УДК 512.542

ОБ ОДНОМ СВОЙСТВЕ НАСЛЕДСТВЕННЫХ НАСЫЩЕННЫХ РЕШЕТОЧНЫХ ФОРМАЦИЙ

С. Йи1, С.Ф. Каморников2, В.Н. Тютянов3

¹Чжэцзянский политехнический университет, Ханчжоу, Китай ²Гомельский государственный университет им. Ф. Скорины ³Международный университет «МИТСО», Гомель

ONE PROPERTY OF HEREDITARY SATURATED FORMATIONS

X. Yi¹, S.F. Kamornikov², V.N. Tyutyanov³

¹Zhejiang Sci-Tech University, Hangzhou, China ²F. Scorina Gomel State University ³Gomel Branch of International University «MITSO», Gomel

Пусть \S — наследственная насыщенная решеточная формация. Доказывается, что если для каждой силовской подгруппы P конечной группы G и любой максимальной подгруппы V из P существует такая \S -подгруппа T, что VT = G, то $G \in \S$. В статье решаются проблемы 19.87 и 19.88 из «Коуровской тетради».

Ключевые слова: конечная группа, силовская подгруппа, добавление, формация, обобщенно субнормальная подгруппа, решеточная формация.

Let \mathfrak{F} be a hereditary saturated formation. It is proved that if for every Sylow subgroup P of a finite group G and every maximal subgroup V of P there is a \mathfrak{F} -subgroup T such that VT = G, then $G \in \mathfrak{F}$. Problems 19.87 and 19.88 from the «Kourovka Notebook» are solved in the article.

Keywords: finite group, Sylow subgroup, supplement, formation, generally subnormal subgroup, lattice formation.

Введение

Подгруппа H называется добавлением к подгруппе K в группе G, если G=KH. Понятно, что в каждой группе любая подгруппа обладает добавлением. Более того, подгруппа K может иметь несколько добавлений. Например, в случае, когда K=G, любая подгруппа группы G является добавлением к K.

Как показывают многочисленные исследования, строение конечной группы G существенно зависит от свойств добавлений к некоторым ее подгруппам. В данной работе строение G изучается в зависимости от свойств добавлений к максимальным подгруппам всех ее силовских подгрупп. Главная наша цель — доказательство следующей теоремы.

Теорема. Пусть § — наследственная насыщенная решеточная формация. Тогда и только тогда конечная группа G принадлежит §, когда для каждой максимальной подгруппы любой силовской подгруппы группы G существует добавление в G, принадлежащее §.

1 Определения и предварительные результаты

В работе рассматриваются только конечные группы, используются определения и обозначения, принятые в [1] и [2].

Напомним, что формация — это класс групп, замкнутый относительно взятия гомоморфных образов и конечных подпрямых произведений. Если \mathfrak{F} — непустая формация, то через $G^{\mathfrak{F}}$ обозначается пересечение всех тех нормальных подгрупп N группы G, для которых $G/N \in \mathfrak{F}$ (подгруппа $G^{\mathfrak{F}}$ называется \mathfrak{F} -корадикалом группы G).

Hacned cmвенная формация — это формация, замкнутая относительно взятия подгрупп. Формация \mathfrak{F} называется hacned machen m

Если $\ \mathfrak{F}$ — непустая формация, то подгруппа H группы G называется $\ \mathfrak{F}$ -субнормальной, если либо H=G, либо существует максимальная цепь подгрупп $G=H_0\supset H_1\supset...\supset H_n=H$ такая, что H_{i-1} / $Core_{H_{i-1}}(H_i)\in \ \mathfrak{F}$ для всех i=1,2,...,n.

Формация \S называется *решеточной*, если множество всех \S -субнормальных подгрупп в любой группе образует подрешетку решетки всех подгрупп этой группы.

Все наследственные насыщенные решеточные формации описаны в работе [3] (см. также [4]).

Лемма 1.1 [3, теорема 2]. Пусть \Re – наследственная насыщенная формация. Тогда и только тогда \Re является решеточной, когда формация \Re удовлетворяет следующим условиям:

- 1) $\mathfrak{F} = \overline{D_0(\mathfrak{M} \cup \mathfrak{H}), \ \pi(\mathfrak{M}) \cap \pi(\mathfrak{H}) = \emptyset;}$
- 2) существует такое разбиение $\{\pi_i \mid i \in I\}$ множества $\pi(\S)$ на попарно непересекающиеся подмножества, что $\S = D_0(\bigcup_{i \in I} \mathfrak{S}_{\pi_i});$
- 3) $\mathfrak{M} = \mathfrak{S}_{\pi(\mathfrak{M})} \mathfrak{M}$ наследственная локальная формация, являющаяся классом Фиттинга, нормальным в \mathfrak{M}^2 ;
- 4) всякая нециклическая критическая группа G формации \mathfrak{M} , имеющая единичную подгруппу Фраттини, является примитивной с неабелевым цоколем $N=G^{\mathfrak{M}}$ причем G/N циклическая примарная группа.

Напомним, что *критической группой формации* $\mathfrak F$ называется группа, не принадлежащая $\mathfrak F$, все собственные подгруппы которой принадлежат $\mathfrak F$. Если $\mathfrak X$ — некоторый класс групп, то через $D_0\mathfrak X$ обозначается класс всех групп, представимых в виде $H_1 \times ... \times H_t$, где $H_i \in \mathfrak X$ для всех i=1,2,...,t. Если π — некоторое множество простых чисел, то $\mathfrak X_\pi$ — это класс всех π -групп из $\mathfrak X$. В частности, $\mathfrak S_\pi$ — формация всех разрешимых π -групп.

Каждая наследственная насыщенная решеточная формация \S является классом Фиттинга, т. е. классом, который замкнут относительно взятия нормальных подгрупп и, кроме того, из G = AB, где A и B — нормальные \S -подгруппы из G, всегда следует, что G принадлежит \S .

Из определения класса Фиттинга следует, что в любой группе G существует \S -радикал G_\S , т. е. наибольшая нормальная подгруппа группы G, принадлежащая \S (она совпадает с произведением всех нормальных \S -подгрупп из G). В дальнейшем мы будем опираться на следующий результат, устанавливающий связь \S -субнормальных \S -подгрупп группы с ее \S -радикалом.

Лемма 1.2 [2, пемма 3.1.6]. Пусть \S — наследственная насыщенная решеточная формация. Если подгруппа H является \S -субнормальной в группе G и принадлежит формации \S , то H содержится в \S -радикале группы G.

Доказательство. Пусть R/N — неединичная силовская p-подгруппа группы G/N. Если

 $R_1 \ / \ N$ — максимальная подгруппа группы $R \ / \ N$, то по теореме Силова $R_1 = P_1 N$ для некоторой силовской p-подгруппы P_1 группы R_1 . При этом P_1 — максимальная подгруппа некоторой силовской p-подгруппы P_2 группы P_3 Силовская P_3 -подгруппа группы P_4 По условию P_4 для некоторой P_4 -подгруппы P_4 группы P_5 Сотсюда заключаем, что

$$G/N = TP_1/N =$$

= $(TN/N)(P_1N/N) = (TN/N)(R_1/N)$

При этом из изоморфизма $TN/N \simeq T/T \cap N$ следует, что подгруппа TN/N принадлежит формации \mathfrak{F} .

2 Доказательство теоремы

Если группа G принадлежит \mathfrak{F} , то ввиду наследственности формации \mathfrak{F} для каждой максимальной подгруппы из любой силовской подгруппы группы G каждое добавление в G принадлежит \mathfrak{F} .

Докажем обратное утверждение. Предположим, что оно неверно и G – контрпример минимального порядка. Доказательство проведем в несколько шагов.

Шаг 1. Группа G не является простой.

Предположим, что группа G является простой. По условию для каждой силовской подгруппы P группы G и любой максимальной подгруппы V из P существует такая \mathfrak{F} -подгруппа T, что VT = G. Очевидно, |G:T| — степень простого числа. Но тогда группа G обладает максимальной подгруппой H, индекс которой в G является степенью простого числа. Отсюда ввиду [5, теорема 1] справедливо одно из следующих утверждений:

- (a) $G = A_n$ и $H \simeq A_{n-1}$, где $n = p^k$;
- (b) $G = L_n(q)$ и H стабилизатор линии или гиперплоскости, при этом

$$|G:H| = \frac{q^n - 1}{q - 1} = p^k$$

(n- простое число);

- (c) $G = L_2(11)$ и $H \simeq A_5$;
- (d) $G=M_{23}$ и $H=M_{22}$ или $G=M_{11}$ и $H=M_{10}$;
- (e) $G = PSU_4(2) \simeq PSp_4(3)$ и H параболическая подгруппа индекса 27.

Ввиду произвольного выбора простого числа p для любого простого $p \in \pi(G)$ группа G содержит максимальную подгруппу, индекс которой является степенью p. Простая проверка показывает, что ни одна из групп, перечисленных в (а)—(е), таким свойством не обладает. Следовательно, G не является простой.

Пусть далее N — минимальная нормальная подгруппа группы G.

Шаг 2. $G/N \in \mathcal{F}$.

Ввиду леммы 1.3 условия теоремы переносятся на фактор-группу G/N. А так как |G/N| < |G|, то ввиду выбора группы G группа G/N принадлежит формации \mathfrak{F} .

Шаг 3. N — единственная минимальная нормальная подгруппа группы G, $\Phi(G) = 1$ и $C_G(N) \subseteq N$.

Так как формация $\mathfrak F$ является насыщенной, то $\Phi(G)=1$. Если предположить, что в G существует минимальная нормальная подгруппа L, отличная от N, то ввиду утверждения шага 1 $G/L\in\mathfrak F$. А так как класс $\mathfrak F$ является формацией, то отсюда имеем $G\in\mathfrak F$, что противоречит выбору группы G. Таким образом, G — примитивная группа, а значит, $C_G(N)\subseteq N$ ($C_G(N)=N$, если N — абелева группа; $C_G(N)=1$, если N — неабелева группа).

Шаг 4. N – абелева группа.

Предположим, что N не является абелевой. Пусть $\pi(N) = \{p_1, p_2, ..., p_s\}$, где $s \ge 3$.

По условию для каждой максимальной подгруппы любой силовской подгруппы группы Gсуществует добавление в G, принадлежащее \mathfrak{F} . Понятно, что любое такое добавление имеет индекс, являющийся степенью простого числа. Пусть T_1 и T_2 – некоторые из этих добавлений, причем индексы их взаимно просты. Не нарушая общности рассуждений, можно считать, что $|G:T_1|=p_1^k$ и $|G:T_2|=p_2^t$. Предположим, что оба добавления T_1 и T_2 содержат подгруппу N. Тогда, очевидно, подгруппы T_1 и T_2 \S -субнормальны в G. Кроме того, по условию подгруппы T_1 и T_2 принадлежат формации \mathfrak{F} . Отсюда по лемме 1.2 подгруппы T_1 и T_2 содержатся в $\mathfrak F$ -радикале $G_{\mathfrak{F}}$ группы G. Так как индексы подгрупп T_1 и T_2 взаимно просты, то $G = \langle T_1, T_2 \rangle \subseteq G_{\mathfrak{F}}$, т. е. группа G принадлежит формации \mathfrak{F} , что противоречит выбору группы G.

Итак, если T_i — принадлежащее формации \mathfrak{F} добавление к некоторой максимальной подгруппе из силовской p_i -подгруппы группы G, то в системе подгрупп $\{T_i \mid i=1,2,...,s\}$ не более чем одна из подгрупп $T_1,T_2,...,T_s$ содержит N. Таким образом, возможны два случая:

- 1) каждая из подгрупп $T_1, T_2, ..., T_s$ не содержит N;
- 2) подгруппы $T_1, T_2, ..., T_{s-1}$ не содержат подгруппу N, а подгруппа T_s содержат N.

Подгруппа N представима в виде $N = N_1 \times N_2 \times ... \times N_m,$

где $N_1,\ N_2,\dots,N_m$ — изоморфные простые неабелевы группы. Если любая из подгрупп $T_1,\ T_2,\dots,T_s$ не содержит N, то для любого $i=1,2,\dots,s$ из $|G:T_i|=p_i^{k_i}$, где $k_i\geq 1$, очевидно, следует, что подгруппа N_1 содержит максимальную подгруппу H_i , индекс которой является степенью простого числа p_i . С учетом [5, теорема 1] проверка показывает, что ни одна из простых групп таким свойством не обладает.

Следовательно, подгруппы $T_1, T_2, ..., T_{s-1}$ не содержат подгруппу N, а подгруппа T_s содержит N. В этом случае для любого i=1,2,...,s-1 из $|G:T_i|=p_i^{k_i}$, где $k_i\geq 1$, следует, что подгруппа N_1 содержит максимальную подгруппу H_i , индекс которой является степенью простого числа p_i . Так как $s\geq 3$, то ввиду [5, теорема 1] (см. шаг 1) получаем, что $N_1\simeq L_2(7)$.

Пусть T — принадлежащее $\mathfrak F$ добавление к некоторой максимальной подгруппе из силовской 3-подгруппы группы G. Предположим, что T не содержит N. Тогда, как показано выше, подгруппа $N_1 \simeq L_2(7)$ содержит максимальную подгруппу индекса 3, что невозможно. Следовательно, $N \subseteq T$. Тогда $T - \mathfrak F$ -субнормальная $\mathfrak F$ -подгруппа группы G, а значит, по лемме $1.2\ T$ содержится в $G_{\mathfrak F}$. При этом индекс $G_{\mathfrak F}$ в группе G равен 3^t , где $t \ge 0$.

Предположим, что t>0. Пусть V_1 — силовская 3-подгруппа группы G_{\S} . Заключим эту подгруппу в максимальную подгруппу V из $P\in Syl_3(G)$. Тогда для любого принадлежащего \S добавления T к V в группе G имеем $TV\subseteq G_{\S}V\subset G$, что противоречит условию теоремы. Значит, $G_{\S}=G$ и $G\in \S$. Снова имеем противоречие с выбором группы G.

Шаг 5. G – бипримарная группа.

Пусть N-p-группа. Предположим, что группа G не является бипримарной, т. е. ее порядок делится на различные простые числа q и r, отличные от p. По условию для каждой максимальной подгруппы из любой силовской подгруппы группы G существует добавление в G, принадлежащее \mathfrak{F} . Понятно, что все эти добавления имеют индекс, являющийся степенью простого числа. Пусть T_1 и T_2 — два таких добавления, причем $|G:T_1|=q^k$ и $|G:T_2|=r^t$. Понятно, что добавления T_1 и T_2 содержат подгруппу N. Тогда, очевидно, подгруппы T_1 и T_2 \mathfrak{F} -субнормальны в G. Кроме того, по условию подгруппы T_1 и T_2 принадлежат формации \mathfrak{F} .

Но тогда по лемме 1.2 подгруппы T_1 и T_2 содержатся в \mathfrak{F} -радикале $G_{\mathfrak{F}}$ группы G. Так как индексы подгрупп T_1 и T_2 взаимно просты, то $G = < T_1, T_2 > \subseteq G_{\mathfrak{F}}$, т. е. группа G принадлежит формации \mathfrak{F} , что противоречит выбору группы G. Значит, G — бипримарная группа.

Будем полагать далее, что $\pi(G) = \{p, q\}.$

Шаг 6. $\mathfrak{F}_{\{p,q\}} = \mathfrak{N}_{\{p,q\}} - формация всех ниль$ $потентных <math>\{p,q\}$ -групп.

В силу леммы 1.1 формация \mathfrak{F} удовлетворяет следующим условиям: $\mathfrak{F} = D_0(\mathfrak{M} \cup \mathfrak{H}),$ $\pi(\mathfrak{M}) \cap \pi(\mathfrak{H}) = \emptyset;$ существует такое разбиение $\{\pi_i \mid i \in I\}$ множества $\pi(\mathfrak{H})$ на попарно неперескающиеся подмножества, что $\mathfrak{H} = D_0(\bigcup_{i \in I} \mathfrak{S}_{\pi_i});$ $\mathfrak{M} = \mathfrak{S}_{\pi(\mathfrak{M})}\mathfrak{M}$ — наследственная локальная формация, являющаяся классом Фиттинга, нормальным в \mathfrak{M}^2 .

Предположим, что $\{p,q\}\subseteq \pi(\mathfrak{M})$. Тогда из $\mathfrak{M}=\mathfrak{S}_{\pi(\mathfrak{M})}\mathfrak{M}$ следует, что $G\in\mathfrak{S}_{\pi(\mathfrak{M})}\subseteq\mathfrak{M}\subseteq\mathfrak{F}$. Противоречие. Если $\{p,q\}\subseteq\pi_i$ для некоторого $i\in I$, то из $G\in\mathfrak{S}_{\pi_i}\subseteq\mathfrak{F}$. Снова приходим к противоречию. Таким образом, либо одно из простых чисел p и q принадлежит $\pi(\mathfrak{M})$, а другое $\pi(\mathfrak{H})$, либо числа p и q они принадлежат различным членам разбиения $\{\pi_i\mid i\in I\}$. Поэтому из $\mathfrak{F}=D_0(\mathfrak{M}\cup\mathfrak{H})$ и $\mathfrak{H}=D_0(\bigcup_{i\in I}\mathfrak{S}_{\pi_i})$ получаем, что $\mathfrak{F}_{\{p,q\}}=\mathfrak{R}_{\{p,q\}}$ — формация всех нильпотентных $\{p,q\}$ -групп.

Шаг 7. Заключительное противоречие.

Так как $G-\{p,q\}$ -группа, $\mathfrak{F}_{\{p,q\}}=\mathfrak{N}_{\{p,q\}}$ и $G/N\in\mathfrak{F}$, то N- силовская p-подгруппа группы G. Так как N- минимальная нормальная подгруппа группы G, то силовская q-подгруппа Q группы G максимальна в G. Отсюда и из условия теоремы получаем, что группа G нильпотентна. \square

3 Следствия

Приведем два следствия, дающие положительные ответы на вопросы 19.87 и 19.88 из «Коуровской тетради» [6].

Пусть $\sigma = \{\sigma_i \mid i \in I\}$ — некоторое разбиение множества всех простых чисел \mathbb{P} , т. е. $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ и $\sigma_i \cap \sigma_j = \emptyset$ для всех $i \neq j$. Следуя [7], будем говорить, что группа G является: σ -примарной, если G является σ_i -группой для некоторого $\sigma_i \in \sigma$; σ -нильпотентной, если она является прямым произведением некоторых σ -примарных групп; σ -разрешимой, если каждый главный фактор группы G является σ -примарной группой.

Как отмечено в [7], класс \mathfrak{N}_{σ} всех σ -нильпотентных групп является наследственной насыщенной формацией Фиттинга. Кроме того, в силу леммы 1.1 эта формация является решеточной. Поэтому из теоремы имеем

Спедствие 3.1. Пусть σ — некоторое разбиение множества всех простых чисел. Пусть для каждой силовской подгруппы P группы G и любой максимальной подгруппы V из P существует такая σ -нильпотентная подгруппа T, что VT = G. Тогда $G - \sigma$ -нильпотентная группа.

Простая проверка показывает, что класс \mathfrak{S}_{σ} всех σ -разрешимых групп является наследственной насыщенной формацией Фиттинга. Кроме того, $\mathfrak{S}_{\sigma} = \mathfrak{S}\mathfrak{S}_{\sigma}$ и все критические группы формации \mathfrak{S}_{σ} являются простыми. Таким образом, в силу леммы 1.1 эта формация является решеточной. Поэтому из теоремы имеем

Спедствие 3.2. Пусть σ — некоторое разбиение множества всех простых чисел. Пусть для каждой силовской подгруппы P группы G и любой максимальной подгруппы V из P существует такая σ -разрешимая подгруппа T, что VT = G. Гогда $G - \sigma$ -разрешимая группа.

ЛИТЕРАТУРА

- I. *Doerk*, K. Finite soluble groups / K. Doerk, T. Hawkes. Berlin New York: Walter de Gruyter, 1992. 891 p.
- 2. *Каморников*, *С.Ф.* Подгрупповые функторы и классы конечных групп / С.Ф. Каморников, М.В. Селькин. Минск: Белорусская наука, 2003. 256 с.
- 3. Васильев, А.Ф. О решетках подгрупп конечных групп / А.Ф. Васильев, С.Ф. Каморников, В.Н. Семенчук // Бесконечные группы и примыкающие к ним алгебраические системы. Киев: Ин-т математики АН Украины, 1993. С. 27–54.
- 4. *Yi*, *X*. Subgroup-closed lattice formations / X. Yi, S.F. Kamornikov // J. Algebra. 2015. Vol. 444. P. 143–151.
- 5. *Guralnick*, *R*. Subgroups of prime power index in a simple group / R. Guralnick // J. Algebra. 1983. Vol. 81, № 2. P. 304–311.
- 6. *Нерешенные вопросы теории групп*: Коуровская тетрадь. — Новосибирск: Институт математики СО РАН, 2018. — 248 с.
- 7. Skiba, A.N. On σ -subnormal and σ -permutable subgroups of finite groups / A.N. Skiba // J. Algebra. 2015. Vol. 436. P. 1–16.

Исследования С. Йи выполнены при поддержке Китайского фонда естественных наук провинции Чжэцзян (Грант LY18A010028). Исследования С.Ф. Каморникова и В.Н. Тютянова выполнены при финансовой поддержке РФФИ и БРФФИ в рамках научного проекта Ф20Р-291.

Поступила в редакцию 25.01.2021.