Д. Ю. Синиченко

(ГГУ им. Ф. Скорины, Гомель)

ИССЛЕДОВАНИЕ ИНТЕГРАЛЬНО-РАЗНОСТНОГО ОПЕРАТОРА

В работе рассматривается оператор вида

$$(Ax)(t) = \int_{-\infty}^{\infty} \frac{x(t+s) - x(s)}{|t|^{\alpha}} k(t) dt.$$

Определение. Функция

$$a(\lambda) = \int_{-\infty}^{\infty} \frac{k(t)}{|t|^{\alpha}} (e^{i\lambda t} - 1) dt,$$

если интеграл существует, называется символом интегрального оператора $A(\lambda \in R)$.

Введём в рассмотрение следующие теоремы.

Теорема 1. Пусть функция $\frac{k(t)}{|t|^{lpha}}$ интегрируема на ${f R}$ и существует

символ интегрального оператора A, $a(\lambda) \neq 0$ и $\alpha > 0$.

Материалы XIX Республиканской научной конференции студентов и аспирантов «Новые математические методы и компьютерные технологии в проектировании, производстве и научных исследованиях», Гомель, 21–23 марта 2016 г.

Тогда для любой функции f из $L^{1}(R)$ уравнение

$$\int_{-\infty}^{\infty} \frac{x(t+s) - x(s)}{|t|^{\alpha}} k(t)dt = f(s)$$

имеет в пространстве $L^1(R)$ единственное решение

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\hat{f}(\lambda)}{a(\lambda)} e^{i\lambda t} d\lambda$$
.

Теорема 2. Пусть функции $\frac{k(t)}{|t|^{lpha}}$ интегрируема на ${\bf R}$ и существует символ интегрального оператора A , $a(\lambda) \neq -1$ и $\alpha>0$.

Тогда для любой функции f из $L^1(R)$ уравнение

$$x(s) + \int_{-\infty}^{\infty} \frac{x(t+s) - x(s)}{|t|^{\alpha}} k(t)dt = f(s)$$

имеет и притом единственное решение

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\hat{f}(\lambda)}{1 + a(\lambda)} e^{i\lambda t} d\lambda.$$

Теорема 3. Если $k \in L^1(R)$, а $0 < \alpha \le 1$, то оператор A ограничен в пространстве Гёльдера $\operatorname{Lip}_{\alpha}(R)$, и его норма удовлетворяет неравенству

$$||A|| \leq C ||x||,$$

где
$$C = \int_{-\infty}^{\infty} |k(t)| dt + 2 \int_{-\infty}^{\infty} \frac{|k(t)|}{|t|^{\alpha}} dt$$
.