## ФОРМИРОВАНИЕ ШАГОВЫХ ТРАЕКТОРИЙ С ИСПОЛЬЗОВАНИЕМ ЭКСТРАПОЛИРОВАННЫХ ЗНАЧЕНИЙ ОЦЕНОЧНОЙ ФУНКЦИИ

В управляющих устройствах промышленного оборудования применяются различные типы алгоритмов формирования шаговых траекторий [1]. В данной статье представлены алгоритмы контурного управлениядля формирования отрезков прямой и окружности, основанные на методе оценочной функции [2] с использованием экстраполированных значений оценочной функции.

Алгоритм формирования траектории определяет узловые точки, наиболее близко расположенные к заданной линии F(x, y) = 0. Он, как правило, основан на использовании экстраполированного значения оценочной функции  $F_{ij}^3$ . Значения функции вычисляются в точках  $x_i \pm 0.5h$ ,  $y_i \pm 0.5h$ . Сущность алгоритма состоит в том, что направление элементарных шагов выбирается в зависимости от знака оценочной функции  $F_{ij}^3$ , вычисленной с экстраполяцией на половину шага сетки вперед по обеим координатам. Таким образом как бы предугадывая поведение линии F(x, y) = 0 в области каждого пересекаемого этой линией элементарного квадрата с учётом того, что выбор направления шага осуществляется из узловой точки с координатами  $x_i$ ,  $y_i$ .

Направление элементарных шагов (рисунок 1) в близлежащей узловой точке выбирается в зависимости от знака разности величин ( $F_{i,j+1} - F_{i+1,j}$ ). Если она положительная, то узловая точка Вс координатами  $x_i$ ,  $y_{j+1}$  дальше расположена от линии F(x, y) = 0, чем узловая точка С с координатами  $x_{i+1}$ ,  $y_j$ , следовательно, элементарный шаг необходимо выполнять к узловой точке С. Сущность предложенного метода заключается в том, что выполнение элементарных

шагов осуществляется в зависимости от знака оценочной функции, вычисленной в узловой точке D с координатами  $x_i + 0, 5, y_i + 0, 5$ .



Рисунок 1 – Шаговая траектория, построенная соединением соседних узловых точек, наиболее близко расположенных возле линии F(x, y) = 0

В статье подробно представлены разработанные алгоритмы интерполирования шаговых траекторий для отрезка прямой и окружности с равномерным шагом сетки в дискретной системе координат. Начальные условия для отрезка прямой обычно содержат начальные приращения  $\Delta X$ ,  $\Delta Y$  между опорными точками, причём коэффициент наклона можно представить в виде

<u>А</u>. Числовые аналоги граничных условий представлены следующим образом: .Оценочная функция для отрезка прямой описывается при помощи следующего выражения

$$\sum_{j=1}^{m} \Delta X_j - \sum_{i=1}^{m} \Delta Y_i + 0, \mathbf{5} (\Delta X - \Delta Y) = F_{ij}^{\mathbf{3}}$$

где значения под знаками сумм изменяются в зависимости от выполняемых элементарных ша-1 <  $\mathcal{N}$ 1 972

гов 
$$\Delta X_j = \left( \Delta X - \sum_{i=1}^{\infty} \Delta x_i \right), \Delta Y_i = \left( \Delta Y - \sum_{j=1}^{\infty} \Delta y_j \right).$$
 Алг

торитм формирования шаговой траектории для отрезка прямой на основании функции *<sup>F</sup>*<sub>ij</sub> представлен на рисунке 2.

Для формирования шаговой траектории кривой вида  $x^2 + y^2 = R^2$  выполним подстановку в это выражение значения переменных  $x \equiv x_i + 0.5 + R, y \equiv y_j + 0.5$  и получим числовой

аналог для формирования круговых траекторий

$$\sum_{i=1}^{n} (i-R) + \sum_{j=1}^{n} j - 0,5R = F_{ij}^{\mathbf{3}}$$

Алгоритм вычисления значений оценочной функции с использованием данного выражения начиная с точки при движении против часовой стрелки представлен на рисунке 3.

Выполнение элементарных шаговосуществляется в зависимости от знака оценочной функции  $F_{ij}^{\mathbf{3}}$  и знаковприращений  $\Delta X_{ij} \Delta Y_j$  суммпо координатам x и y. Выбор направлений элементарных шагов осуществляется в зависимости от знаков текущих координат $^{\mathcal{X}}$  и  $^{\mathcal{Y}}$ .

Пример шаговой траектории и возможные варианты направления элементарных шагов приведены на рисунке 4.



Рисунок 2 Схема алгоритма формирования шаговой траектории для отрезка прямой

На точность формирования траектории с использованием оценочной функции  $F_{ij}^{\mathbf{3}}$  влияют: – точность задания начальных данных;

– величина шага дискретизации;

- алгоритм расчета координат узловых точек.

В свою очередь алгоритм расчета координат узловых точек или выбора направления элементарных шагов характеризуется двумя основными параметрами:

– погрешностью (разность между точным и приближенным результатами решения задачи);

– производительностью (количество элементарных арифметических операций, требуемых для выполнения).



Рисунок 3 – Схема алгоритма формирования шаговой траектории для окружности

В данном случае для оценки погрешности наиболее предпочтителен критерий приближения с использованием параметра<sup>*E*</sup>, характеризующего величину отклонения произвольной узловой точки шаговой траектории от линии F(x, y) = 0. Максимальная погрешность составляет  $\varepsilon_{max} = \sqrt{0.5}\hbar$ , где h – величина шага дискретизации.



Для рассмотернной шаговой траектории окружности с радиусом 10, шагом дискретизации h=1 и центром в точке (0,0) были получены следующие экспериментальные результаты: 80 узловых точек траектории; максимальное отклонение  $\varepsilon_{max} = 0.63$  (0.71 – максимально воз-

можное отклонение); среднее отклонение  $\varepsilon_{aug} = 0.29$ ; суммарная погрешность  $\sum_{i=1}^{i} \varepsilon_i = 23.16$ . Таким образом, были разработаны алгоритмы формирования шаговых траекторий с ис-

пользованием экстраполированных значений оценочной функции  $F_{ij}^3$  для отрезка прямой и окружности. Полученные результаты свидетельствуют о высокой эффективности данного метода и малых затратах на выполнение вычислительные операции. Алгоритмы интерполирования являются достаточно простыми и позволяют получать шаговые траектории с высокой точностью. Они могут быть использованы распределенной системой управления, основанной на технологии EtherCAT.

## Список использованных источников

1 Программируемые движения в прецизионных системах перемещений / С. Е. Карпович, В. В. Жарский, И. В. Дайняк. – Минск : ФУАинформ, 2008. – 206 с.

2 Тормышев, Ю. И. Методы и средства формирования шаговых траекторий / Ю. И. Тормышев, М. П. Федоренко. Минск : Наука и техника, 1980. – 144 с.