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Abstract

Let H and T be subgroups of a group G. Then we call H conditionally permutable
(or in brevity, c-permutable) with T in G if there exists an element x ∈ G such that
HT x = T xH. If H is c-permutable with T in < H, T >, then we call H completely c-
permutable with T in G. By using the above concepts, we will give some new criterions
for the supersolubility of a finite group G = AB, where A and B are both supersoluble
groups. In particular, we prove that a finite group G is supersoluble if and only if
G = AB, where both A,B are nilpotent subgroups of the group G and B is completely
c-permutable in G with every term in some chief series of A. We will also give some
applications of our new criterions.
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1 Introduction

Throughout this paper, all groups are finite. A well-known theorem of Fitting says that any

group G which is the product of normal nilpotent subgroups of G is nilpotent. However, the

above property does not hold for supersoluble groups, as can be seen in Asaad and Shaalan

[3], and also Huppert [15]. It is natural to ask under what additional conditions the product

of two supersoluble groups is supersoluble ? In the literature, we know, for example, that the

product G = AB of two normal supersoluble subgroups A and B is supersoluble if either G′ is
nilpotent (see [4]) or the subgroups A and B have coprime indices in G ([10]). An interesting

approach for solving the supersolubility problem was proposed by Asaad and Shaalan in 1989

([3]). They have obtained the following nice result: Assume that G = AB is the product of

two supersoluble subgroups A and B. If every subgroup of A is permutable with every subgroup

of B, then G is supersoluble. In addition, they have also generalized the above mentioned

result of Baer by replacing the condition of normality of A, B in G and using the following

weaker condition: A permutes with all subgroups of B and B permutes with all subgroups of

A. Their results in [3] were further developed and applied by many authors (see, for example,

[1] [5-8], [14], [19]). We also notice that O.H.Kegel has also obtained many elegant results for

soluble groups and supersoluble groups by considering the products of their subgroups (see

[16-18]).

Our results in this paper are based on c-permutability condition on subgroups of a group. In

fact, our concept of c-permutability of subgroups is weaker than the concept of permutability

of subgroups. Some new criterions for the supersolubility of products of supersoluble groups

are obtained in this paper.

We first recall some definitions. Let H and T be subgroups of a group G. Then, H is said

to be permutable with T (or also H and T are permutable) if HT = TH.

We note that two subgroups H and T may possibly be not permutable in G but G could

have an element x such that HT x = T xH. For instance, we have the following examples:

a) If G = AB is a finite group, Ap and Bp are Sylow p–subgroups of A and of B respectively,

then in general ApBp 6= BpAp but G has an element x such that ApB
x
p = Bx

pAp;

b) If P and Q are Sylow subgroups of a finite soluble group G. Then for some x ∈ G, we

have PQx = QxP ;

c) If M is a maximal subgroup of the group PSL(2, 7), then for every Sylow subgroup P

of G there exists an element x such that MP x = P xM . It is clear also that in general M is

not permutable with P .

The above examples motivate the following definition [11].

Definition 1.1. Let H and T be subgroups of the group G. Then

2



1) H and T are said to be conditionally permutable (or in brevity, c-permutable) in G if

for some x ∈ G we have HT x = T xH (In this case, we also say that H is c-permutable with

T in G).

2) H and T are said to be completely c-permutable in G if H and T are c-permutable in

< H, T >.

By using the above definition, it is not difficult to note that a group G is soluble if and

only if its any two Hall subgroups (associated with different set of primes) are c-permutable

in G. We can also prove (see [11, Theorem 3.8]) that a group G is supersoluble if and only if

every maximal subgroup of G is c-permutable with all subgroups of G. On the other hand,

every group in which any two Hall subgroups or any two maximal subgroups are permutable

is always nilpotent. For c-permutability of subgroups, we consider the following elementary

example: Let G = Gp × S3 × Gq, where |Gp| = p, |Gq| = q, p 6= q and 2, 3 6∈ {p, q}. If

A = GpS3, B = GqS3, then S3 ≤ A ∩ B and so G = AB is a factorization of G in which

some subgroups of A are not permutable with some subgroups of B, however, one can easily

check that every subgroup of A is completely c-permutable with every subgroup of B. Thus

the condition of permutability is generally stronger than the condition of c-permutability.

Motivated by the above observation, we are now able to give the following three criterions of

supersolubility for products of supersoluble groups.

Theorem A. Let G = AB be the product of supersoluble groups A and B. If every sub-

group of A is completely c-permutable in G with every subgroup of B, then G is supersoluble.

By the well known Kegel’s theorem, we know that a group G is soluble if G is a product

of two nilpotent groups. However, such product of nilpotent groups may not be supersoluble

in general. The following theorem gives some additional conditions under which the product

of two nilpotent groups is supersoluble.

Theorem B. A finite group G is supersoluble if and only if G = AB, where A,B are

nilpotent subgroups of G and A has a chief series

1 = A0 ≤ A1 ≤ . . . ≤ At−1 ≤ At = A (1)

such that every Ai is completely c-permutable (permutable) with all subgroups of B, for all

i = 1, . . . , t.

Theorem C. Assume that G = AB, where A,B are supersoluble subgroups of a group G.

Assume further that either G′ is nilpotent or A and B have coprime orders. If A is completely

c-permutable with every subgroup of B and B is completely c-permutable with every subgroup

of A, then G is supersoluble.

For notation and terminology not given in this paper, the reader is referred to the mono-

graph of W. Guo [12].
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2 Preliminaries

We first cite here some properties of factorizations of groups. Some useful properties of p-

supersoluble and p-soluble groups are also included.

The following three lemmas are well known.

Lemma 2.1. Let A, B be subgroups of a group G. If G = AB, then G = ABx for every

x ∈ G.

Lemma 2.2. Let H be a proper subgroup of a group G. Then HHx 6= G for all x ∈ G.

Lemma 2.3. Let G = AB and Ap, Bp and Gp be Sylow p-subgroups of A,B and G,

respectively. Then there are elements x, y ∈ G such that Gx
p = ApB

y
p .

Lemma 2.4[9]. Let G = AB be the product of the subgroups A and B. If L is a normal

subgroup of A and L ≤ B, then L ≤ BG.

Lemma 2.5[12; 1.7.11]. If H/K is a chief factor of a group G and p is a prime divisor of

|H/K|, then Op(G/CG(H/K)) = 1.

A group G is said to be dispersive if G has a chain of normal subgroups

1 = G0 ⊂ G1 ⊂ ... ⊂ Gt = G, t ≥ 0,

where Gi/Gi−1 is a Sylow pi–subgroup of G/Gi and p1 > p2 > ... > pt.

Lemma 2.6. Let G be a group. Then the following statements hold:

(i) if G is supersoluble, then G′ ⊆ F (G) and G is dispersive (see [12; 1.9.9]);

(ii) if L E G and G/Φ(L) is supersoluble (dispersive) , then G is supersoluble (respectively,

G is dispersive) (see [12; 1.8.1]) ;

(iii) G is supersoluble if and only if |G : M | is a prime for every maximal subgroup M of

G (B. Huppert, 1954).

Lemma 2.7[12, 2.4.3]. Let M1,M2 be maximal subgroups of a soluble group G such that

(M1)G = (M2)G. Then M1 and M2 are conjugate.

Lemma 2.8. Let p be a prime number and G a p-soluble group. If Op′(G) = 1, then the

following statements are equivalent:

(i) G is p-supersoluble;

(ii) G is supersoluble;

(iii) G/Op(G) is an abelian group of exponent dividing p− 1.

Proof. (i)=⇒ (ii). Since G is p-supersoluble, for every chief p-factor H/K of G, we have

|H/K| = p and so by [20; 1,1.4], G/CG(H/K) is an abelian group of exponent dividing p− 1.

Since Op′(G) = 1, the intersection of the centralizers of all such factors is Op′,p(G) = Op(G).
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Hence G is supersoluble by [20; 1,1.9]. By using the same arguments, we can also prove that

(ii)=⇒ (iii) and (iii)=⇒ (i).

3 The Proof of Theorems A, B and C

A group G = AB is said to be a totally permutable product of the groups A and B if every

subgroup of A is permutable with every subgroup of B. By analogy, we call G = AB a totally

(completely) c-permutable product of the groups A and B if every subgroup of A is (completely)

c-permutable with every subgroup of B. Equipped with the above concepts, we now prove

the Theorems stated in section 1.

Proof of Theorem A. Since every subgroup of a supersoluble group is also supersoluble,

we only need to show that G is supersoluble if G = AB is a totally completely c-permutable

product of supersoluble groups A and B. Assume that the assertion is not true and let G be

a counterexample of minimal order. Then A and B are proper subgroups of G. We proceed

the proof via the following steps.

(a) If M is a maximal subgroup of G and either A ⊆ M or B ⊆ M , then M is supersoluble.

Indeed, by using the Dedekind Law, we have M = M ∩ AB = A(M ∩ B). Hence M is a

totally completely c-permutable product of the groups A and M ∩ B. This shows that M is

supersoluble since |M | < |G|.
(b) For every a ∈ A, the group G is a totally completely c-permutable product of the

subgroups A and Ba.

By Lemma 2.1 we have G = ABa. Now let H ≤ A, T ≤ Ba and H, T ≤ D ≤
G. Then Ha−1 ≤ A, T a−1 ≤ B and Ha−1

, T a−1 ≤ Da−1
. By hypothesis, for some d ∈

D, we have Ha−1
(T a−1

)da−1

= (T a−1
)da−1

H
a−1

. Then (aHa−1)(ad−1a−1)(aTa−1)(ada−1) =

aHd−1Tda−1 = ad−1TdHa−1. This implies that HT d = T dH.

(c) G has an abelian minimal normal subgroup.

Let L be a minimal normal subgroup of A. Then, by hypothesis, G has an element x

such that LBx = BxL. Assume that L ⊆ Bx. Since by Lemma 2.1, G = ABx, we see from

Lemma 2.3 that LG ⊆ Bx. But Bx is a supersoluble group, and so any minimal normal

subgroup of G contained in LG ⊆ Bx must be abelian. Hence, we may suppose that L is

not contained in Bx. In this case,we may assume that LBx 6= G and let M be a maximal

subgroup of G such that LBx ⊆ M . Let x = ba, where a ∈ A, b ∈ B. Then Bx = Ba. By

Lemma 2.1 again, we have G = ABa. In view of (b), we can see that M is a supersoluble

group. However,since L ⊆ A ∩M , and so by Lemma 2.3, we have LG ⊆ M . This shows that

any minimal normal subgroup of G contained in LG is still abelian. Finally, we let G = LBa.

Since L ⊆ A, we see from (b) that G is a totally completely c-permutable product of the
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groups L and Ba. Let R be a minimal normal subgroup of Ba. Using the same argument as

above, we come to the case that G = LR. Since L and R are abelian groups, we conclude

that G has an abelian minimal normal subgroup.

(d) G/L is a supersoluble group for any non-identity normal subgroup L of G.

Obviously, G/L = (AL/L)(BL/L). Let H/L ≤ AL/L and T/L ≤ BL/L, and let D =<

H, T > . Then,by our hypothesis,we have (H ∩ A)(H ∩ B)x = (H ∩ B)x(H ∩ A),for some

x ∈ D. Thus, we have

(H/L)(T/L)xL = (L(A ∩H)/L)(L(T ∩B)/L)xL = L(A ∩H)(T ∩B)x/L

= ((T ∩B)xL/L)(L(A ∩H)/L) = ((T ∩B)L/L)xL(L(A ∩H)/L) = (T/L)xL(H/L),

where xL ∈ D/L. This shows that G/L is the totally completely c-permutable product of the

supersoluble groups AL/L ' A/A∩L and BL/L ' B/B∩L. Since |G/L| < |G|, we conclude

that G/L is supersoluble.

(e) G has only one minimal normal subgroup L = Op(G) = CG(L), for some prime p, and

G = [L]M, where M is a maximal subgroup of G with Op(M) = 1 and |L| 6= p.

Since the class of all supersoluble groups is closed under subdirect products, in view of (d),

L is the only minimal normal subgroup of G. By Lemma 2.6, we also have L * Φ(G). Let

M be a maximal subgroup of G not containing L and C = CG(L). Then by Dedekind Law,

we have C = C ∩ LM = L(C ∩M). Since L is abelian, C ∩M E G and so C ∩M = 1. This

shows that L = Op(G) = CG(L) and M ' G/L is a supersoluble group with Op(M) = 1 by

Lemma 2.4. Now, by (d) and the choice of G, we have |L| 6= p.

(f) p is the largest prime divisor of the order of the group G.

Assume that q is the largest prime divisor of the order of G with q 6= p. Let T1 and T2 be

maximal subgroups of G such that A ≤ T1, B ≤ T2. Then T1T2 = G. By Lemma 2.2, T1 and

T2 are not conjugate in G. Since by Lemma 2.7 all maximal subgroups of G not containing

L are conjugate in G, we have either T1 contains L or T2 contains L. Let L ⊆ T1 and let

Gq be a Sylow q-subgroup of G. Assume that |Gq| 6= q. Since by (d), G/L is supersoluble

and T1/L is maximal in G/L, we obtain that |G/L : T1/L| = |G : T1| is a prime by Lemma

2.6. Hence, T1 contains a non-trivial Sylow q-subgroup Q. In view of Lemma 2.6, we have

Q E T1, and consequently, Q ⊆ CG(L) = L. This contradiction shows that |Gq| = q. Clearly

q - |A|. Hence q | |B|. Assume that LB 6= G and let M3 be a maximal subgroup of G

containing LB. From (a), we know that M3 is supersoluble. Hence we have L 6= CG(L)

again. This contradicts (e), so LB = G. Thus, by applying Dedekind Law again,we have

T2 = T2 ∩ LB = B(T2 ∩ L) = B and clearly B ∩ L = 1. Let x be an element of G such that

(L∩A)xB = B(L∩A)x. Assume that L∩A 6= 1. Then (L∩A)x 6= 1, and clearly (L∩A)x * B.

This leads to B(L ∩ A)x = G. Thus,we have |G : B| ≤ |L ∩ A|. Evidently, |G : B| = |L|, and

thereby L ⊆ A. If L1 is a maximal subgroup of L,then for some x ∈ G, we have Lx
1B = BLx

1 .
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Since G is not a supersoluble group, from (d) we see that L1 6= 1. But then, we can derive

that |L| = |G : B| = |L1|, a contradiction. Thus L ∩ A = 1. Let Bq be a Sylow q-subgroup

of B and x an element of G such that ABx
q = Bx

q A. Suppose that LABx
q 6= G. Then, there

exists a maximal subgroup M of G containing LABx
q . Thus by (a), M is supersoluble. This

leads to Bx
q ⊆ CG(L) = L, a contradiction. Hence, we have shown that G = LABx

q . Now, we

assume that G = ABx
q . In this case, we have p - |G : A|, and so any Sylow p-subgroup of A

must be a Sylow p-subgroup of G. Thus, L ≤ A ∩ L = 1. However,this contradiction shows

that ABx
q 6= G, and consequently, we know that ABx

q is a maximal subgroup of G. Now in

view of Lemma 2.7, we have ABx
q = By, for some y ∈ G. This contradiction shows that p is

the largest prime divisor of |G|.
(g) L is a Sylow p-subgroup of G.

Assume that the assertion is not true. Then, we have p | |G : L|. This means that p | |M |,
and so by (f) and also by Lemma 2.6, we see that Op(M) 6= 1. This contradicts (e). Hence,

L is a Sylow p-subgroup of G.

(h) To complete the proof.

Without loss of generality, we may assume that p | |A|. Since A is supersoluble, by

(f) we know that A has a normal subgroup Zp of order p. Clearly Zp ⊆ L. Let Bp′ be a

Hall p′-subgroup of B and x an element of G such that ZpB
x
p′ = Bx

p′Zp. Since evidently

Zp = L ∩ ZpB
x
p′ E ZpB

x
p′ , we see that Bx

p′ ⊆ NG(Zp). In view of (g), the Sylow p-subgroup

of B is contained in NG(Zp). Hence Zp E G, and so Zp = L, which contradicts (e). Thus the

proof is completed.

Proof of Theorem B. Assume that G is a supersoluble group. Then, by Lemma 2.6,

we see that G′ ⊆ F (G). Let A = F (G) and B be a subgroup of G such that AB = G

and AB1 6= G, for every proper subgroup B1 of B. Then, evidently, A ∩ B ⊆ Φ(B). Since

AB/A ' B/A ∩ B, B/A ∩ B is nilpotent and so B is a nilpotent group. Now considering a

chief series of G below F (G), say

1 = A0 ≤ A1 ≤ . . . ≤ At−1 ≤ At = A = F (G)

Then we can see immediately that this series is also a chief series of A (since |Ai/Ai−1| is a

prime for all i = 1, . . . , t) and that Ai is permutable with all subgroups of B for all i = 1, . . . , t.

Now we assume that G = AB, where A,B are nilpotent subgroups of G and A has a chief

series 1 = A0 ≤ A1 ≤ . . . ≤ At−1 ≤ At = A such that every term of which is completely

c-permutable with all subgroups of B. We claim that G is a supersoluble group. Suppose that

G is not a supersoluble group and let G be a counterexample of minimal order. Without loss

of generality, we may assume that At−1B 6= G and G 6= AB1 for every proper subgroup B1 of

B. First of all, we note that by the well known Theorem of Kegel in [16], G is a soluble group
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since it is a product of two nilpotent groups. We now divide our proof into the following steps:

(a) G/N is supersoluble for every normal subgroup N 6= 1 of G.

Clearly, G/N = (AN/N)/(BN/N), where AN/N ' A/A∩N and BN/N ' B/B ∩N are

nilpotent groups. Consider the series

1 = A0N/N ≤ A1N/N ≤ . . . ≤ At−1N/N ≤ AtN/N = AN/N (2)

of AN/N. Without loss of generality, we may assume that all terms of this series are distinct.

Obviously, every term of series (2) is completely c-permutable with all subgroups of the group

BN/N (see the proof of Theorem A). Since A ⊆ NG(AiN), AiN/N E AN/N. Since |Ai/Ai−1|
is a prime, |AiN/N : Ai−1N/N | is also a prime. Hence the series (2) is a chief series of AN/N.

Thus our hypothesis is true for G/N. But |G/N | < |G|, and so G/N is supersoluble.

(b) G has only one minimal normal subgroup H such that H = CG(H) = Op(G), for some

prime p, and |H| 6= p.

Let H be a minimal normal subgroup of G. Because the group G is soluble, we know that

H is an elementary abelian p-group for some prime p. Since G/H is supersoluble, |H| 6= p.

Since the class of all supersoluble groups is closed under subdirect products, we know that H

is the only minimal normal subgroup of G. Now, by Lemma 2.6, we have H * Φ(G). Hence,

it follows that H = CG(H) = Op(G).

(c) The orders of A and B are not prime.

Indeed, if |A| = q for some prime q, then G is a totally completely c-permutable product of

two supersoluble groups A and B. By Theorem A, we see that G is supersoluble,however, this

contradicts to the choice of G, and hence |A| is not a prime. Next, we assume that |B| = q is a

prime. Suppose if possible that q 6= p. Then H ⊆ A. Since A is nilpotent, by (b), we see that

A is a p-group. We now claim that H = A. Assume that p > q. Then A/H = Gp/H C G/H

since G/H is supersoluble. But H = CG(H), by Lemma 2.5, we have Op(G/CG(H)) = 1,

and so H = A. On the other hand, suppose that q > p. In this case, let x ∈ G such that

T = At−1B
x = BxAt−1. Since At−1 E A, by Lemma 2.4, At−1 ⊆ (At−1B

x)G. Hence H ⊆ T.

It is clear that the hypothesis still holds for T . This means that the group T is supersoluble,

and hence Bx E T. It follows that Bx ⊆ CG(H) = H, a contradiction. Therefore A = H and

our claim is established. Consequently,H must be a Sylow p-subgroup of G and so B must

be a maximal subgroup of G. Now,by our hypothesis, there exists some x ∈ G such that

BAx
1 = Ax

1B. Since B is a maximal subgroup of G and Ax
1 * B, G = BAx

1 . This contradicts

our assumption on G. Hence q = p. By our hypothesis again, we have A1B
x = BxA1, for

some x ∈ G. Hence G = ABx = A(A1B
x). By using Lemma 2.4, we see that H ⊆ A1B

x and

so H = A1B
x since the order of H is not a prime. Hence, it follows that A1 E A(A1B

x) = G,

contrary to (b). Thus (c) is proved.

(d) For every x ∈ G and all i = 1, . . . , t , the subgroup Ai is completely c-permutable with
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all subgroups of Bx (see the proof of Theorem A)

(e) H is a Sylow p-subgroup of G.

Assume that the assertion is not true and let q be the largest prime divisor of |G|. Then,

we see that p 6= q, and by (b),we have Op(G/CG(H)) = 1. Let B1 be a maximal subgroup

of B and let x, y ∈ G so that At−1B
x = BxAt−1 and ABy

1 = By
1A. Then,in view of (d), we

see that our hypothesis also holds for the groups At−1B
x and ABy

1 . By (c), At−1 and By
1 are

non-identity groups. Since A, B are nilpotent, At−1 E A and By
1 E By. Now, by Lemma 2.4,

we have At−1 ⊆ (At−1B
x)G and By

1 ⊆ (ABy
1)G. It follows that H ⊆ At−1B

x ∩ ABy
1 . It is clear

that either q | |At−1B
x| or q | |ABy

1 |. Suppose that the first case holds and let Q be a Sylow

q-subgroup of At−1B
x. Then, by Lemma 2.6, we have Q E At−1B

x, and so Q ⊆ CG(H) = H,

a contradiction. The second case can be similarly proved. Thus (e) holds.

(f) H * A and H * B.

Assume that H ⊆ A. Because A is nilpotent, A is a p-group, and so by (e), A = H is a

Sylow p-subgroup of G. Clearly, H * B and H ∩ B E G. Hence H ∩ B = 1. Let x ∈ G such

that Ax
1B = BAx

1 . It is clear that 1 6= Ax
1 = H ∩Ax

1B E Ax
1B. But then we have Ax

1 E G and

so Ax
1 = H = A1. This contradicts (b). Hence H * A. Analogously, we can show that H * B.

(h) The final step.

Let Bp′ be a Hall p′-subgroup of B. Then we can easily see that Bp′ 6= 1. Now, let x be

an element of G such that T = ABx
p′ = Bx

p′A. Since Bx
p′ E Bx, Bx

p′ ⊆ (Bx
p′)

G ⊆ ABx
p′ . Hence

H ⊆ ABx
p′ , and so H ⊆ A, this contradicts (f). Thus,the proof is completed.

Proof of Theorem C. We first prove that G is supersoluble whenever G′ ⊆ F (G).

Assume that the assertion is not true and let G be a counterexample of minimal order. Since

G′ ⊆ F (G), G is soluble. By using the same arguments as in the proof of Theorem A, one can

show that G = [H]M, where H is the only minimal normal subgroup of G. Moreover, we can

see that H = Op(G) = CG(H), for some prime p. Since G′ ⊆ F (G), we know that G/H is

abelian. But then G/H must be a cyclic group because G/H is an irreducible automorphism

group of H. Now, by Lemma 2.5, H is a Sylow p-subgroup of G. It is also clear that |H| 6= p.

Let Gq be a Sylow q-subgroup of G, where q 6= p. Then Gq is a cyclic group. Now,

by Lemma 2.3, we have Gq = Ax
qB

y
q , for some Sylow q-subgroups Aq of A, Bq of B and

some x, y ∈ G.. Hence we have either Gq = Ax
q or Gq = Bx

q . Assume that H ⊆ A and

H ⊆ B, and let, for example, Gq ⊆ A. Since Op′(A) = 1, we have H = Op(A) = F (A).

Since A is supersoluble by our hypothesis, we have exp(A/H)|(p − 1) by Lemma 2.8. Hence

|Gq| | (p−1). Thus, if H ⊆ A∩B, we can deduce that |G/H||(p−1). This shows that G/H is

an abelian group with exponent dividing p− 1, and by Lemma 2.8, G is supersoluble, which

is a contradiction. Hence we have either H 6⊆ A or H 6⊆ B. Assume that H 6⊆ B. Then,
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H ∩ A 6= 1. Since A is supersoluble, A has a minimal normal subgroup L ⊆ H with |L| = p.

Assume that p||B|. Let Ap′ be a Hall p′-subgroup of A. Then, by hypothesis, for some

x ∈ G, we have T = (Ap′)
xB = B(Ap′)

x. Since we have already known from above that if Q is

a Sylow q-subgroup of G with q 6= p, then either Qy ⊆ A or Qy ⊆ B for some y ∈ G.,we have

|G : T | = pα, for some α ∈ N and so G = TH. Let Bp = B ∩H. Then, we have 1 6= Bp 6= H

and Bp = H ∩ T E G, which is impossible. Consequently, B ∩H = 1.

Let D = LAp′ and F = BDx = DBx for some x ∈ G. In this case,by using the same

arguments as above, we can prove that L = H ∩ F E G. This contradiction completes the

proof of the first case.

Now we will prove that G is supersoluble whenever A and B have coprime indices in G.

Assume that the assertion is not true and let G be a counterexample with minimal order.

Without loss of generality, we may suppose that A1B 6= G 6= AB1 for all proper subgroups

A1 of A and B1 of B. We proceed the proof as follows:

(a) Every supgroup of A is completely c-permutable in G with all subgroups of Ba for all

a ∈ A (see the proof of Theorem A).

(b) G has an abelian minimal normal subgroup.

Let L be a minimal normal subgroup of the supersoluble subgroup A. Then, we have

|L| = p, for some prime p. By hypothesis, T = LBa = BaL for some a ∈ A. In view of (a),

every subgroup of Ba is completely c-permutable in T with all subgroups of L. Hence by

Theorem A, T is supersoluble, and so by the choice of G we have T 6= G. Using Lemma 2.4,

we see that L ⊆ TG. Therefore (b) holds.

(c) G has a unique minimal normal subgroup H such that G/H is supersoluble, moreover,

H = Op(G) = CG(H), for some prime p and |H| 6= p (see the proof of Theorem A).

(d) The final step.

Since (|A|, |B|) = 1, we have either H ⊆ A or H ⊆ B. Without loss of generality, we

may assume that H ⊆ A. Let L be a minimal normal subgroup of A contained in H. Let

x ∈ G such that T = LxB = BLx. Then by hypothesis, p - |B|, Lx = H ∩ T E T, and so

Lx E AxB = G. Thus H = Lx is a group of order p, which contradicts (c). This contradiction

completes the proof.

4 Some Applications

In this section, we give some applications of our main results.

We first prove the following extension theorem of Theorem A.

Theorem 4.1. Let p be a prime number and G = AB a totally completely c-permutable
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product of two p-supersoluble groups A and B. Then G is p-supersoluble.

Proof. Assume that the assertion is false and let G be a counterexample of minimal order.

Since the hypothesis of the theorem holds for every factor group of G, we may put Op′(G) = 1.

Also, we assume that for every proper subgroup A1 of A and every proper subgroup B1 of B,

we have A1B 6= G and G 6= AB1. We proceed the proof as follows:

(a) G has a non-trivial normal subgroup which is p-soluble.

By using the same arguments as in the proof of Theorem A, we obtain that both subgroups

A and B are simple groups.

It is clear that if both subgroups A,B are either p′-groups or p-groups, then G is p-

supersoluble, which contradicts the choice of G. Suppose that A is a p′-group and B a

p-group. Assume that G is simple group. Since G has a Hall p′-subgroup A, by Corollary 5.3

in [2], we know that G belongs to one of the following types:

(i) Ap with p ≥ 5 and A ' Ap−1;

(ii) M11 with p = 11;

(iii) M23 with p = 23 and A = M22;

(iv) PSL(2, q), where either p = q and A ' A5 or A is soluble.

By hypothesis, G has a Hall {q, p}-subgroup containing B for each prime q 6= p. Hence

by [13], the case (i) is impossible. It is not difficult to see that the cases (ii)-(iv) are also

impossible, for example, we just check case (iii). Recall that the order of the Mathieu group

M23 ' G is 27325 · 7 · 11 · 23. Let D be a Hall {3, p}-subgroup of G containing B. Then

B E D. Indeed, it is clear that |D : ND(B)| ∈ {1, 3}. Since |D : NG(B)| ≡ 1(mod 23),

|D : ND(B)| = 3 is clearly impossible. Hence,we conclude that 3 - |G : NG(B)|. Analogously,

one can also see that 5, 7, 11, 23 - |G : NG(B)|. So |G : NG(B)| = 2α, where 1 < α < 7. But

this is also impossible, by Theorem 5.8 in [2].

Thus, we have already shown that G is not a simple group. Let H be a minimal normal

subgroup of G. If p - |H|, then H is p-soluble. Assume that p | |H|. Then H is a simple

group since if otherwise we will have H = H1 × . . . × Ht, where t > 1 and H1 ' . . . ' Ht

are isomorphic groups.This is clearly impossible. Since A is a Hall p′-subgroup of H, we have

A∩H is a Hall p′-subgroup of H and so H = (A∩H)B is the totally completely c-permutable

product of the groups A ∩H and B. But as we have shown above, H is not a simple group.

This contradiction shows that G has a p-soluble minimal normal subgroup, say L. Thus (a)

is proved.

(b) For every non-identity normal subgroup D in G, the quotient G/D is p-supersoluble

(see the proof of Theorem A).

(c) L = Op(G) = CG(L).
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Since the class of all p-supersoluble groups is closed under subdirect products, by (b) we

see that L is the unique minimal normal subgroup of G. Moreover, since Op′(G) = 1, we

have L ⊆ Op(G). Now using the same argument as in the proof of Theorem A, we see that

L = CG(L) = Op(G).

(d) If L ≤ A, then L ≤ B and conversely.

Assume that L ≤ A. Since L E A and A is p-supersoluble, A has a minimal normal

subgroup L1 such that L1 ⊆ L and |L1| = p. There exists x ∈ G such that Lx
1B = BLx

1 .

Then by Dedekind Law, we have L = L ∩ Lx
1B = Lx

1(L ∩ B). Since |L| 6= p, it follows that

L ∩ B 6= 1. Let L2 be a minimal normal subgroup of B such that L2 ⊆ L ∩ B. Then since

L2 = Lab
1 = Lb

1, for some a ∈ A, b ∈ B, we have L1 ⊆ B. Now, by using Lemma 2.4, we obtain

that H = (L1)
G ⊆ B.

(e) Op′(A) = 1 = Op′(B).

Assume that Op′(A) 6= 1. Then L * A and so by (d) L * B. But by Lemma 2.4, L ⊆
Op′(A)Bx for some x ∈ G, and so L ⊆ Bx. It follows that L ⊆ B, a contradiction. Hence (e)

is proved.

(f) A and B are supersoluble. (This part follows directly from (e) and Lemma 2.8.)

Thus, we have proved that G is a totally completely c-permutable product of supersoluble

groups A and B. Hence G is supersoluble by Theorem A. The proof is completed.

Corollary 4.2[8]. Let p be a prime number. Assume that G = AB is a totally permutable

product of p-supersoluble groups A and B. Then G is p-supersoluble.

Now, we apply Theorem B to prove the following characterization theorem for p-supersoluble

groups. This theorem can be regarded as a generalized theorem of O. H. Kegel [16].

Theorem 4.3. Let p be a prime and G a soluble group. Then G is p-supersoluble if and

only if G = AB, where A is p-nilpotent, B is nilpotent and A has a chief series

1 = A0 ≤ A1 ≤ . . . ≤ An = Op′(A) ≤ An+1 ≤ . . . ≤ At−1 ≤ At = A

such that Ai is completely c-permutable (permutable) with all subgroups of B, for all i =

n, . . . , t.

Proof. First, we assume that G is p-supersoluble. Then by Lemma 2.8, G/Op′(G) is

supersoluble and G/Op′,p(G) is an abelian group. Let A = Op′,p(G) and B be a subgroup of

G such that AB = G and B1A 6= G for all proper subgroups B1 of B. Then B is nilpotent.

Since Op′(A)charA E G, we have Op′(A) / G. Hence the group G below A has a chief series

1 = A0 ≤ A1 ≤ . . . ≤ An = Op′(A) ≤ An+1 ≤ . . . ≤ At−1 ≤ At = A

passing through Op′(A). This proves the necessity part of the theorem. The sufficiency part

can be proved by using Theorem B and the arguments adopted in the proof of Theorem 4.1.

We omit the details.
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Using Theorem C and applying the same arguments in the proof of Theorem 4.1, we can

prove the following theorem for p-supersoluble groups.

Theorem 4.4. Let p be a prime and G = AB the product of p-supersoluble groups A and

B. Assume that A is completely c-permutable will all subgroups of B and B is completely

c-permutable with all subgroups of A. If either G′ ⊆ Op′,p(G) or A and B have coprime orders,

then G is p-supersoluble.
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of totally permutable groups, Bull. Austral. Math. Soc., 53(3), 441-445, 1996.

[8] A. Carocca, p-supersolubility of factorized finite groups, Hokkaido Math. J., 21, 1992,

395-403.
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