О ФОРМАЦИЯХ ВИДА СБ

А. Н. Скиба.

Пусть f — функция, сопоставляющая каждой группе некоторую формацию и удовлетворяющая следующим условиям:

1) $f(1) = \mathfrak{G}$ — класс всех групп;

 $2) f(G) \subseteq f(G^{\varphi}) \cap f(\text{Ker } \varphi)$ для любого гомоморфизма φ группы G. Такая функция f называется экраном [1]. Говорят, что некоторая группа операторов A действует f-стабильно на G (или является f-стабильной группой операторов), если в G имеется такая субнормальная цепь A-допустимых подгрупп

$$1 = G_0 \subset G_1 \subset \ldots \subset G_t = G,$$

что

$$A/C_A(G_{i-1}/G_i) \in f(G_{i-1}/G_i)$$

для любого $i=1,\ldots,t$. Класс групп, действующих f-стабильно на самих себе, составляет формацию $\langle f \rangle = \mathfrak{F}$.

Согласно теореме Л. А. Шеметкова [2] всякая f-стабильная группа автоморфизмов произвольной конечной группы принадлежит $\langle f \rangle$, если f — внутренний примарно постоянный экран, т. е. $f(H) \subseteq \langle f \rangle$ для любой группы $H \neq 1$ и функция f постоянна на всех неединичных p-группах для любого фиксированного простого p. Последнее требование минимально возможное, если учесть, что теория формаций развивается по модулю p-групп.

Классические результаты о подгруппе Фраттини подсказывают, что если группа A действует f-стабильно не на всей группе G, а на ее секции

$$\widetilde{F}(G)/\Phi(G) = \operatorname{Soc}(G/\Phi(G)),$$

то можно надеяться, что A действует f-стабильно и на $\Phi(G)$. В «Коуровской тетради» (1990 г., вып. 11) под номером 6.52 помещен следующий вопрос A. Шеметкова: пусть f — локальный экран формации, содержащий все нильпотентные группы, $A\subseteq \operatorname{Aut} G$. Пусть A действует f-стабильно на $\widetilde{F}(G)/\Phi(G)$. Доказать, что A действует f-стабильно на $\Phi(G)$.

Здесь мы покажем, что в общем случае эта задача решается отрицательно, а все те локальные формации, для которых она имеет положительное решение, исчерпываются формациями вида $\mathfrak{C}\mathfrak{H}$, где \mathfrak{C} — класс всех разрешимых групп, а \mathfrak{H} — произвольная непустая формация. Это вытекает из следующей, доказываемой ниже, теоремы.

Теорема. Пусть \mathfrak{F} — локальная формация и $\pi = \pi(\mathfrak{F})$. Тогда эквивалентны следующие условия:

1) $\mathfrak{F} = \mathfrak{C}_{\pi}\mathfrak{H}$, где \mathfrak{C}_{π} — формация всех разрешимых π -групп, а \mathfrak{H} — произвольная непустая формация с $\pi(\mathfrak{H}) \subseteq \pi$;

2) $\mathfrak F$ имеет локальный или внутренний однородный экран f, такой что для любой группы автоморфизмов A произвольной группы G с $\pi(\widetilde F(G)) \subseteq \pi$ из того, что A действует f-стабильно на $\widetilde F(G)/\Phi(G)$, следует, что A действует f-стабильно на $\Phi(G)$.

Все рассматриваемые в работе группы предполагаются конечными. Мы будем использовать терминологию из [1, 3]. Напомним лишь, что примарно постоянный экран f называется однородным (локальным), если $f(G) \subseteq \bigcap_{p \in \pi(G)} f(p)$ (соответственно $f(G) = \bigcap_{p \in \pi(G)} f(p)$) для любой

неединичной группы G. Понятно, что каждый локальный экран однороден.

Доказательству теоремы предпошлем несколько лемм.

Лемма 1. Пусть f_1 — произвольный локальный экран формации \mathfrak{F} и f — такой ее локальный экран, что для всех простых p имеет место $f(p) = \mathfrak{N}_p f_1(p)$. Пусть A — группа автоморфизмов некоторой группы G. Тогда из того, что A действует f-стабильно на $\widetilde{F}(G)/\Phi(G)$, следует, что A действует f-стабильно на $\Phi(G)$, в том и только в том случае, если утверждение справедливо относительно экрана f_1 .

доказательство. Пусть из того, что A действует f-стабильно на $\widetilde{F}(G)/\Phi(G)$, вытекает, что A действует f-стабильно на $\Phi(G)$. Предположим, что A действует f_1 -стабильно на $\widetilde{F}(G)/\Phi(G)$. Тогда согласно определению существует такой субнормальный A-допустимый ряд

$$\Phi(G)/\Phi(G) = H_0 \subseteq H_1 \subseteq \ldots \subseteq H_t = \widetilde{F}(G)/\Phi(G),$$

каждый фактор которого f_1 -централен в A, т. е.

$$A/C_A(H_i/H_{i-1}) \in f_1(H_i/H_{i-1}), i = 1, ..., t.$$

Но при всех простых p имеет место включение $f_1(p)\subseteq f(p)$. Значит, $f_1(H_i/H_{i-1})\subseteq f(H_i/H_{i-1})$. Таким образом, A действует f-стабильно на $\widetilde{F}(G)/\Phi(G)$, и поэтому согласно нашему предположению A действует f-стабильно на $\Phi(G)$. Пусть

$$1 = L_0 \subseteq L_1 \subseteq \ldots \subseteq L_a = \Phi(G) \tag{1}$$

— такой субнормальный A-допустимый ряд группы $\Phi(G)$, что для всякого $i \in \{1,\dots,a\}$

$$A/C_A(L_i/L_{i-1}) \in f(L_i/L_{i-1}).$$
 (2)

Поскольку отношение принадлежности (2) сохраняется и для ряда, полученного из ряда (1) путем его уплотнения и последующего отбрасывания повторяющихся членов, не теряя общности, можно считать, что ряд (1) А-композиционный. Последнее, в частности, означает, что факторы ряда (1) абелевы и элементарны. Значит, если $p \in \pi(L_i/L_{i-1})$, то $L_i/L_{i-1} - p$ -группа и, кроме того,

$$A/C_A(L_i/L_{i-1}) \in f(p) = \mathfrak{N}_p f_1(p).$$

С учетом леммы 3.9 из [1] $O_p(A/C_A(L_i/L_{i-1}))=1$. Следовательно, имеем $A/C_A(L_i/L_{i-1})\in f_1(p)$. Таким образом, A действует f_1 -стабильно на $\Phi(G)$.

 \hat{A} налогично покажем, что если f_1 -стабильность действия группы A на $\tilde{F}(G)/\Phi(G)$ влечет f_1 -стабильность действия ее на $\Phi(G)$, то подобное утверждение справедливо и относительно экрана f. Лемма доказана.

Так же докажем следующую лемму.

Лемма 2. Пусть f_1 — произвольный однородный экран формации $\mathfrak F$ и f — такой ее однородный экран, что для всех простых p имеет место равенство $f(p)=\mathfrak N_p f_1(p)$. Пусть A — группа автоморфизмов некоторой группы G. Тогда из того, что A действует f-стабильно на $F(G)/\Phi(G)$, следует, что A действует f-стабильно на $\Phi(G)$ в том и только в том случае, если утверждение справедливо относительно экрана f_1 .

Лемма 3. Для любых формаций M и h справедлива формула

$$\mathfrak{G}_{\pi} \cap \mathfrak{M}\mathfrak{H} = (\mathfrak{G}_{\pi} \cap \mathfrak{M})(\mathfrak{G}_{\pi} \cap \mathfrak{H}). \tag{3}$$

доказательство. Пусть $A \in \mathfrak{G}_{\pi} \cap \mathfrak{M}\mathfrak{H}$. Тогда $A/A^{\mathfrak{H}} \in \mathfrak{G}_{\pi} \cap \mathfrak{H}$. Но $A^{\mathfrak{H}} \subseteq A^{\mathfrak{G}_{\pi} \cap \mathfrak{H}}$. Значит, $A^{\mathfrak{H}} = A^{\mathfrak{H} \cap \mathfrak{G}_{\pi}} \in \mathfrak{M} \cap \mathfrak{G}_{\pi}$, т. е. $A \in (\mathfrak{M} \cap \mathfrak{G}_{\pi})(\mathfrak{H} \cap \mathfrak{G}_{\pi})$.

Обратно, пусть $A \in (\mathfrak{M} \cap \mathfrak{G}_{\pi})(\mathfrak{H} \cap \mathfrak{G}_{\pi})$. Отсюда $A \in \mathfrak{G}_{\pi}$. Значит, $A^{\mathfrak{H}} = A^{\mathfrak{H} \cap \mathfrak{G}_{\pi}}$, и поэтому $A^{\mathfrak{H}} \in \mathfrak{M}$. Следовательно, $A \in \mathfrak{M} \mathfrak{H} \cap \mathfrak{G}_{\pi}$. Лемма доказана.

В дальнейшем мы часто будем использовать следующую очевидную лемму.

Лемма 4. Пусть группа G монолитична и $O_p(G)=1$. Тогда существует точный неприводимый $F_p[G]$ -модуль.

Лемма 5. Формация $\mathfrak F$ обладает таким локальным экраном f, что для всех p, $q \in \pi = \pi(\mathfrak F)$ имеют место равенства f(p) = f(q) и $\mathfrak N_p f(p) = f(p)$ тогда и только тогда, когда $\mathfrak F = \mathfrak C_\pi \mathfrak H$ для некоторой формации $\mathfrak H$ с $\pi(\mathfrak H) \subseteq \pi$.

доказательство. необходимость. Хорошо известно, что формация $\mathfrak F$ допускает представление в виде

$$\mathfrak{F} = \mathfrak{G}_{\pi} \cap \left(\bigcap_{p \in \pi} \mathfrak{G}_{p'} \mathfrak{N}_{p} f(p) \right). \tag{4}$$

В силу леммы 3 правая часть равенства (4) допускает такую запись:

$$\mathfrak{G}_{\pi} \cap \left(\bigcap_{p \in \pi} \mathfrak{G}_{p'} \mathfrak{N}_{p} f(p)\right) = \bigcap_{p \in \pi} \left(\mathfrak{G}_{\pi \setminus \{p\}} \mathfrak{N}_{p} \left(f(p) \cap \mathfrak{G}_{\pi}\right)\right). \tag{5}$$

Поскольку для любого множества формаций $\{\mathfrak{M}_i \mid i \in I\}$ и всякой формации $\mathfrak H$ имеет место равенство

$$\left(\bigcap_{i\in I}\mathfrak{M}_i\right)\mathfrak{H}=\bigcap_{i\in I}\left(\mathfrak{M}_i\mathfrak{H}\right)$$

и, кроме того, f(p)=f(q) для всех $p,\,q\in\pi$, имеем

$$\bigcap_{p \in \pi} \left(\mathfrak{G}_{\pi \setminus \{p\}} \mathfrak{N}_p \big(f(p) \cap \mathfrak{G}_{\pi} \big) \right) = \bigcap_{p \in \pi} \big(\mathfrak{G}_{\pi \setminus \{p\}} \mathfrak{N}_p \big(f(r) \cap \mathfrak{G}_{\pi} \big) \big),$$

где $r \in \pi$. Очевидно, что $\bigcap_{p \in \pi} \mathfrak{G}_{\pi \setminus \{p\}} \mathfrak{N}_p = \mathfrak{N}_\pi$ — формация нильпотентных

 π -групп. Таким образом, учитывая (4) и (5), получаем $\mathfrak{F}=\mathfrak{N}_\piig(f(r)\cap\mathfrak{G}_\piig)$. Покажем, что

$$\mathfrak{C}_{\pi}(f(r) \cap \mathfrak{G}_{\pi}) = f(r) \cap \mathfrak{G}_{\pi}.$$

Включение $f(r)\cap\mathfrak{G}_\pi\subseteq\mathfrak{C}_\pi(f(r)\cap\mathfrak{G}_\pi)$ очевидно. Предположим, что обратное включение неверно, и пусть A — группа минимального порядка из $\mathfrak{C}_\pi(f(r)\cap\mathfrak{G}_\pi)\setminus (f(r)\cap\mathfrak{G}_\pi)$. Тогда группа A монолитична и ее монолит R совпадает с $A^{f(r)\cap\mathfrak{G}_\pi}\in\mathfrak{C}_\pi$. Значит, R — p-группа для некоторого $p\in\pi$. Согласно условию $f(p)=f(r)=\mathfrak{N}_rf(r)$. Следовательно, $A\in\mathfrak{N}_pf(p)=\mathfrak{N}_rf(r)=f(p)=f(r)$. Кроме того, очевидно, $A\in\mathfrak{G}_\pi$, так что $A\in f(r)\cap\mathfrak{G}_\pi$. Полученное противоречие показывает, что $\mathfrak{C}_\pi(f(r)\cap\mathfrak{G}_\pi)=f(r)\cap\mathfrak{G}_\pi$, и поэтому $\mathfrak{F}=\mathfrak{N}_\pi(f(r)\cap\mathfrak{G}_\pi)=f(r)\cap\mathfrak{G}_\pi=\mathfrak{C}_\pi\mathfrak{H}$, где $\mathfrak{H}=f(r)\cap\mathfrak{G}_\pi$.

достаточность. Пусть $\mathfrak{F}=\mathfrak{C}_\pi\mathfrak{H}$, где $\pi=\pi(\mathfrak{F})$ и $\mathfrak{H}-\varphi$ ормация с $\pi(\mathfrak{H})\subseteq\pi$. Если $|\pi|=1$, то $\mathfrak{F}=\mathfrak{N}_p$ для некоторого простого числа p и искомый локальный экран f таков, что $f(p)=\mathfrak{N}_p$ и $f(q)=\varnothing$ при всех простых $q\neq p$. Пусть $|\pi|>1$. В этом случае для доказательства достаточности установим, что $f(p)=\mathfrak{F}$ для всех $p\in\pi$, где f — минимальный локальный экран формации \mathfrak{F} . Пусть $f(p)\neq\mathfrak{F}$ и A — группа минимального порядка из $\mathfrak{F}\backslash f(p)$. Тогда группа A монолитична и если R — ее монолит, то ввиду условия $|\pi|>1$ найдется такое $q\in\pi$, что R не является q-группой. Согласно лемме 4 существует точный неприводимый $F_q[A]$ -модуль Q. Пусть $B=Q \leftthreetimes A$. Тогда если $r\in\pi\backslash\{q\}$, то существует точный неприводимый $F_r[B]$ -модуль R. Пусть $D=R \leftthreetimes B$. Так как

$$\mathfrak{F} = \mathfrak{C}_{\pi}\mathfrak{H} = \mathfrak{C}_{\pi}(\mathfrak{C}_{\pi}\mathfrak{H}) = (\mathfrak{C}_{\pi}\mathfrak{C}_{\pi})\mathfrak{H} = \mathfrak{C}_{\pi}\mathfrak{F}$$

и $A\in \mathfrak{F}$, имеем $D\in \mathfrak{F}$. Как нетрудно заметить, $F_r(D)=R$ и $F_q(D)=RQ$, и поэтому

 $B \simeq D/R \in f(r), \quad A \simeq D/F_q(D) \in f(q).$

В качестве одного из чисел q, r мы можем взять p, следовательно, $A \in f(p)$. Полученное противоречие завершает доказательство леммы.

Если V — некоторый неприводимый $F_p[G]$ -модуль, то через P_V обозначают такой (главный) неразложимый проективный $F_p[G]$ -модуль, что $P_V/P_VJ\simeq V$, где J — радикал Джекобсона групповой алгебры $F_p[G]$. Пусть V — неприводимый тривиальный $F_p[G]$ -модуль. Тогда, следуя [4], через $A_{F_p}(G)$ обозначим ядро проективного накрытия $P\to P_VJ$. В дальнейшем нам потребуются два результата о модуле $A_{F_p}(G)$, которые мы сформулируем в виде следующих двух лемм.

Лемма 6 [4]. Пусть простое число p делит |G|. Тогда централизатор в G цоколя модуля $A_{F_p}(G)$ совпадает с $F_p(G)$.

Групповое расширение $A \mapsto G_1 \twoheadrightarrow G$ называют фраттиниевым расширением группы G, если $A \subseteq \Phi(G_1)$.

Лемма 7 [5]. Пусть простое число p делит |G|. Тогда существует такое фраттиниево расширение $A \mapsto G_1 \twoheadrightarrow G$ группы G, что элементарная абелева p-группа A, рассматриваемая как $F_p[G]$ -модуль, изоморфна $A_{F_p}(G)$ и всякое фраттиниево расширение $A_1 \rightarrowtail G_2 \twoheadrightarrow G$, где $A_1 \longrightarrow$ элементарная абелева p-группа, является гомоморфным образом группы G_1 .

Лемма 8. Пусть π — произвольное непустое множество простых чисел, f — локальный (однородный) экран формации \mathfrak{F} , и пусть для произвольной группы автоморфизмов A произвольной группы G с $\pi(\tilde{F}(G))\subseteq \pi$ из того, что A действует f-стабильно на $\tilde{F}(G)/\Phi(G)$, следует, что A действует f-стабильно на $\Phi(G)$. Тогда для любых таких $p, q \in \pi$, что $\mathfrak{N}_p f(p) = f(p)$ и $\mathfrak{N}_q f(q) = f(q)$, имеет место равенство f(p) = f(q).

доказательство. Предположим, что $f(p) \not\subseteq f(q)$. Тогда $f(p) \neq \varnothing$, и поэтому $\mathfrak{N}_p \subseteq f(p)$. Пусть A_1 при $f(q) = \varnothing$ есть группа порядка p, а при $f(q) \neq \varnothing$ — группа минимального порядка из $f(p) \setminus f(q)$. Так как $\mathfrak{N}_q f(q) = f(q)$, в любом из случаев $O_q(A_1) = 1$. Кроме того, группа A_1 монолитична. Таким образом, согласно лемме 4 существует точный неприводимый $F_q[A_1]$ -модуль L. Пусть $B = L \setminus A_1$. Группа B также монолитична, и уже $O_p(B) = 1$. Следовательно, существует точный неприводимый $F_p[B]$ -модуль P. Обозначим через D_1 группу $P \setminus B$.

В силу леммы 7 существует такое фраттиниево расширение $Q \mapsto D \to D_1$ группы D_1 , что $Q \to D$ элементарная абелева q-группа, причем Q, рассматриваемая как $F_q[D_1]$ -модуль, изоморфна $A_{F_q}(D_1)$. Пусть

 $L=L_1 \times \ldots \times L_t$ — цоколь $F_q[D_1]$ -модуля Q, где L_i — неприводимый $F_q[D_1]$ -подмодуль $F_q[D_1]$ -модуля Q. Тогда согласно лемме 6 имеем $C_{D_1}(L)=F_q(D_1)=PL$. Пусть $C_i=C_{D_1}(L_i)$. Понятно, что $C_{D_1}(L)=C_1\cap\ldots\cap C_t$.

Обозначим через R монолит группы A_1 . Предположим, что $C_i \cap A_1 \neq 1$ для всех $i \in \{1, \ldots, t\}$. Тогда поскольку $C_i \cap A_1$ — нормальная в A_1 подгруппа, имеем $R \subseteq C_D(L)$, что невозможно. Следовательно, найдется такое $a \in \{1, \ldots, t\}$, что $C_{A_1}(L_a) = 1$.

Пусть N — наибольшая по включению нормальная подгруппа группы D, входящая в Q, содержащая $L_1 \times \ldots \times L_{a-1} \times L_{a+1} \times \ldots \times L_t$, но не содержащая L_a . Обозначим через G факторгруппу D/N. Ввиду D-изоморфизма $L_aN/N \simeq L_a/N \cap L_a = L_a/1$ получим следующее равенство: $C_D(L_aN/N) = C_D(L_a)$.

Покажем, что в G нет минимальных нормальных q-подгрупп, отличных от L_aN/N . Предположим противное, и пусть M/N — произвольная минимальная нормальная q-подгруппа из G, отличная от L_aN/N . Пусть $M \not\subseteq Q$. Тогда поскольку $N \subseteq Q \cap M$ и имеет место D-изоморфизм $MQ/Q \simeq M/Q \cap M$, в $D_1 \simeq D/Q$ есть неединичная нормальная q-подгруппа MQ/Q, что противоречит строению группы D_1 . Итак, $M \subseteq Q$. Так как $M/N \neq L_aN/N$, будет $L_a \not\subseteq M$. Кроме того, $M \neq N$ и

$$L_1 \times \ldots \times L_{a-1} \times L_{a+1} \times \ldots \times L_t \subseteq N \subseteq M$$
.

Последнее противоречит определению группы N. Таким образом, $L_a N/N$ — единственная минимальная нормальная q-подгруппа в группе G.

Пусть при изоморфизме $G/(Q/N) \simeq D/Q \simeq D_1$ подгруппе A_1 из D_1 в G/(Q/N) соответствует подгруппа (A/N)/(Q/N). Покажем, что A/N — группа автоморфизмов группы G. Предположим, что имеет место противное, т. е. в A/N найдется такой элемент a, что для всех $x \in G$ справедливо равенство $a^{-1}xa = x$. Но тогда $Z(G) \neq 1$. Пусть T/N — минимальная нормальная подгруппа из G, входящая в Z(G). Допустим, что $T/N \nsubseteq Q/N$. Тогда в $G/(Q/N) \simeq D_1$ имеется неединичная нормальная подгруппа ((T/N)(Q/N))/(Q/N), входящая в центр группы G/(Q/N). Последнее, однако, невозможно, поскольку $D_1 = P \leftthreetimes B$, где $P = C_{D_1}(P)$ — минимальная нормальная подгруппа в D_1 . Итак, $T/N \subseteq Q/N$. Но тогда $T/N = L_a N/N$. Следовательно,

$$C_{D/N}(L_a N/N) = C_D(L_a N/N)/N = D/N.$$

Вспоминая, что $C_D(L_aN/N)=C_D(L_a)$, получаем $C_{A_1}(L_a)=A_1$. Последнее противоречит определению группы L_a . Таким образом, Z(G)=1, и поэтому A/N — группа автоморфизмов группы G.

Покажем, что A/N действует f-стабильно на $\widetilde{F}(G)/\Phi(G)$. Легко видеть, что $\Phi(G)=Q/N$. Но P— единственная минимальная нормальная подгруппа в D_1 и $C_{D_1}(P)=P$, так что

$$\widetilde{F}(G)/\Phi(G) = F(G)/\Phi(G) = O_p(G/\Phi(G))$$

— единственная минимальная нормальная p-группа в $G/\Phi(G)$. Последнее, в частности, означает, что любой (A/N)-композиционный фактор H/K группы $F(G)/\Phi(G)$ является p-группой и, очевидно, $Q/N\subseteq C_{A/N}(H/K)$. Но $(A/N)/(Q/N)\simeq A_1\in f(p)$. Значит, $(A/N)/C_{A/N}(H/K)\in f(p)$. Таким образом, A/N действует f-стабильно на $F(G)/\Phi(G)$. Ясно, что $\pi(F(G))=\{p,q\}\subseteq \pi$. Поэтому согласно условию леммы группа A/N действует f-стабильно на $\Phi(G)$. Пусть

$$N/N = H_0 \subseteq H_1 \subseteq \ldots \subseteq H_t = Q/N$$

— такой (A/N)-композиционный ряд группы Q/N, все факторы которого f-центральны относительно A, и пусть

$$C_i = C_{A/N}(H_i/H_{i-1}), \quad i = 1, \ldots, t.$$

Обозначим через C пересечение $C_1 \cap \ldots \cap C_t$. Поскольку

$$C_{A/N}(Q/N) = C_{A/N}(L_a N/N) = 1,$$

A/N — группа автоморфизмов для Q/N. Следовательно, C — стабильная группа автоморфизмов группы Q/N. Привлекая лемму 3.11 из [1], видим, что C является q-группой. Кроме того, C — нормальная подгруппа в A/N. Тем самым $C\subseteq O_q(A/N)$. Но $A/N\simeq A_1$ и $O_q(A_1)=1$. Значит, C=1. Таким образом,

$$A/N \in R_0\{(A/N)/C_i \mid i=1,\ldots,t\} \subseteq f(q).$$

Последнее означает, что $A_1 \in f(q)$. Полученное противоречие показывает, что $f(p) \subseteq f(q)$. Итак, f(p) = f(q). Лемма доказана.

доказательство теоремы. Пусть $\pi=\pi(\mathfrak{F})$ и π_1 — произвольное множество простых чисел, содержащее π . Предположим, что \mathfrak{F} имеет такой локальный экран f, что для всякой группы автоморфизмов A произвольной группы G с $\pi(\widetilde{F}(G))\subseteq\pi_1$ из того, что A действует f-стабильно на $\widetilde{F}(G)/\Phi(G)$, следует, что A действует f-стабильно на $\Phi(G)$. Покажем, что тогда $\pi=\pi_1$ и $\mathfrak{F}=\mathfrak{C}_\pi\mathfrak{H}$ для некоторой формации \mathfrak{H} с $\pi(\mathfrak{H})\subseteq\pi$.

Пусть f_1 — такой локальный экран формации \mathfrak{F} , что $f_1(p)=\mathfrak{N}_p f(p)$ для всех простых p. Ввиду леммы 1 наше предположение сохраняется и относительно экрана f_1 . Значит, ввиду леммы 8 для всех $p,q\in\pi_1$ имеет место равенство $f_1(p)=f_1(q)$. Заметим, что если $p\in\pi(\mathfrak{F})$, то $f_1(p)\neq\varnothing$. В противном случае $f(p)=\varnothing$. Следовательно, $\pi=\pi_1$. Кроме того, в силу леммы 5 можем заключить, что $\mathfrak{F}=\mathfrak{C}_\pi\mathfrak{H}$, где $\mathfrak{H}=\mathfrak{H}$ 0 формация с $\pi(\mathfrak{H})\subseteq\pi$.

Пусть теперь $\mathfrak{F} = \mathfrak{C}_{\pi}\mathfrak{H}$, где $\pi = \pi(\mathfrak{F})$ и \mathfrak{H} — формация с $\pi(\mathfrak{H}) \subseteq \pi$. Покажем, что формация \mathfrak{F} обладает таким локальным экраном f, что если A — произвольная группа автоморфизмов группы G с $\pi(\widetilde{F}(G)) \subseteq \pi$ и A действует f-стабильно на $\widetilde{F}(G)/\Phi(G)$, то A действует f-стабильно на $\Phi(G)$. Для этого можно использовать схему доказательства теоремы Π . Φ . Шеметкова [1, теорема 9.18].

Пусть f — максимальный внутренний локальный экран формации $\mathfrak{F}, L/\Phi(G)$ — минимальная A-допустимая нормальная подгруппа группы $G/\Phi(G)$. Рассмотрим произвольный A-композиционный фактор H/K группы G, лежащий между $\Phi(G)$ и $\widetilde{F}(G)$. Тогда согласно нашему предположению

$$A/C_A(H/K) \in f(H/K) = \bigcap_{p \in \pi(H/K)} f(p). \tag{6}$$

Из леммы 5 следует, что для всех $p,q\in\pi$ имеет место равенство f(p)=f(q). Как установлено в ходе доказательства этой леммы, $f(p)=\mathfrak{C}_\pi\mathfrak{H}$, если $p\in\pi$. Так как $\pi(H/K)\subseteq\pi(\widetilde{F}(G))\subseteq\pi$, из (6) вытекает,

$$A/C_A(H/K) \in f(p) = \mathfrak{C}_{\pi}\mathfrak{H} = \mathfrak{F}.$$

Итак, $A^{\mathfrak{F}}$ действует стабильно на $L/\Phi(G)$. Значит, если $p\in\pi(H/K)$, то согласно лемме 9.3 из [1]

$$A^{\mathfrak{F}}/C_{A^{\mathfrak{F}}}(L/\Phi(G)) \in \mathfrak{N}_p \subseteq \mathfrak{F}.$$

Но $\mathfrak{N}_p\mathfrak{F}=\mathfrak{F}$. Тогда $A/C_{A^{\mathfrak{F}}}(L/\Phi(G))\in\mathfrak{F}$. Значит, $A^{\mathfrak{F}}=C_{A^{\mathfrak{F}}}(L/\Phi(G))$. Таким образом, $A^{\mathfrak{F}}$ действует тождественно на $L/\Phi(G)$. Поскольку $L/\Phi(G)$ была взята произвольно, тем самым доказано, что $A^{\mathfrak{F}}$ действует тождественно на $\widetilde{F}(G)/\Phi(G)$. Применяя лемму 9.21 из [1], видим, что $A^{\mathfrak{F}}$ стабильная группа автоморфизмов для G. Снова используя лемму 9.3 из [1] заключаем, что $\pi(A^{\mathfrak{F}})\subseteq\pi(F(G))\subseteq\pi$. Но тогда $A^{\mathfrak{F}}\in\mathfrak{C}_\pi$, и потому $A\in\mathfrak{F}$. Так как $\pi(\Phi(G))\subseteq\pi$ и для всех $p\in\pi$ имеет место равенство $f(p)=\mathfrak{F}$, из последнего вытекает, что A действует f-стабильно на $\Phi(G)$.

Для завершения доказательства теоремы нам необходимо рассмотреть случай, когда f — внутренний однородный экран формации \mathfrak{F} . Так как всякий локальный экран однороден, в силу уже доказанного достаточно лишь установить, что если выполняется условие 2, то $\mathfrak{F}=\mathfrak{C}_\pi\mathfrak{H}$, где \mathfrak{H} — некоторая непустая формация с $\pi(\mathfrak{H})\subseteq\pi$. Применяя леммы 2 и 8, как и выше, убеждаемся, что f(p)=f(q) для всех $p\in\pi$. Пусть теперь f_1 — такой локальный экран, что $f_1(p)=f(p)$ для всех простых p. Как показано в ходе доказательства теоремы \mathfrak{H} . \mathfrak{H} . Шеметкова [1, теорема [1], теорема [1]

Следствие. Пусть \mathfrak{F} — локальная формация. Тогда следующие условия эквивалентны:

1) $\mathfrak{F} = \mathfrak{CH}$, где \mathfrak{H} — произвольная непустая формация;

2) \mathfrak{F} имеет такой локальный экран f, что для любой группы автоморфизмов A произвольной группы G из того, что A действует f-стабильно на $\widetilde{F}(G)/\Phi(G)$, следует, что A действует f-стабильно на $\Phi(G)$.

THTEDATVDA

- 1. Шеметков Л. А. Формация конечных групп. М.: Наука, 1978.
- 2. Шеметков Л. А. Ступенчатые формации групп // Mat. cб. 1974. T. 94, № 4. C. 628-648.
- 3. Шеметков Л. А., Скиба А. Н. Формации алгебраических систем. М.: Наука, 1989.
- 4. Griess R., Schmid P. The Frattini module // Arch. Math. 1978. V. 51, N 3. P. 256-266.
- Gaschütz W. Über modulare Darstellungen endlicher gruppen, die von freien Gruppen induziert Werden // Math. Z. 1954. Bd 60. S. 274–286.
- г. Гомели

Статья поступила 25 ноября 1992 г.