Dx
2 � E2, then by |G : E| = pq, we have |P2 : E2| = q and hence P2 = Dx

2 E2. It
follows that T x

1 E = G = ET x
1 . Since by [7, VI, 11.10], we know that NG(Σ1) covers all central

chief factors of G, we have G = G′NG(Σ1), and consequently, x = f n, where f ∈ G′ and
n ∈ NG(Σ1). Therefore, we have proved that ET

f

1 = T
f

1 E. Analogously, we can also consider
the cases either (|E|, q) = 1 or (|T1|,p) = 1.

Finally, since G is a supersoluble group, we have G′ � F(G) and so X = G′. Therefore, E

is indeed X-permutable with all subgroups of T . Hence every minimal supplement of E in G is
contained in X(E).

The implication (3) ⇒ (2) is evident. The implication (2) ⇒ (1) is, indeed, a special case of
the implication (2) ⇒ (3). Thus the proof of the theorem is completed. �
Corollary 4.5. Let G be a group and X = F(G) ∩ G′. Then G is a nilpotent group if and only
if for every 2-maximal subgroup M of G having non-primary index, the set X(M) contains
a supersoluble group and every minimal subgroup of G is contained in the hypercenter of its
normalizer.

A group G is called p-decomposable if G = Op(G) × Op′(G).
Theorem 1.4 is a direct corollary of the following theorem.

Theorem 4.6. Let G be a group, X = F(G) and p a prime. Suppose that for every 2-maximal
subgroup E of G of non-primary index, the set X(E) contains a p-decomposable group. Then
the group G is p-decomposable.
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Proof. Suppose that the theorem is false and let G be a counterexample of minimal order. Then
p divides |G|. Let L be a minimal normal subgroup of G. It is not difficult to show that the
hypothesis of the theorem still holds on G/L and so by our choice of G, G/L is p-decomposable.
It is well known that the class of all p-decomposable groups is a saturated formation. Hence L

is the only minimal normal subgroup of G and L � Φ(G). Let M be a maximal subgroup of
G such that L � M . By Lemma 4.3, G is soluble group. Hence, G = [L]M and L = CG(L) =
F(G) = X = Oq(G), for some prime q . It is clear that MG = 1 and for some maximal subgroup
E of M, we have (|M : E|, q) = 1. Hence by our hypothesis, E is L-semipermutable in G and
the set L(E) contains a p-decomposable subgroup T , which is a minimal supplement of E in G.
Let Tp and Tp′ be a Sylow p-subgroup and a Hall p′-subgroup of T , respectively. It is clear that
E has a non-primary index in G. Hence Tp′ �= 1 and T = Tp × Tp′ . Assume that p = q . Then
since L = Op(G) and G/L is p-decomposable, L is the Sylow p-subgroup of G. It follows that
L � T and so Tp′ � CG(L) = L. If |L| = q , then since G/L � Aut(L), L is a Sylow q-subgroup
of G. Hence, we can also see that L � T and so Tp′ � CG(L) = L. This contradiction shows that
p �= q and |L| �= q . Hence, without loss of generality, we may assume that |M : E| = p. Since G

is soluble, any minimal supplement of E in G is a {p,q}-group. Hence, Tp′ is a Sylow q-sub-
group of T . This shows that T has a normal maximal subgroup K such that |T : K| = q , which
is impossible by Lemma 4.4. This completes the proof. �
5. Remarks and questions

We make the following remarks and questions:
(1) The example of the group A5 shows that in Theorem 1.2, the subgroup A may be non-

normal in G and G is not necessary either π -soluble or π ′-soluble, where π is the set of all prime
divisors of |A|.

(2) In connection with Theorem 1.2, the following question naturally arises.

Question 5.1. Let A be a Hall soluble subgroup of a group G and X = F(G). Assume that A is
X-semipermutable in G. Is it true that any two complements of A in G are conjugate?

(3) In connection with Theorem 1.3, it is naturally to ask the following question:

Question 5.2. Is a group G supersoluble if all its 2-maximal subgroups of non-primary index are
F(G)-semipermutable in G?

(4) By using the same arguments as in the proof of Theorem 1.3, the following result may be
obtained

Theorem 5.3. A group G is supersoluble if and only if every maximal subgroup of G is F(G)-
semipermutable in G.

(5) In the supersoluble group G = S3 × Z3, where S3 is the symmetric group of degree 3 and
|Z3| = 3, there exists a 2-maximal subgroup E of order 3 which is not G-permutable with any
Sylow 2-subgroups of G. Hence E is not G-semipermutable in G.

(6) Finally, we give the following application of Theorem 1.2.

Theorem 5.4. Let |G| = p
a1
1 p

a2
2 · · ·pat

t , where p1 > p2 > · · · > pt . Let πi = {p1, . . . , pi} for
all i = 1,2, . . . , t and X = F(G). Then G is a Sylow tower group if and only if G has a Hall
πi -subgroup which is X-semipermutable in G, for all i = 1,2, . . . , t − 1.
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Proof. In fact, we only need to prove that if A is a Hall X-semipermutable subgroup of G and
p > q , for all primes p and q such that p divides |A| and q divides |G : A|, then A is normal
in G. We now prove this assertion by using induction on |G|. We first let π be the set of all prime
divisors of |A|.

We first claim that AL � G, for any non-identity normal subgroup L of G. Indeed, the hy-
pothesis of the theorem still holds for G/L by Lemma 2.4(2), and so AL/L is normal in G/L

by induction, which implies that AL �G. If L is a π -group, then AL = A� G. Hence, we may
assume that Oπ(G) = 1. Since Oπ(X) char X � G, X is a π ′-group. Let T ∈ X(A), where T is
a minimal supplement of A in G. Then T is a complement of A in G (see the proof of the first
statement in Theorem 1.2). Thus, T is a Hall π ′-group of G. Suppose that X �= 1. Then, it is clear
that X � T and so the hypothesis of the theorem still holds on AX, by Lemma 2.4(4). If AX �= G,
then A is normal in AX by induction, and so that A is normal in G because A char AX � G.
Now, let AX = G. Then, X = T . Let Z = Z(X). Assume that Z �= X. Then AZ is a proper
normal subgroup of G. Since our hypothesis holds on AZ, by induction, A � AZ. It follows
that A � G. Now let Z = X. Then, in this case, our hypothesis still holds on AD, where D is
any proper subgroup of X. Thus D � NG(A) by induction. Now, without loss of generality, we
may assume that X has prime power order. If X is a non-cyclic group, then, it is obvious that
A � AZ. Hence we may assume that T = X = F(G) = Op(G) = CG(T ) is a cyclic p-group,
for some prime p. In this case, G/T is an abelian group. It follows that G is supersoluble and
so A � G. Finally, suppose that X = 1 and let M be a maximal subgroup of T . Then, same as
above, one can also see that A char AM . But AM is normal in G because |G : AM| = pt is the
smallest prime divisor of |G|. Hence, we also obtain that A �G. This completes the proof. �

The following corollary is immediate.

Corollary 5.5. Let p the largest prime divisor of a group G and X = F(G). Then G is p-closed
if and only if a Sylow p-subgroup of G is X-semipermutable in G.
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