Д. Г. Бегун г. Минск, БГУИР

ФОРМИРОВАНИЕ ШАГОВЫХ ТРАЕКТОРИЙ С ИСПОЛЬЗОВАНИЕМ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ОЦЕНОЧНОЙ ФУНКЦИИ

В управляющих устройствах промышленного оборудования применяются различные типы алгоритмов формирования шаговых траекторий [1]. В данной статье представлены алгоритмы контурного управлениядля формирования отрезков прямой и окружности, основанные на методе оценочной функции [2] с использованием экстраполированных значений оценочной функции.

Алгоритм формирования траектории определяет узловые точки, наиболее близко расположенные к заданной линии F(x,y)=0. Он, как правило, основан на использовании экстраполированного значения оценочной функции F_{ij}^{3} . Значения функции вычисляются в точках $x_i \pm 0.5h$, $y_i \pm 0.5h$. Сущность алгоритма состоит в том, что направление элементарных шагов выбирается в зависимости от знака оценочной функции F_{ij}^{3} , вычисленной с экстраполяцией на половину шага сетки вперед по обеим координатам. Таким образом как бы предугадывая поведение линии F(x,y)=0 в области каждого пересекаемого этой линией элементарного квадрата с учётом того, что выбор направления шага осуществляется из узловой точки с координатами x_i , y_i .

Направление элементарных шагов (рисунок 1) в близлежащей узловой точке выбирается в зависимости от знака разности величин ($F_{i,j+1} - F_{i+1,j}$). Если она положительная, то узловая точка Вс координатами x_i , y_{j+1} дальше расположена от линии F(x,y) = 0, чем узловая точка С с координатами x_{i+1} , y_j , следовательно, элементарный шаг необходимо выполнять к узловой точке С. Сущность предложенного метода заключается в том, что выполнение элементарных

шагов осуществляется в зависимости от знака оценочной функции, вычисленной в узловой точке D с координатами $x_i + 0.5, y_i + 0.5$.

Рисунок 1 – Шаговая траектория, построенная соединением соседних узловых точек, наиболее близко расположенных возле линии F(x, y) = 0

В статье подробно представлены разработанные алгоритмы интерполирования шаговых траекторий для отрезка прямой и окружности с равномерным шагом сетки в дискретной системе координат. Начальные условия для отрезка прямой обычно содержат начальные приращения ΔX , ΔY между опорными точками, причём коэффициент наклона можно представить в виде

 $a = \frac{\Delta T}{\Delta Y}$. Числовые аналоги граничных условий представлены следующим образом: .Оценочная функция для отрезка прямой описывается при помощи следующего выражения

$$\sum_{j=1}^{m} \Delta X_j - \sum_{i=1}^{m} \Delta Y_i + 0.5(\Delta X - \Delta Y) = F_{ij}^3$$

где значения под знаками сумм изменяются в зависимости от выполняемых элементарных ша-

где значения под знаками сумм изменяются в зависимости от выполняемых элементарных ша-
$$\Delta X_j = \left(\Delta X - \sum_{i=1}^n \Delta x_i\right), \Delta Y_i = \left(\Delta Y - \sum_{j=1}^m \Delta y_j\right).$$
Алгоритм формирования шаговой траектории для отрезка прямой на основании функции F_{ij}^3 представлен на рисунке 2.

Для формирования шаговой траектории кривой вида $x^2 + y^2 = R^2$ выполним подстановку в это выражение значения переменных $x \equiv x_i + 0.5 + R, y \equiv y_j + 0.5$ и получим числовой аналог для формирования круговых траекторий

$$\sum_{i=1}^{n} (i-R) + \sum_{j=1}^{m} j - 0.5R = F_{ij}^{3}$$

Алгоритм вычисления значений оценочной функции с использованием данного выражения начиная с точки при движении против часовой стрелки представлен на рисунке 3.

Выполнение элементарных шаговосуществляется в зависимости от знака оценочной функции $F_{ij}^{\mathbf{3}}$ и знаковприращений ΔX_{i} , ΔY_{j} суммпо координатам x и y . Выбор направлений элементарных шагов осуществляется в зависимости от знаков текущих координат $^{\mathfrak{X}}$ и $^{\mathfrak{Y}}$.

Пример шаговой траектории и возможные варианты направления элементарных шагов приведены на рисунке 4.

Рисунок 2 - Схема алгоритма формирования шаговой траектории для отрезка прямой

На точность формирования траектории с использованием оценочной функции $\mathbf{F}_{ij}^{\mathbf{3}}$ влияют:

- точность задания начальных данных;
- величина шага дискретизации;
- алгоритм расчета координат узловых точек.

В свою очередь алгоритм расчета координат узловых точек или выбора направления элементарных шагов характеризуется двумя основными параметрами:

- погрешностью (разность между точным и приближенным результатами решения задачи);
- производительностью (количество элементарных арифметических операций, требуемых для выполнения).

Рисунок 3 – Схема алгоритма формирования шаговой траектории для окружности

В данном случае для оценки погрешности наиболее предпочтителен критерий приближения с использованием параметра ε , характеризующего величину отклонения произвольной узловой точки шаговой траектории от линии F(x,y)=0. Максимальная погрешность составляет $\varepsilon_{max}=\sqrt{0.5}\hbar$, где h—величина шага дискретизации.

Рисунок 4 – Шаговая траектория для окружности $x^2 + y^2 = 100$ полученная на основании оценочной функции F_{ij}^3

Для рассмотернной шаговой траектории окружности с радиусом 10, шагом дискретизации h=1 и центром в точке (0,0) были получены следующие экспериментальные результаты: 80 узловых точек траектории; максимальное отклонение $\varepsilon_{\text{max}} = 0.63$ (0.71 – максимально воз-

можное отклонение); среднее отклонение $\varepsilon_{aug}=0.29$: суммарная погрешность $\sum_{i=1}^{au} \varepsilon_i=23.16$

Таким образом, были разработаны алгоритмы формирования шаговых траекторий с использованием экстраполированных значений оценочной функции $F_{ij}^{\mathbf{z}}$ для отрезка прямой и окружности. Полученные результаты свидетельствуют о высокой эффективности данного метода и малых затратах на выполнение вычислительные операции. Алгоритмы интерполирования являются достаточно простыми и позволяют получать шаговые траектории с высокой точностью. Они могут быть использованы распределенной системой управления, основанной на технологии EtherCAT.

Список использованных источников

- 1 Программируемые движения в прецизионных системах перемещений / С. Е. Карпович, В. В. Жарский, И. В. Дайняк. Минск : ФУАинформ, 2008. 206 с.
- 2 Тормышев, Ю. И. Методы и средства формирования шаговых траекторий / Ю. И. Тормышев, М. П. Федоренко. Минск: Наука и техника, 1980. 144 с.