МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ им. Ф.СКОРИНЫ

КАФЕДРА РАДИОФИЗИКИ

В.И.Богданович В.Н. Мышковец

ЭЛЕКТРОТЕХНИКА

Практическое пособие для студентов физического факультета Гомельского государственного университета им.Ф.Скорины Специальностей "Физика", "Физика с дополнительной специализацией "Техническое творчество", "Физическая электроника", АСОИ

(часть 3)

A5. NY

0.735

ЭЛЕКТРОТЕХНИКА

Практическое пособие для студентов физического акультета Гомельского государственного университета им. Ф.) Скорины «Физика», «Физика с специальностей дополнительнольной специализацией «Техническое творчество», «Физическая

PENOSITIOPINALLY MARKET

омельскі дзяржаўны універсітэт імя Францыска Скарыны" БІБЛІЯТЭКА

В авторской редакции

Авторы – составители: Богданович В. И., Мышковец В. Н.

Рецензенты: Ефимчик М. К., Яковцев И. Н.

Рекомендовано к изданию научно – методическим советом Гомельского государственного университета им. Ф.Скорины

Практическое пособие «Электротехника» часть 3 включает в себя примеры решения задач по разделам курса «Нелинейные электрические цепи», «Магнитные цепи постоянного тока», «Электромагнитные устройства постоянного тока», «Электромагнитные устройства переменного тока», «Электрические машины переменного тока», «Электрические машины постоянного тока».

© Гомельский государственный университет им. Ф. Скорины

1. Нелинейные электрические цепи

1. 1. Нелинейные цепи постоянного тока

Задача 1.1. На рис. 1.1 приведен рабочий участок вольт - амперной характеристики полупроводникового кремниевого стабилитрона - прибора, применяемого для стабилизации напряжения. Определить статическое и дифференциальное сопротивление стабилитрона.

Статическое сопротивление R_{ст} для любой точки практеристики определяется как отношение изгодия к току: характеристики определяется как отношение напряжения к току:

$$R_{cr} = U_{cr} / I_{cr}$$

С ростом тока статическое сопротивление уменьшается, при этом напряжение на стабилитроне остаётся практически постоянным. Зависимость R_{ст} (I), показана на рис. 1.2, сопротивление R_{с1} стабилитрона на рабочем участке вольт - амперной характеристики изменяется от 27 до 4,56 кОм.

Для определения дифференциального сопротивления найдём по кривой $U_{c1}\left(I_{c1}\right)$ приращение напряжения ΔU и тока ΔI на рабочем участке:

$$\Delta U = U_A - U_B = 162 - 145 = 17 \text{ B},$$

 $\Delta I = I_A - I_B = 40 - 5 = 35\text{MA}.$

Дифференциальное сопротивление стабилитрона $R_{\mu\nu\phi\phi} = \Delta U/\Delta I = 17/(35 \cdot 10^{-3}) \approx 0,49 \text{ кОм}.$

Задача 1.2. На рис. 1.3 представлена вольт - амперная характеристика нелинейного элемента. Определить сопротивления R_{ст} и R_{дифф} для точки а характеристики.

Решение.

$$R_{c\tau} = U / I = 20 / (1.5 \cdot 10^{-3}) \approx 13 \text{ K OM}, \quad R_{\mu\nu\phi\phi} = 6.6 \text{ K OM}.$$

Задача 1.3. Линейный элемент с сопротивлением R=200 Ом и нелинейный элемент (н.э.), вольт - амперная характеристика которого задана табл. 1.1. соединены последовательно и подключены к источнику питания с э. д. с. Е=200 В (рис 1.4, а). Определить ток в цепи и напряжение на нелинейном элементе.

Решение.

Воспользуемся методом пересечения характеристик, т.е. графическим решением системы двух уравнений, выражающих связь между напряжением и током нелинейного элемента. Зависимость $U_2(1) = U_{ab}(1)$ выража ется с одной стороны, вольт - амперной характеристикой н.э., заданной таблицей 1.1 (рис. 1.4, б), а с другой уравнением $U_2(1) = E - RI$, составленным по второму закону Кирхгофа. Последнее уравнение является уравнением внешней характеристики активного двухполюсника, к которому подключён нелинейный элемент. Эта прямая может быть построена по двум точкам с координатами $U_k = 0$, $I_k = E / R = IA$ и $I_k = 0$, $U_x = E = I$ 200 В (рис. 1.4,б). Точка с пересечения характеристик определяет корни этой системы уравнений I = 0,55 A и U = 85 В. Прямую ab называют опрокинутой характеристикой нелинейного элемента, т.к. её можно построить по-другому: >провести прямую из точки а под углом α к вертикати: tg $\alpha = R \text{ (mi/mu)} = 200 \cdot 0.02 / 4 = 1;$ α = 45°. Масштабы тока и напряжения равны: mi = 0.02 A/MM, mu = 4 B/MM.

Таблица 1.1

,C	3 AMM	inju	T DI MINI.			Таблі
	U, B	0	20	40	60	80
<	I, A	0	0,22	0,36	0,45	0,56

U, B	100	120	160	200	240
l, A	0,60	0,65	0,76	0,80	0,86

Задача 1.4. Для измерения температуры в одном из плеч моста, включен полупроводниковый резистор, представляющий собой нелинейный элемент с вольт амперной характеристикой, заданной таблицей 1.2, напряжением источника питания Е=12 В, сопротивления плеч $R_2=R_4=1$ кОм, $R_3=4$ кОм, а сопротивление $R_5=2$ кОм. Определить ток I_1 в нелинейном элементе.

Решение.

размыкаем ветвь ас и опре-(рис. 1.5, б), предварительно находим токи I_{3x} и I_{5x} в резистивных элементах R_3 и $R_{5\cdot 3x}$ $I_{3x} = U/(R_3 + (R_5 + R_2)R_4/(R_1 + D_2) + R_3 + R_4/(R_2 + D_3) + R_4/(R_3 + R_3)R_4/(R_3 + R_4)$ Для определения тока I₁ воспользуемся методом эк-

$$\begin{split} I_{3X} &= U/(R_3 + (R_5 + R_2)R_4/(R_5 + R_4 + R_2)) = \\ &= 12/((4 + (2+1)\cdot 1/(2+1+1)\cdot 10^3) = 2,53 \text{ MA}, \\ -I_{5x} &= I_{3x}\cdot (R_4 / (R_4 + R_5 + R_2)) = -0,635 \text{ MA}, \\ U_{acx} &= R_3 I_{3x} + R_5 \cdot I_{5x} = 11.4 \text{ B}. \end{split}$$

Определяем Rвх.ас

$$R_{\text{Bx.ac}} = R_2(R_5 + (R_4, R_3)/(R_4 + R_3)) / (R_2 + R_5 + (R_4 \cdot R_3)/(R_4 + R_3)) = 0.74 \text{ kOm}.$$

Таблица 1.2

U ₁ B 2 8 12 14 16						
	$U_{1, B}$	13	8	12	14	16
I _{1, ma} 0,25 2 4,2 5,7 10,5	I _{1, MA}	0,25	2	4,2	5,7	10,5

Эквиванентная схема (рис. 1.5, г) представляет собой последовательное соединение источника э.д.с. Езк = U_{acc} с сопротивлением $R_{\text{ac}} = R_{\text{вкас}}$ и нелинейного элемента R(I₁).

Для определения тока I₁ воспользуемся методом пересечения характеристик (рис. 1.5, д) $I_1=2,7A$.

1.2. Нелинейные цепи переменного тока

Задача 1.6. Найти закон изменения тока в схеме однополупериодного выпрямителя (рис. 1.6, а), если $R_{\rm H}$ =1 кОм, $U_{\rm Bx}$ =20 sin(wt), B.

Решение.

Сопротивление диода в проводящем направлении пренебрежимо мало, поэтому при $U_{\text{вx}}>0$ можно пренебречь падением напряжения на диоде $U_{\text{д}}\approx 0$ и записать $U_{\text{H}}\approx U_{\text{вx}}$, следовательно,

$$i \approx U_{BX} / R_{H} = 20 \cdot \sin(wt) \text{ MA}.$$

При $U_{\rm sx}$ <0, диод включён в непроводящем направлении, поэтому его сопротивление велико, а ток в цепи пренебрежимо мал (i \approx 0). Графики мгновенных значений напряжения и тока показаны на рис. 16, б.

Задача 1.7.Определить среднее значение тока $i_{\rm H}$ в схеме двухполупериодного выирямителя (рис. 1.7, а), если $U_{\rm BX} = 50 \sin({\rm wt})$ В, $R_{\rm H} = 2 \ {\rm kGM}$.

Кривая мгновенного тока показана на рис. 1.7, б.

Решение.

Пренебрегая сопротивлением диодов в проводящем направлении, можно записать

$$I_{\text{M,max}} \approx U_{\text{BX,m}}/R_{\text{H}} = 2.5 \text{ MA},$$

 $I_{\text{H,cp}} = 1 \times (T/2) I(\text{or } 0 \text{ go } T/2) I_{\text{H,max}} \cdot \sin(\text{wt}) = 2I_{\text{H,max}}/2 = 16 \text{ MA},$

где Т период напряження источника питания.

1.3 Выпрямители.

Задача1.8. Составить схему мостового выпрямителя, использовав один из четырех диодов: Д218, Д222, КД202Н, Д215Б. Мощность потребителя P_d =300 BT, напряжение потребителя U_d =200 B.

Решение.

Параметры диодов берем из таблицы 1.3.

Диодный	Igon, A	Uofp, B
Д218	0,1	1000
Д222	0,4	600
КД202Н	1	500
Д215Б	2	200

$$L_1 = P_d / U_d = 300/200 = 1.5 A.$$

 $I_d = P_d \, / \, U_d = 300/200 = 1,5 \, A.$ Определяем напряжение, действующее на диод в проводящий период для мостовой схемы выполня: непроводящий период для мостовой схемы выпрями теля:

$$U_B = 1,57 U_d = 1,57.200 = 314 B.$$

Выбираем диод из условии

 $I_{aon} > 0.57 \text{ Id} > 0.5 \times 1.5 > 0.75 \text{ A}, \ U_{oob} > U_B > 314 \text{ B}.$

Этим условиям удовлетворяет диод КД202Н

$$I_{\text{gon}} = 1.0 > 0.75 \text{ A},$$
 $U_{\text{ofp}} = 500 > 314 \text{ B}.$

Составляем схему мостового выпрямителя (рис. 1.8). В этой схеме каждый из диодов имеет параметры диода КД202H : $I_{\text{доп}} = 1$ A и $U_{\text{обр}} = 500$ В.

Задача 1.9. Для питания постоянным током потребителя мощностью P_d =250 Вт при напряжении U_d =100 В необходимо собрать схему двухполупериодного прямителя, использовав стандартные диоды типа Д243 Б.

Решение.

Выписываем параметры диода Д234Б из таблицы 1.3:

$$I_{\text{доп}} = 2A; \quad U_{\text{обр}} = 200 \text{ B}.$$

Определяем ток потребителя:

$$I_d = P_d/U_d = 250/100 = 2.5 A.$$

Определяем напряжение, действующее на диод в непроводящий период:

$$U_B = 3,14_d = 3,14 \cdot 100 = 314 \text{ B}.$$

Проверяем диод по параметрам $I_{\text{доп}}$ и $U_{\text{обр}}$. Для данной схемы диод должен удовлетворять следующим условиям $U_{\text{обр}} > U_{\text{в}}$ и $I_{\text{доп}} > 0,5I$. В данном случае первое условие не соблюдается, т.к. 200 < 314 В, т.е. $U_{\text{обр}} < U_{\text{в}}$. Второе условие соблюдается, т.к. $0,5I_{\text{d}} = 0,5\cdot2,5 = 1,25 < 2A$.

Составляем схему выпрямителя, чтобы выполнялось условие $U_{\text{обр}} > U_{\text{d}}$ необходимо два диода соединить параллельно, тогда $U_{\text{обр}} = 200 \cdot 2 = 400 > 314$ В.

Задача 1.10. Для питания постоянным током потребителя мощностью P_d =300 Вт при напряжении U_d =20 В, необходимо собрать схему однополупериодного выпрямителя, использовав имеющиеся стандартные диоды Д242A.

Решение.

Параметры диода Д242А следующие

 $I_{\mu on} = 10 \text{ A} ; U_{oo} = 100 \text{ B}.$

Определяем ток потребилеля:

$$I_d = P_d / U_d + 300/200 = 15 A.$$

Определяем напряжение, действующее на диод в непроводящий период:

$$U_B = 3.14U_d = 3.14.20 = 63 B.$$

Проверяем диод по параметрам $I_{\text{доп}}$ и $U_{\text{обр}}$. Для данной схемы диод должен удовлетворять условиям $U_{\text{обр}} > U_{\text{B}}$, $I_{\text{доп}} > I_{\text{d}}$. В данном случае второе условие не соблюдается, т.к. 10 < 15, т.е. $I_{\text{доп}} < I_{\text{d}}$. Первое условие выполняется, т.к. 100 > 63 В.

Составляем схему выпрямителя. Чтобы выполнилось условие $I_{\text{доп}} > I_{\text{d}}$, надо два диода соединить параллельно, тогда $I_{\text{доп}} = 2 \cdot 10 = 20 > 15$ А. Полная схема выпрямителя приведена на рис. 1.9.

Задача 1.11. Для составления схемы трехфазного выпрямителя на трех диодах заданы диоды Д243. Выпрямитель должен питать потребителя с U_d =150 В. Опре-

делить допустимую мощность потребителя и пояснить порядок составления схемы выпрямителя.

Решение.

Параметры диода

$$I_{\text{доп}} = 5A$$
; $U_{\text{o6p}} = 200 \text{ B}$.

Определяем допустимую мощность потребителя. Для трёхфазного выпрямителя Ідоп $> (1/3) \cdot I_d$, т.е.

Определяем напряжение, действующее на диод в проводящий период $U_B = 2.1.11. - 2.1.11$ $P_d = 3U_{d'}I_{non} = 3.150.5 = 2250$ Вт. Следовательно для данного выпрямителя Р_d ≥ 2250 Вт.

непроводящий период

$$U_B = 2, 1 \cdot U_d = 2, 1 \cdot 150 = 315B.$$

Составляем схему выпрямителя. Проверяем диод по условию $U_{\text{обр}} > U_{\text{B}}$. В данном случае это условие не выполняется, т.к. 200 < 315 В. Чтобы условие выполнялось, необходимо в каждом плече два диода соединить последовательно, тогда

 $U_{\text{обр}} = 200.2 = 400 \text{ B}$ и 400 > 315 B. Полная схема выпрямителя приведена на рис. 10.

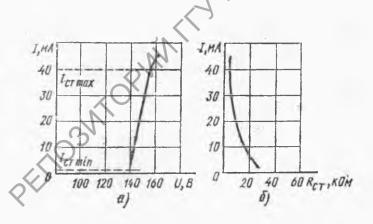


Рис. 1.1

Рис. 1.2

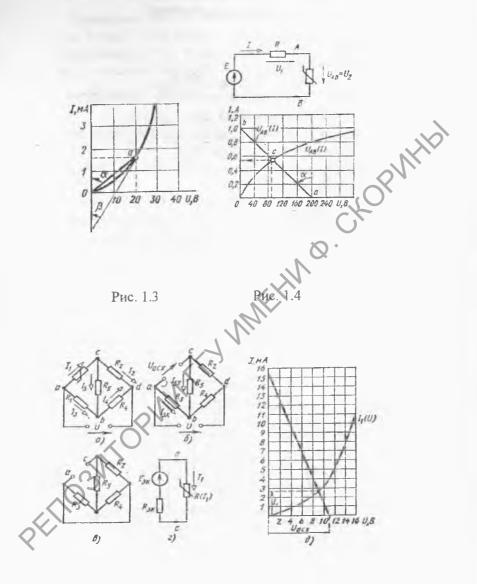
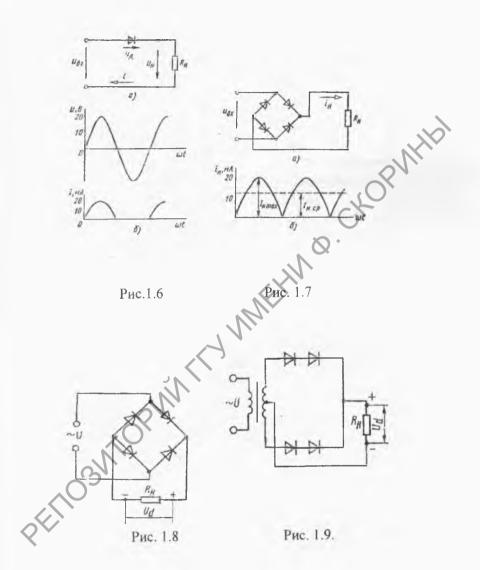
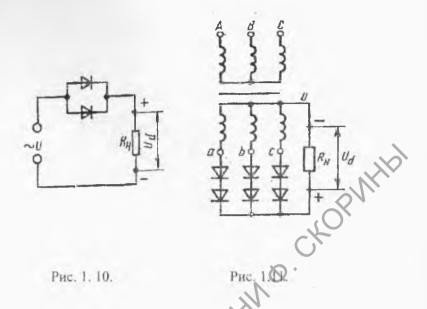




Рис. 1.5

2. Магнитные цепи постоянного потока.

2.1 Применение закона полного тока для анализа магнитных цепей. Влияние ферромагнитных материалов.

Задача 2.1. На кольцевой замкнутый сердечник (рис.2.1) равномерно нанесена обмотка с числом витков W=200. Поперечное сечение кольца прямоугольное, наружный диаметр кольца Д=16 см, внутренний диаметр d=10 см, толщина b=4 см. Определить ток в обмотке катушки, при котором магнитный поток в сердечнике Φ =12 10^{-4} Вб, если материал сердечника: а) дерево; б) литая сталь; в) листовая электротехническая сталь марки 1512.

Решение.

Магнитная индукция в сердечнике из дерева и литой стали определяется как

$$B = \Phi/S = \Phi/((\Pi - d)/(2 \cdot b)) =$$

=12·10⁻⁴ / ((16-10)/(2·4·10⁻⁴))=1 Тл.

Магнитная индукция в сердечнике из листовой стали 1512 (с учётом коэффициента заполнения стали $k_{3,c} = 0.9$

$$B^{\dagger} = \Phi / (S \cdot K_{3,c,1} = 1,11 \text{ T.r.}$$

а) Напряжённость магнитного сердечника из дерева $H_0 = B / \mu_0 = 1 T_{\pi} / (4 \cdot \pi \cdot 10^{-7}) T_H/M = 8 \cdot 10^5 A/M.$

Ток в обмотке находим из уравнения

$$H = W \cdot I / I_{cn}$$

 $H=W\cdot I/I_{cp}$ $I=I_{cp}\cdot H_o/W=40.8\times 10^{-2}\cdot 8\cdot 10^5/200=1632$ А где $I_{cp}=\pi/I_{cp}=\pi\cdot (I/I+d)/2=40.8$ см. чно для катушек мо-Обычно для катушек кольцевых сердечников плотность тока в обмотке с лакостойкой или хлопчатобумажной изоляцией допускается не выше $J_{\text{вит}} = 3 \text{ A/мм}^2$, поэтому для данного тока потребовался

бы провод с лакостойкой изоляцией, сечением

$$Q = I / J_{BHT} = 1632/3 = 544 \text{ mm}^2$$
.

В этом случае площадь окна намотки S_м при W = 200 должна быть равна (без учёта коэффициента заполнения меди $k_{3 \text{ м}})$

 $S_M = 544 \cdot 10^{-2} \cdot 200 = 1088 \text{ cm}^2$.

Для данного размера сердечника площадь окна намотки (без учёта к, м) составляет

$$S_{\rm M} = \pi \cdot d^2 / 4 = 78.5 \text{ cm}^3$$
.

Следовательно, в этом сердечнике заданный поток получить невозможно.

- б) Напряжённость магнитного поля в сердечнике из литой стали определяется по кривой намагничивания: при B = 1 Тл, $H_c = 750$ A/м ток в обмотке I = 1,53 A.
- в) Аналогично для сердечника из листовой электротехнической стали марки 1512: при B = 1,11 Тл, $H_c = 570$ A/м, ток в обмотке I = 1.16 A.

Задача 2.2. Определить относительные магнитные проницаемости и магнитные сопротивления ферромагнитных сердечников задачи 2.1 и индуктивности их катушек.

Решение.

Для относительной магнитной проницаемости

 $\mu_r = B(T_{\pi}) / [\mu_o (\Gamma_H/M) - H(A/M)]$:

для литой стали $\mu_r = 1065$, для стали марки 1512 μ_r 1560.

 $R_{M}=WI(A)$ / $\Phi(B6)=1$ (м) /[μ_{0} (Γ H/M)· μ_{1} · $S(M^{2})$] Ом/с: Для магнитного сопротивления магнитопровода

для литой стали $R_M = 255 \cdot 10^5 \, (1/\text{Om} \cdot \text{c})$, для стали марки 1512 $R_M = 1.93 \cdot 10^5$ (1/ Oм с Для индуктивности катушки

 $L = (W\Phi) / I = (\mu_0 \mu_r \cdot W^2 S) / I = W^2 / R_M \Gamma_H$: для литой стали $L = 157 \, MTH$, для стали марки 1512 L = 207 мГн.

2.2. Магнитные цепи сзазором в магнитопроводе.

Задача 2.3. В сердечнике из литой стали (рис. 2.2) необходимо создать магнитную индукцию B=1 Тл. Число витков равномерно намотанной на сердечник обмотки W=200, длина средней линии сердечника l_{ср}=69 см, сечение \$=6 см². Как изменится ток и магнитное сопротивление магнитопровода ,если в сердечнике сделать воздушный зазор б=0.5 мм. Магнитный поток сердечника должен остаться без изменений. При расчете рассеяниями пренебречь и считать поле в воздушном зазоре однородным.

Решение.

Пренебрегая потоком рассеяния, считаем, что магнитная индукция в воздушном зазоре и в стали одинакова: $B_0 = B_c = 1$ Тл. Напряжённость магнитного поля в магнитном зазоре

 $H_o = B_o / \mu_o = 8 \cdot 10^5 \ B_o = 8 \cdot 10^5 \cdot 1,0 = 800 \cdot 10^{-3} \ A/м.$ Находим напряжённость магнитного поля в сердечнике для $B = 1 \ Tл$ по кривой намагничивания стали $H_c = 750 \ A/M.$

Магнитодвижущая сила обмотки: при отсутствии в сердечнике воздушного зазора

$$W \cdot I_1 = I_{cp} H_c = 0.69 \cdot 750 = 517.5 A$$

при наличии в сердечнике воздушного зазора

$$WI_2 = I_{cp} H_c + \delta \cdot H_o = 517,5 + 0,5 \cdot 10^{-3} \cdot 800 \cdot 10^3 = 917,5 A$$

Токи в обмотке

$$I_1 = WI_1 / W = 517,5 / 200 = 2,58 A,$$

 $I_2 = WI_2 / W = 917,5 / 200 = 4,58 A.$

Ток необходимо увеличить на $\Delta I = 4,58 - 2,58 \pm 2$ A, т.е. почти в два раза.

Магнитное сопротивление магнитопровода.

$$R_{\text{MC}} = l_{\text{cp.}} / \mu_0 \mu_r = l_{\text{cp.}} / BS/H_c = 8,65 \cdot 10^5 \, \text{l} / (O_{\text{M} \cdot \text{c}})$$
.

Магнитное сопротивление воздушного зазора

$$R_{\delta} = \delta / \mu_{o} \cdot S = 6.63 \cdot 10^{5} 1 / (Om \cdot c).$$

Магнитное сопротивление магнитопровода с воздушным зазором

$$R_{M} = R_{M.c} + R_{\delta} = 15,3 \cdot 10^{5} \text{ 1/(OM·c)}.$$

Этот результат можно получить из соотношения $R_M = WI_2/\Phi = WI_2/(BS) = 917.5/(1.6 \cdot 10^{-4}) = 15.3 \cdot 10^5 \ 1/(OM \cdot c).$

Задача 2.4. На рис. 2.3 даны геометрические размеры магнитопровода цепи в миллиметрах, выполненного из электротехнической стали марки 1211. Требуется определить магнитодвижущую силу F = WI, которая необходима для создания магнитного потока $\Phi = 2 \cdot 10^{-3}$ Вб, значение тока в катушке I, содержащей W = 1000 витков и индуктивность катушки L.

Решение.

Магнитную цепь делим на участки так, чтобы в пределах каждого материал и сечение магнитопровода оставались неизменными. В данном случае таких участков три. Контур, по которому составляем уравнение, пользуясь законом полного тока, проходит по средней магнитной линии:

$$\begin{split} I_1 &= 150 - 25\ 125\ \text{mm};\\ I_1 &= I_2{}^\dagger + I_2{}^\parallel = 125 + 2{\cdot}107{\times}\ 5 - 2\ = 338\ \text{mm}. \end{split}$$

Определяем магнитную индукцию в каждом участке цепи, для чего находим сечение магнитопровода

$$S_1 = 40.50 = 2000 \text{ mm}^2 = 2.10^{-3} \text{ m}^2;$$

 $S_2 = 50.25 = 1250 \text{mm}^2 = 1,25.10^{-3} \text{ m}^2.$

Магнитная индукция

$$B_1 = \Phi/S_1 = 1 \text{ T}\pi$$
, $B_2 = B_0 = \Phi/S_2 = 1.6 \text{ T}\pi$.

Напряжённость магнитного поля для ферромагнитных материалов определяем по кривым намагничивания B=f(H), которые приводятся в справочной литературе. В данном случае для электротехнической стали марки 1211 имеем: $H_1=502~\text{A/m}$ и $H_2=4370~\text{A/m}$. Для воздушного зазора l_0 напряжённость магнитного поля определяется из равенства

$$H_0 = 8.10^5 \cdot B_0 = 8.10^5 \cdot 1,6 = 1280\ 000\ A/M$$

Искомая магнитодвижущая сила, равная произведнию тока на число витков катульки, по которой он протекает, согласно закону полного тока

F = W1 =
$$H_1I_1 + H_2I_2 + H_0I_0 = 502 \cdot 0,125 + 4370 \cdot 0,338 + 1280 \cdot 000 \cdot 2 \times 10^{-3} \approx 4000 \text{ A}.$$

Ток в катушке I = F/W = 4A.

Индуктивность катушки

$$L = \Psi M = W\Phi / I = 1000 \cdot 2 \cdot 10^{-3} / 4 = 0.5 \Gamma_H,$$

где Ч - потокосцепление.

Задача 2.5. На рис. 2.4 изображен тороидальный магнитопровод, выполненный из электротехнической стали марки 1512. Заданы размеры I = 30 см, $I_0 = 0,1$ см, магнитодвижущая сила F = WI = 1000; W = 1000 витков. Требуется определить какой поток замыкается по магнитопроводу.

Решение.

Для её решения необходимо построить кривую зависимости магнитного потока от магнитодвижущей силы $\Phi = f(WI)$, а затем по заданной магнитодвижущей силе

определить графически магнитный поток Φ . Для построения зависимости $\Phi = f(WI)$ необходимо задаться несколькими значениями магнитного потока и для всех этих значений определить магнитодвижущую силу, т.е. решить несколько прямых задач (обычно достаточно 3-5 значений). Первое значение магнитного потока выбирается из расчёта, что магнитное сопротивление стали $R_{\text{м ст}} = 0$, а основное сопротивление представляет собой сопротивление воздушного зазора R_0 . Полученное значение потока будет несколько завышенным, поэтому далее задаёмся меньшим значением потока. Если пренебречь $R_{\text{м.ст}}$, то закон полного тока для рассматриваемой цепи запишется в виде

$$WI = H_0 l_0$$
, откуда $H_0 = WI / l_0 = 1000 / 10^{-3} = 10^6$ А/м. Магнитная индукция $B_0 = H_0 / (8 \cdot 10^5) = 10^6 / (8 \cdot 10^5) = 1,25$ Тл. Магнитный поток $\Phi_0 = B_0 S = 1,25 \cdot 4 \cdot 10^{-4} = 5 \cdot 10^{-4}$ Вб.

Напряжённость магнитного поля определяется для В = 1,25 Тл по кривым намагничивания для стали марки 1512, которые приводятся в литературе.

В данном случае >

$$H_{c\tau} = 600 \text{ A/m}; H_{c\tau}I_{c\tau} = 180 \text{ A};$$
 $H_0I_0 = 10^3 \text{ A}; WI = H_{c\tau}I_{c\tau} + H_0I_0 = 180 + 10^3 = 1180 \text{ A}.$
Результаты вычислений приведены далее

1) $\Phi = 5 \cdot 10^4 \text{ B6}; B = 1,25 \text{ Тл}; H_{c\tau} = 600 \text{ A/m};$

$$H_{cr} = 180 \text{ A/m}; H_0 = 10^6 \text{ A/m}; H_0 = 10^5 \text{ A;}$$

 $WI = 1080 \text{ A.}$

W1 = 1080 A.
2)
$$\Phi = 4.5 \cdot 10^4$$
 B6; B = 1.125 T π ; H_{cr} = 300 A/M;
H_{cr}l_{cr} = 90A/M; H₀ = 9·10⁵ A/M; H₀l₀ = 900 A;
W1 = 990 A.

3)
$$\Phi = 4 \cdot 10^4$$
 B6, B = 1,0 T π , H_{cT} = 200 A/M, H_{cT}, l_{cT} = 60 A/M,

 $H_0 = 8 \cdot 10^5 = A/M$, $H_0 l_0 = 800$ A, Wl = 860 A. Для полученных значений строим зависимость

 Φ = f (WI). По заданной магнитодвижущей силе находим $\Phi_{\text{нск.}}$ = 4,53·10⁻⁴ B6.

Задача может быть решена с помощью построения так называемой опрокинутой характеристики. Для этого строится зависимость $\Phi = f\left(H_{\rm cr}l_{\rm cr}\right)$ и в точке пересечения её с опрокинутой характеристикой (прямая линия), которая строится при $R_{\rm м.ст.}=0$, находим значение $\Phi_{\rm нск.}$

2.3.. Электромагнитные устройства

Задача 2.6. Магнитопровод 1 и ярмо 2 электромагнита выполнены из стали одинакового сечения $S_c = 2.5$ см² и имеют суммарную длину $I_c = 0.3$ см. Определить силу F_c , с которой ярмо притягивается к магнитопроводу, если ток в обмотке I = 1.8 А, число витков обмотки W = 110, длина воздушного зазора $\delta = 0.025$ мм. Магнитная характеристика задана таблицей 2.1.

Примечание: по мере притяжения ярма зазор δ уменьшается и сила F возрастает, расчёт ведётся для заданного максимального зазора.

Таблица 2.1

						_		
В, Тл	0	0,4	0,67	0,87	1,0	1,1	1,2	1,3
Н, А/м	0	100	200	300	400	500	600	700

Решение.

При изменении расстояния между магнитопроводом и ярмом происходит изменение энергии магнитного поля

$$dW_{2M} = d(LI^2/2) = I^2/2 dL$$
,

которое должно быть равно работе сил, вызывающих перемещение $Fd\delta$, т.е. $dW_{3M} = Fd\delta$,

откуда
$$F = l^2/2 dL / d\delta$$
.

Виду малости воздушного зазора можно принять

$$dL/d\delta = L/\delta$$
.

С помощью преобразований находим

$$L = \Psi_0 / I = \Phi_0 W / I = B_0 S_0 W / I$$
 или

 $LI^2=B_0S_0WI=B_0S_0H_0\delta=B_0^2S_0\cdot\delta \ / \ \mu_{0,}$ откуда F = $B_0^2S_0 \ / \ (2\mu_0).$

Выражая силу в ньютонах (H), магнитную индукцию B_0 в теслах (Тл), сечение S в см 2 и подставляя значения магнитной постоянной $\mu_0 = 4 \cdot \pi \cdot 10^{-7} \ \Gamma \text{H/M}$, получаем расчётную формулу $F(H) = 40B_0^2 (\text{Тл}) \cdot S_0 (\text{см}^2)$.

Подставляя числовые значения заданных величин, вычисляем магнитодвижущую силу WI = 1980 A, строим вебер — амперную характеристику $\Phi_{cr}(WI)$ по заданной кривой намагничивания $B_{cr}(H_{cr})$ и далее опрокинутую характеристику воздушного зазора $\Phi(WI - H_0\delta)$. Из пересечения характеристик находим, что индукция в воздушном зазоре $B_0 = 1,12$ Тл, тогда искомая сила притяжения $F = 40\cdot1,12^2\cdot5 = 251$ H.

Задача 2.7. Рассчитать тяговую характеристику подъёмного электромагнита $F(\delta)$ для значений воздушного зазора $\delta=1,2,3,4$ мм. При расчёте потоком рассеяния и магнитным сопротивлением пренебречь, магнитодвижущая сила катушки электромагнита WI=2500~A. Размеры электромагнита указаны на рис. 2.5 в мм.

Решение.

Магнитодвижущая сила электромагнита расходуется на прохождение магнитного потока через воздушные зазоры, тело электромагнита и поднимаемую деталь

$$W_1 = 2 \cdot \delta \cdot H_0 + (l_M + l_2)H_0 + l_{M.\pi} \cdot H_0$$

или в случае пренебрежения магнитными сопротивлениями участков в теле электромагнита и сопротивлением участка поднимаемой детали

$$WI = \delta_1 H_{01} + \delta \cdot H_{02} = R_{MO} \Phi = (R_{MOI} + R_{MO2}) \Phi$$

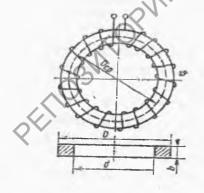
где $R_{\text{мо1}} = \delta_1 / (\mu_0 \cdot S_1)$ и $R_{\text{мо2}} = \delta_2 / (\mu_0 \cdot S_2)$ — магнитные сопротивления воздушных зазоров средней (S_2) и внешней (S_1) частей электромагнита.

Сила тяги электромагнита состоит из двух различных сил:

$$F = F_1 + F_2$$

где
$$F_1 = B_1^2 / 2\mu_0 \cdot S_1$$
 и $F_2 = B_2^2 / 2\mu_0 \cdot S_2$. Магнитные индукции воздушных зазоров
$$B_1 = \Phi / S_1 = WI/((R_{\text{Mol}} + R_{\text{Mo2}})S_1) = \\ = WI/((\delta_1/\mu_0 \cdot S_1 + \delta_1/\mu_0 \cdot S_2)S_1), \\ B_2 = \Phi / S_2 = WI/((R_{\text{Mol}} + R_{\text{Mo2}})S_2) = \\ = WI/(\delta_1/\mu_0 \cdot S_1)S_2).$$

Получаем


$$\begin{split} F_1 &= \left[WI/(\delta_1/\mu_0 \cdot S_1 + \delta_2/\mu_0 \cdot S_2) S_1 \right]^2 \cdot S_1/(2\mu_0) = \\ &= W^2 I^2 \mu_0 \ / \left[2(\delta_1/S_1 + \delta_2/S_2)^2 \cdot S_1 \right]; \\ F_2 &= \left[WI/(\delta_1/\mu_0 \cdot S_1 + \delta_2/\mu_0 \cdot S_2) S_2 \right]^2 \cdot S_2/2\mu_0 = \\ &= W^2 I^2 \mu_0 \ / \left[\ 2(\delta_1/S_1 + \delta_2/S_2)^2 \cdot S_2 \right]. \end{split}$$

Задаваясь значениями $\delta_1 = \delta_2 = 1,2,3,4$ и подставляя значения площади средней S_2 и внешней S_1 частей электромагнита

$$S_1 = (\Pi^2 - d^2) / (4 \cdot \pi) = 0.0867 \text{ M}^2,$$
 $S_2 = d_1^2 / (4 \cdot \pi) = 0.081 \text{ M}^2$ получаем таблицу 2.2

Таблица 2.2

δ_1 ,MM	1	2	3	4
F ₁ ·10 ⁴ H	8	1,97	0,892	0,50
F ₂ ·10 ⁴ H	8,54	2,055	0,960	0,537
F-10 ⁴ H	16,54	4,025	1,852	1,035
1 10 11	7	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

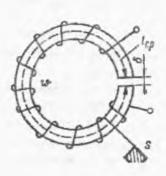
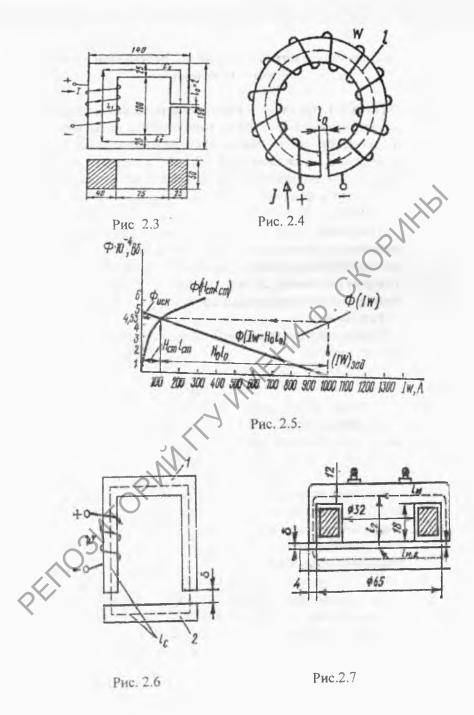



Рис. 2.1.

Рис. 2.2.

3. Электромагнитные устройства переменного магнитного потока.

Задача 3.1. На рис.3.1 даны геометрические размеры магнитопровода цепи в мм, выполненного из электротехнической стали марки 1512. Магнитопровод набран из листов толщиной d=0,5 мм. Толщина изоляции между листами 0.05 мм. Удельный вес стали Y=7,8 г\cm². Напряжение сети U=220 В, число витков W=1300 частота f=50 Гц.

Требуется определить: 1)ток I_t , параметры последовательной и параллельной схем замещения, если можно пренебречь активным сопротивлением обмотки и потоком рассеяния; 2)как изменится ток I^* , если в магнитопроводе появился воздушный зазор $I_B = 0.1$ мм.

Решение.

Определяем длину средней магнитной линии и сечение магнитопровода

$$L_{cr} = 80.2 + 120.2 = 400 \text{ mm} = 40 \text{ cm}; S = 30.20 = 600 \text{ mm}^2 = 600^2.$$

Считаем, что изоляция занимает 10% площади магнитопровода, т.е. $S_{ct} = 0.9S = 5.4 \cdot 10^{-4} \text{ м}^2$, находим значение максимальной магнитной индукции:

$$B_{T} = U_{T} / (wWS_{0T}) = 220.\sqrt{2} / (2.\pi.50.1300.5, 4.10^{-4}) = 1.4 \text{ Tm.}$$

Находим активную и реактивную составляющие тока I (они определяются мощностью потерь и намагничивающей мощностью)

$$P_{cr}/U = P_{cr}GU$$
, $I_p = Q_{cr}/U = q_{cr}G/U$.

Масса магнитопровода

$$G = \gamma I_{c\tau} S_{c\tau} = 7,8.40.5,4 = 1,68 \text{ kg}.$$

По кривым зависимостей удельных активной и намагничивающей мощностей p_{ct} (Вт) и q_{ct} (Вт), которые приводятся в справочной литературе, находим

$$p_{cr} = 2.8BT/K\Gamma; q_{cr} = 26 Bap/K\Gamma;$$

тогда

$$P_{cr} = p_{cr}G = 2.8 \cdot 1.68 = 4.7 BT;$$

 $Q_{cr} = q_{cr}G = 26 \cdot 1.68 = 43.8 Bap;$

$$\begin{split} I_a &= p_{\text{cr}}/U = 4,7/220 = 0,0214 \text{ A} = 21,4 \text{ mA}; \\ I_p &= Q_{\text{cr}}/U = 43,8/220 = 0,199 \text{ A} = 199 \text{ mA}; \\ I &= \sqrt{(l_a^2 + I_p^2)} = 201 \text{ mA}. \end{split}$$

Параметры параллельной и последовательной схем замещения определяются так (рис. 3.2)

$$\begin{aligned} q_{\text{cT}} &= l_{\text{a}}/U = 0.0214/220 = 0.0973 \cdot 10^{-3} \text{ 1/Om}; \\ B_{\text{cT}} &= l_{\text{p}}/U = 0.199/220 = 0.905 \cdot 10^{-3} \text{ 1/Om}; \\ Z_{\text{cT}} &= U/I = 220/0.201 = 1095 \text{ Om}; \\ \cos\phi &= l_{\text{a}}/I = 0.0214/0.201 = 0.106; \\ R_{\text{cT}} &= Z_{\text{cT}}\cos\phi = 1095 \cdot 0.106 = 116 \text{ Om}; \\ X_{\text{CT}} &= \sqrt{(Z_{\text{cT}}^{-2} - R_{\text{cT}}^{-2})} = \sqrt{(1095^2 - 116^2)} = 1090 \text{ Om}. \end{aligned}$$

При появлении воздушного зазора $l_{\rm s}$ в магнитопроводе ток в катушке находим по формуле

$$I^* = \sqrt{(I_a^2 + (I_p + I_b)^2)},$$
 где: $I_a = H_B I_B / W = 8000 \mathrm{BT} I_B / (\sqrt{2} W) = 8000 \mathrm{C} \cdot 1, 4 \cdot 0.01 / / (\sqrt{2} \cdot 1300) = 0,0615 \mathrm{A},$ тогда: $I^* = \sqrt{(0,0214^2 + (0,199 + 0,0615)^2)} = 0,261 \mathrm{A} = 261 \mathrm{MA}.$

Задача 3. 2. Определить сопротивление R_0 и X_0 , схемы замещения катушки с ферромагнитным сердечником (рис. 3.3) по следующим данным: действующее значение напряжения на катушке 120 В; действующее значение тока 0,5 А; потери мощности в катушке, измеренные ваттметром 2 Вт; сопротивление обмотки, измеренное методом моста переменного тока 4 Ом. Полем рассеяния пренебречь.

Решение.

Мощность потерь в катушке P, измеренная ваттметром, складывается из мощности потерь в меди обмотки $P_{\rm M}$ и в магнитопроводе $P_{\rm c}$.

Следовательно $P_c = 2 - 0.5^2 \cdot 4 = 1$ Вт.

Сопротивление R_o в схеме замещения катушки определяется мощностью потерь в магнитопроводе: $P_0 = P_c/I^2 = 1/0,5^2 = 4$ Ом.

Полное сопротивление катушки

а ее индуктивное сопротивление

$$X_0 = \sqrt{(Z^2 - (R + R_0)^2)} = \sqrt{(240^2 - (4+4)^2)} \approx 240 \text{ Om.}$$

Задача 3.3. Построить в масштабе векторную диаграмму катушки с ферромагнитным сердечником, к зажимам которой подведено синусоидальное напряжение U = 220B. При токе I = 0.25 A мощность катушки равна 25 Вт. Число витков катушки W = 500A, а активное сопротивление обмотки ,измеренное мостом постоянного тока, равно 240 Ом. Потокосцеплением ка-KORY тушки пренебречь.

Решение.

Мощность потерь в обмотке

$$P_{M} = R^{2} I = 240.0,25^{2} = 15 B_{T}.$$

Мощность потерь в магнитопроводе

$$P_c = P - P_M = 25-15 = 10 B_T$$

Угол сдвига фаз ф между вектором напряжения катушки и вектором эквивалентного поля определяется по формуле

$$\cos \varphi = P/UI = 25/220 0.25 = 0.45, \ \varphi = 63^{\circ}$$

Откладываем в некотором масштабе вектор напряжения U и под углом 63° к нему вектор тока Ізк , модуль которого равен I (рис. 3.4). Вычитая из вектора Ü вектор активного падения напряжения RI, находим вектор U', равный по значению и противоположный по направлению вектору э.д.с. \dot{E} (U' = 220 B).

Вектор потока Φ_m отстаёт по фазе от вектора U' на угол 90°, а его значение определяется по формуле

$$\Phi_{\rm m} = E/(4,44 \, {\rm fW}) = U'/(4,44 \, {\rm fW}) = 208/4,44 \cdot 50 \cdot 500 = -1.88 \, {\rm B6}.$$

Угол потерь δ, т.е. угол сдвига фаз между Г'ж и вектором Φ_{m} определяется из соотношения

$$\sin\delta=P_{c}$$
 / (U'I) = 10 / (208·0,25) = 0,192; δ = 11°. Варианты задачи:

1)
$$U = 127 \text{ B}$$
; $I = 0.05 \text{ A}$, $P = 1.5 \text{ BT}$; $W = 200$, $R = 300 \text{ Om}$:

2)
$$U = 36 \text{ B}$$
; $I = 0.2 \text{ A}$; $P = 0.2 \text{ B}$; $W = 120$; $R = 250 \text{ OM}$.

Задача 3.4. Определить параметры последовательной и параллельной схем замещения и построить векторные диаграммы для катушки включённой в сеть с напряжением U = 120 B, частотой $f = 50 \Gamma$ ц. При отсутствии сердечника приборы в схеме (рис. 3.5, а) показали:

$$U = 120 B, I = 14 A, P = 100 BT;$$

при наличии сердечника в той же катушке (рис. 3.5, б) приборы показали:

схема 3.4, а. Полное сопротивление катушки $Z_k = U/I = 8,55$ Ом, активное сопротивление $R_k = P/I^2 = 0,51$ Ом, индуктивное сопротивление катушки

$$x_k = \sqrt{(Z_k^2 - R_k^2)} = 8.5 \text{ Om.}$$

На рис 3.5, в представлена последовательная схема замещения катушки и соответствующая ей векторная диаграмма.

Параметры параллельной схемы замещения:

 $G = R/Z_k^2 = 0,0694$ см - активная проводимость;

 $B = x_L / Z_k^2 = 0,1157$ см — реактивная проводимость;

 $Y = 1/Z_k = 0,116$ см — полная проводимость.

На рис. 3.5, г представлены параллельная схема замещения и соответствующая ей векторная диаграмма.

Схема 3(5, 6.

Полное сопротивление катушки $Z_{DK} = U/I = 150 \text{ Ом},$ активное сопротивление R = 0.51 Ом,

индуктивное сопротивление $x_0 = \sqrt{(Z_{3k}^2 - (R + R_0)^2)};$ при этом

 $R+R_0 = P/I^2 = 1.87 \text{ Om}, R_0 = 1.87 - 0.51 = 1.36 \text{ Om}.$ Тогда $x_0 = 14.9$ Ом.

Полное сопротивление $Z_0 = \sqrt{(R_0^2 + Y_0^2)} = 14,92$ Ом.

Составляющая напряжения U, уравновешивая действие э.д.с. E_1 , равна $U' = Z_0 I = 119 B$. Тангенс угла потерь в стали tg $\alpha = P_c/Q_c = R_0/x_0 = 0.091$; $\alpha = 5^{\circ}12'$. Угол сдвига фаз напряжения U на катушке и поля і разен

$$\varphi = arc \cos((R + R_0/Z_{3K}) = 83^\circ.$$

На рис. 3.5, д представлена последовательная схема замещения и векторная диаграмма для катушки с магнитопроводом.

Параметры параллельной схемы замещения катушки с магнитопроводом

$$G_0 = R_0/{Z_0}^2 = 0,0061 \text{ cm}, \\ B_0 = x_0/{Z_0}^2 = 0,00666 \text{ cm}, I_0 = 1/Z_0 = 0,0736 \text{ cm}.$$

На рис. 3.5, е представлены параллельная схема замещения катушки с магнитопроводом и соответствующая ей векторная диаграмма. Токи в ветвях схемы замещения равны

$$I_a = U' \cdot G_0 = 0,725 \text{ A}, I_p = U'B_0 = 7,85 \text{ A}.$$

3.1. Трансформаторы

Основными параметрами трансформатора являются: 1. Номинальная мощность $S_{\text{ном}}$. Это полная мощность (кВА), которую трансформатор, установленный на открытом воздухе, может непрерывно отдавать в течение всего срока службы при номинальном напряжении и при максимальной и среднегодовой температурах окружающего воздуха, равной соответственно 40 и 5 градусов.

Если указанные температуры отличаются от номинальных, то и номинальная мощность будет отличаться от указанной и паспорте.

2. Номинальное первичное напряжение $U_{\text{ном1.}}$ Это напряжение на которое рассчитана первичная обмотка трансформатора.

3. Номинальное вторичное напряжение $U_{\text{ном2}}$.Это напряжение на выводах вторичной обмотки трансформатора при холостом ходе и номинальном первичном напряжении. При нагрузке вторичное напряжение U_2 снижается из-за потерь в трансформаторе.

Например: если $U_{\text{ном2}}$ = 400 B, то при полной нагрузке трансформатора вторичное напряжение U_2 = 380 B, т.к.20 B теряется в трансформаторе.

4. Номинальный первичный и вторичный ток $l_{\text{ном1}}$, $I_{\text{ном2}}$. Это токи, вычисленные по номинальной мощности и номинальным напряжениям. Для однофазного трансформатора

 $I_{\text{ном}1} = S_{\text{ном}}/(U_{\text{ном}2}n); I_{\text{ном}2} = S_{\text{ном}}/U_{\text{ном}2}$ Для трёхфазного трансформатора

 $I_{\text{Hom1}} = S_{\text{Hom}} / (\sqrt{3} U_{\text{Hom1}} n), I_{\text{Hom2}} = S_{\text{Hom}} / (\sqrt{3} U_{\text{Hom2}}).$

 η — к.п.д. трансформатора. На практике при определении токов принимают η =1,0. Трансформаторы чаще всего работают с нагрузкой меньше номинальной, поэтому вводят понятие о коэффициенте нагрузки $K_{\rm R}$. Если трансформатор с мощностью $S_{\rm ном}$ = 1000 кВА отдаёт потребителю мощность S_2 = 950 кВА, то $K_{\rm H}$ = 950/1000=0,95. Значение отдаваемой трансформатором активной и реактивной мощностей зависит от коэффициента мощности потребителя $\cos \phi_2$ Например при $S_{\rm ном}$ = 1000 кВА, $K_{\rm H}$ = 1,0, $\cos \phi_2$ = 0,9, отдаваемая активная мощность P_2 = $S_{\rm how}\cos\phi_2$ =1000x0,9=900кВт.

 $P_2 = S_{\text{ном}} \cos \varphi_2 = 1000 \times 0,9 = 900 \text{ кВт,}$ а реактивная $Q_2 = S_{\text{ном}} \sin \varphi_2 = 1000 \times 0,436 = 436 \text{ кВар.}$

Если потребитель увеличит $\cos \varphi_2$ до 1,0, то $P_2 = 1000 \cdot 1,0 = 1000 \kappa BT$, $Q_2 = 1000 \cdot 0 = 0$, т.е. вся отдаваемая мощность будет активной.

Отношение динейных напряжений в трёхфазных трансформаторах называют линейным коэффициентом трансформации, который равен отношению чисел витков обмоток, если они имеют одинаковые схемы соединения (Y/Yo и Δ/Δ). При других схемах коэффициент трэнсформации находят по формулам

$$K = U_{HOM1} / U_{HOM2} = \sqrt{3} W_1 / W_2 (Y/\Delta);$$

 $K = U_{HOM1} / U_{HOM2} = W_1 / (\sqrt{3} W_2) (\Delta/Y).$

Для уменьшения установленной мощности трансформаторов и снижения потерь энергии в сетях производят компенсацию части реактивной мощности конденсаторами. Пусть реактивная мощность предприятия Q = 5000 кВар, а заданная системой мощность $Q_3 = 1000$ кВар. Тогда необходимо скомпенсировать с по-

мощью конденсаторов мощность до $Q_6 = Q-Q_2 = 5000-1000 = 4000$ кВар. Для этого применяют комплекты конденсаторных установок, например УК -0.38-450 Н мощностью 450 кВар. Суммарная мощность батареи 9 450 = 4050 кВар, что близко к необходимому значению 4000 кВар.

Задача 3.5. Трёхфазный трансформатор имеет следующие номинальные характеристики $S_{\text{ном}}=1000$ кВА, $U_{\text{ном1}}=10$ кВ, $U_{\text{ном2}}=400$ В, потери в стали $P_{\text{ст}}=2,45$ кВт, потери в обмотках $P_{\text{о ном}}=12,2$ кВт. Первичные обмотки соединены в треугольник, вторичные - в звезду. Сечение магнитопровода $Q=450~\text{см}^2$, амплитуда магнитной индукции $B_T=1,5~\text{Тл.}$ Частота тока в сети f=50~Гц. От трансформатора потребляется активная мощность $P_2=810~\text{кВт}$ при $\cos\phi_{2^*}=0,9$. Определить:

- 1) номинальные токи в обмотках и токи при фактической нагрузке;
- 2) числа витков обмоток;
- 3) к.п.д. трансформатора при номинальной и фактической нагрузках.

Решение.

Номинальные токи в обмотках:

$$I_{\text{HOM}1} = S_{\text{HOM}} \cdot 1000 / (\sqrt{3} \cdot U_{\text{HOM}1}) = (1000 \cdot 1000) / (1,73 \cdot 10000)$$

= 58 A;

$$I_{\text{HOM2}} = S_{\text{HOM}} \cdot 1000 / (\sqrt{3} \cdot U_{\text{HOM2}}) = (1000 \cdot 1000) / (\sqrt{3} \cdot 400) = = 1445 \text{ A}.$$

Коэффициент нагрузки трансформатора

$$k_{H} = P_2 / (S_{HOM} \cdot cos\phi_2) = 810 / (1000 \cdot 0.9) = 0.9$$
.

Токи в обмотках при фактической нагрузке

$$I_1 = k_H I_{HOM1} = 0.9.58 = 52 A;$$

 $I_2 = k_H I_{HOM2} = 0.9.1445 = 1300 A.$

Фазные э.д.с., наводимые в обмотках. Первичные обмотки соединены в треугольник, а вторичные - в звезду, поэтому, пренебрегая падением напряжения в первичной обмотке, считаем, что

 $E_{1\varphi} \approx U_{\text{ном1}} = 1000 \; \text{B}, \;\; E_{2\varphi} = U_{\text{ном2}} \, / \, \sqrt{3} = 230 \; \text{B}.$ Числа витков обеих обмоток находим из формулы $E_{1\varphi} = 4,44 \; \text{fW}_1 \Phi_\text{T} = 4,44 \; \text{fW}_1 B_\text{T} Q,$

откуда

 $W_1 = E_{1\phi} / (4,44fB_{\tau}Q) = 10\ 000 / (4,44.50.1,5.0.045) = 667.$

Здесь

$$Q = 450 \text{ cm}^2 = 0.045 \text{ m}^2$$
,

 $W_2 = W_1 E_{2\phi} / E_{1\phi} = 667.230 / 10000 = 15,3.$

К.п.д. трансформатора при номинальной нагрузке

$$\begin{split} &\eta_{\text{HOM}} = \left(S_{\text{HOM}} \cdot \text{cos}\phi_2 \cdot 100\%\right) / \left(S_{\text{HOM}} \cdot \text{cos}\phi_2 + P_{\text{ct}} + P_{\text{0HOM}}\right) \\ &= \left(1000 \cdot 0.9 \cdot 100\right) / \left(1000 \cdot 0.9 + 2.45 + 12.2\right) = 98.4\%, \end{split}$$

К.п.д. трансформатора при фактической нагрузке $\eta = (k_u S_{\text{ном}} \cos \phi_2) / (k_u S_{\text{ном}} \cos \phi_2 + P_{\text{ст}} + k_u P_{0\text{ном}}) \cdot 100\% = (0.9 \cdot 1000 \cdot 0.9 \cdot 100\%) / (0.9 \cdot 1000 \cdot 0.9 + 2.45 + 0.9^2 \cdot 12.2) = =98.5 \%.$

Задача 3.6. Однофазный понижающий трансформатор номинальной мошностью $S_{\text{ном}} = 500~\text{B-A}$ служит для питания ламп местного освещения металлорежущих станков. Номинальное напряжение обмоток $U_{\text{пом1}} = 380~\text{B}$. $U_{\text{ном2}} = 24\text{B}$. К трансформатору присоединены десять ламп накаливания мощностью 40 Вт каждая. Их коэффициент мощности $\cos \phi_2 = 1,0$. Магнитный поток в магнитопроводе $\Phi_m = 0,005~\text{B}$ 6. Частота сети f = 50~L10. Потерями в трансформаторе пренебречь. Одределить:

- 1) номинальные токи в обмотках;
- 2) корффициент нагрузки трансформатора;
- 3) токи в обмотках при действительной нагрузке;
- 4) число витков обмоток;
- 5) коэффициент трансформации.

Решение.

Номинальные токи в обмотках

$$I_{HOM1} = S_{HOM} / U_{HOM1} = 500/380 = 1,32 A;$$

$$I_{HOM2} = S_{HOM} / U_{HOM2} = 500/24 = 20.8 \text{ A}.$$

Коэффициент нагрузки трансформатора

$$k_{\rm H} = P_2 / (S_{\rm HOM} \cos \varphi_2) = 10.40 / (500.1.0) = 0.8.$$

Токи в обмотках при действительной нагрузке

$$I_1 = k_H I_{HOM1} = 0.8 \cdot 1.32 = 1.06 \text{ A};$$

 $I_2 = k_H I_{HOM2} = 0.8 \cdot 20.8 = 16.6 \text{ A}.$

При холостом ходе $E_1 \approx U_{HOM1}$ $E_2 \approx U_{HOM2}$ Число витков обмоток находим из формулы

 $E = 4.44 \text{ f W } \Phi_{m}$.

Тогда

$$W_1=E_1 / (4,44f \, \Phi_{\tau})=380 / (4,44\cdot 50\cdot 0,005)=340 \,\,\mathrm{витков};$$
 $W_2=E_2 / (4,44f \, \Phi_{\tau})=24 / (4,44\cdot 50\cdot 0,005)=22 \,\,\mathrm{витка}.$ Коэффициент трансформации $K=E_1 / E_2=W_1 / W_2=340 / 22=15,5.$

Задача 3.7. Предприятие потребляет активную мощность P = 1550 кВт при коэффициенте мощности $\cos \varphi_2$ = 0,72. Энергосистема предписала уменьщить потребляемую реактивную мощность до 450 кВар. Определить: необходимую мощность конденсаторной батареи и выбрать ее тип; необходимую грансформаторную мощность и коэффициент нагрузки в двух случаях:

- а) до установки батареи;
- б)после установки батареи.

Выбрать тип трансформатора. Номинальное напряжение сети U = 10 кВ. <

Необходимая трансформаторная мощность до установки конденсаторов

$$S_{TP} = P_2 / \cos \varphi_2 = 1550 / 0,72 = 2153 \text{ kB A}.$$

Из габлицы выбираем трансформатор типа

TM- 2500/10 с номинальной мощностью 2500 кВ·А.

Коэффициент нагрузки $K_H = 2153/2500 = 0.86$.

Необходимая предприятию реактивная мощность

$$Q = S_{rp} \sin \varphi_2 = 2153 \cdot 0,693 = 1492 \text{ kBap.}$$

Здесь $\sin \phi_2 = 0.693$.

Необходимая мощность конденсаторной батареи $Q_6 = Q - Q_3 = 1492 - 450 = 1042 \text{ kBap.}$

По таблице выбираем комплектные конденсаторные установки типа УК-0,38-540Н мощностью 540 кВар в количестве 2 штук. Общая реактивная мощность составит $O_6' = 2.540 = 1080$ кВар, что близко к необходимой мошности 1042 кВар.

Нескомпенсированная реактивная мощность

$$Q_{HCK} = Q - Q_6^{-1} = 1492 - 1080 = 412 \text{ kBap.}$$

Необходимая трансформаторная мощность

$$S_{TD}' = \sqrt{(P_2^2 + Q_{HCK}^2)} = \sqrt{(1550^2 - 412^2)} = 1604 \text{kB} \cdot \text{A}.$$

Принимаем к установке один трансформатор ТМ-1600/10 мощностью 1600 кВА. Его коэффициент нагрузки составит $k_{\rm H} = 1604/1600 \approx 1.0$.

Таким образом, компенсация реактивной мощности установочную значительно уменьшить позволила трансформаторную мощность.

Задача 3.8. Определить параметры 7 – образной схемы замещения (рис. 3.6) однофазного трансформатора номинальной мощностью S_{ном} 8,8 кВА, номинальным напряжением Uном = 220 В по данным опытов холостого хода и короткого замыкания $P_x = 50$ Вт, $I_x = 2A$, $P_{K,HOM} = 800 \text{ BT}, U_K = 32 \text{ B}.$

Решение.

Номинальный первичный ток

$$I_{\text{HOM}} = S_{\text{HOM}} / U_{\text{HOM}1} = 8800/220 = 40 \text{ A}.$$

Из опыта холостого хода находим:

$$R_0 = P_x / l_x^2 = 50/4 = 12,5 \text{ Om};$$

 $Z_0 = U_{\text{HoM1}} / l_x = 220/1 = 110 \text{ Om};$
 $X_0 = \sqrt{(Z_0^2 - R_0^2)} = 109 \text{ Om}.$

$$A_0 = \sqrt{(Z_0 - R_0)^2} = 109$$
 Ом.

13 опыта короткого замыкания определяем $R_k = R_{\kappa \text{ Hom}} / I_{\text{Hom}1}^2 = 800/1600 = 0,5$ Ом; $Z_k = U_k / I_{\text{Hom}1} = 32/40 = 0,8$ Ом; $X_\kappa = \sqrt{(Z_k^2 - R_k^2)} = 0,625$ Ом.

Задача 3.9. Найти номинальные токи $I_{\text{пом1}}, I_{\text{ном2}}$, токи холостого хода I_x и сопротивления Z_o и Z_K , к Г-образной схемы замещения трёхфазных трансформаторов, технические данные взять из таблицы 3.1, параметры Z_{\circ} и Z_{K} влияют на напряжение вторичной обмотки трансформа тора, поэтому их значение необходимо при анализе работы трансформатора в разных режимах нагрузки.

Таблица 3.1

Харак.	$S_{2 \text{ HOM}}$	$U_{\text{hom }1}$	U _{HOM 2}	ix	пх	Px	$P_{\underline{\kappa}}$	Способ
Тр-ра	кВА	кВ	кВ	%	<u>%</u>	Вт	<u>Вт</u>	co-
								един.
TCM	50	35	400	11,1	4,55	502	1200	Y/∀
60/35								
TCM	560	6	400	4,58	4,27	1970	7000	Y/Y
560/6								\mathcal{O}^{X}

Решение.

В паспорте трёхфазных трансформаторов приводятся номинальная мощность и мощность потерь всех трёх фаз: под номинальными напряжениями понимаются линейные напряжения на зажимах трансформатора в режиме холостого хода, а под минимальными токами — линейные токи независимо от соединения обмоток.

Номинальные токи трансформатора ТСМ 60/35
$$I_{\text{Hom1}} = S_{\text{Hom}} / (\sqrt{3} \cdot U_{\text{NoM1}}) = 60 \cdot 10^3 / (\sqrt{3} \cdot 35 \cdot 10^2) = 0,99 \text{ A}, \\ I_{\text{Hom2}} = S_{\text{How}} / (\sqrt{3} \cdot U_{\text{Hom2}}) = 60 \cdot 10^3 / (\sqrt{3} \cdot 400) = 87,5 \text{ A}. \\ \text{Ток холостого хода (первичной обмотки)} \\ I_{\text{N}} = i_{\text{x}} \cdot I_{\text{Hom1}} = 0,11 \cdot 0,99 = 0,1 \text{ A}.$$

Схема замещения трёхфазных трансформаторов составляется только для одной фазы, поэтому для расчёта её сопротивления нужно использовать фазные напряжения ,токи и мощности. У трансформатора ТСМ 60/35 - первичная обмотка соединена звездой, а вторичная - треугольником, поэтому:

фазные напряжения

$$U_{\phi HOM1} = U_{HOM1} = /\sqrt{3} = 3,5/\sqrt{3} = 20,2 \text{ kB};$$

 $U_{\phi HOM2} = U_{HOM2} = 400 \text{ B};$

фазные токи

$$I_{\text{dhom }1} = I_{\text{hom }1} = 0.99 \text{ A}; I_{\text{dhom }2} = I_{\text{hom }2} / \sqrt{3} = 50.5 \text{ A}.$$

Активные сопротивления Г - образной схемы замещения трансформатора

$$R_k = P_{\text{khomk}} / (3 \cdot I_{\phi \text{hom1}}^2) = 1208 / (3 \cdot 0.99^2) = 410 \text{ Om};$$

 $R_x = P_x / (3 \cdot I_x^2) = 502/3 \cdot 0.1^2 = 16800 \text{ Om}.$

Полное сопротивление Z_x находим с помощью формулы напряжения короткого замыкания

$$\begin{array}{l} U_k = Z_k \cdot I_{\varphi \text{Hom} 1\varphi} / U_{\varphi \text{Hom} 1\varphi} = Z_k \cdot I_{\varphi \text{Hom} 1\varphi} \cdot 3 \cdot U_{\varphi \text{Hom} 1\varphi} / \left(3 \cdot U_{\varphi \text{Hom} 1\varphi}^2 \right) \\ = = Z_k S_{\text{Hom}} / U_{\varphi \text{Hom} 2\varphi}; \end{array}$$

$$Z_k = U_k U_{\phi \text{HoM} 1 \phi} / S_{\text{HoM}} = 0.0455(35 \cdot 10^3)^2 / 60 \cdot 10^3 = 928 \text{ Om.}$$

Реактивное сопротивление

$$X_{K} = \sqrt{(Z_{k}^{2} - R_{k}^{2})} = 831 \text{ Om.}$$

Полное сопротивление ветви холостого хода

$$Z_0 = U_{\phi H OM 1 \phi} / I_x = 20.2 \cdot 10^3 / 0.1 = 202 \cdot 10^3 \text{ Om}.$$

Реактивное сопротивление

$$X_0 = \sqrt{(Z_0^2 - R_0^2)} = \sqrt{(202^2 - 16.8^2) \cdot 10^6} = 201 \cdot 10^3 \text{ Om.}$$

Для трансформатора ТСМ 560/6 имеем

$$I_{\text{HoM}1} = 54 \text{ A}; \ I_{\text{HoM}2} = 808 \text{ A}; \ I_{\text{x}} = 2,48 \text{ A}; \ R_{\text{k}} = 0,80 \text{m}; \ R_{\text{0}} = 106 \text{ Om}; \ X_{\text{a}} = 2,63 \text{ Om}; \ X_{\text{0}} = 1400 \text{ Om}.$$

Задача 3.10. Для трансформатора ТСМ 60/35, данные которого приведены в таблице 3.1, определить при половинной нагрузке ($\cos \phi_{\pi} = 0.9$) напряжение на вторичной обмотке, к.п.д., ток и $\cos \phi_{1}$ первичной обмотки.

Решение.

Для расчёта относительного изменения напряжения предварительно необходимо найти

$$\cos \phi_n = P_k / Z_k = P_k / S_k = P_k / (\sqrt{3} \cdot I_{\text{HOM1}} \cdot u_k \cdot U_{\text{HOM}}) = P_k / (S_{\text{HOM}} \cdot U_k);$$

$$\cos \varphi_n = 1208 / (60 \cdot 10^3 \cdot 0.0455) = 0.422; \varphi_n = 64^\circ.$$

Относительное изменение напряжения определяется формулой:

$$\Delta U_2 \beta (U_{k,a} \cos \varphi_n + U_{k,p,s} \sin \varphi_n) = \beta U_k (\cos \varphi_n + \sin \varphi_k \sin \varphi_n) =$$

$$= \beta U_k \cos (\varphi - \varphi_k),$$

При $\cos \phi_n = 0.9$, $\phi_n = 26^\circ$.

Ποэтому $\Delta U_2 = 0.0455 \beta \cos(26^\circ - 64^\circ) = 0.0358 \beta$.

При
$$\beta$$
 = 0,5 напряжение на вторичной обмотке U_2 = (1 - 0,5 ΔU_2) $U_{\text{ном}2}$ = (1 - 0,5·0,0358)·400 = 393 В. К.п.д. (при β = 0,5)
$$\eta$$
 = 1 - ($\beta^2 P_{\text{ном},k} + P_k$)/($\beta S_{\text{ном}} \cos \varphi_n + \beta^2 P_{\text{кном}} + P_k$) = = 1 - 0,5²·1200 + 502 / 0,5·60·10³·0,9 + 0,5²·1200 + 502 =

Активная мощность первичной обмотки $P_1=P_2/\eta=(\beta S_{\text{ном}}\cdot cos\phi_\pi\)/\eta=0.5\cdot 60\cdot 10^3\cdot 0.9\ /\ 0.97=27.8\cdot 10^3\ Om.$

0,97.

Ток первичной обмотки

$$I_1 = S_{HOM} / \sqrt{3} \times U_{HOM} = \sqrt{(P_1^2 + Q_1^2)/(\sqrt{3} U_{HOM})}$$
.

Если реактивные мощности, обусловленные полями рассеяния трансформатора не учитывать, то реактивная мощность первичной обмотки Q_1 будет равна сумме реактивных мощностей нагрузки Q_2 и намагничивания сердечника трансформатора $Q_0 \Rightarrow \sqrt{3} \ U_{\text{ном}1} \ I_{\text{x p.}}$ (реактивная составляющая тока холостого хода, практически равна полному току I_{x})

$$\begin{aligned} Q_1 = & \beta S_{\text{Hom}} \sin \phi_n + \sqrt{3} U_{\text{Hom1}} I_x = 0.5 \cdot 60 \cdot 10^3 \cdot 0.438 + \\ & + \sqrt{3} \cdot 35 \cdot 10^3 \cdot 0.1 = -9.2 \cdot 10^3 \text{ Bap}, \end{aligned}$$

следовательно

$$I_1 = \sqrt{((27.8 \cdot 10^3)^2 + (10.2 \cdot 10^3)^2)} / \sqrt{3.35 \cdot 10^3} = 0.535 \text{ A}.$$

Коэффициент мощности нагруженного трансформатора

$$\cos \varphi_1 = P_1 / (\sqrt{3} U_{\text{HOM}1} \cdot I_1) = 27.8 \cdot 10^3 / (\sqrt{3} \cdot 35 \cdot 10^3 \cdot 0.535) = 0.86.$$

Задача 3.11. Для трёхфазного трансформатора мощностью $S_{\text{ном}} = 100$ кВ-А соединение обмоток $Y \mid Y_0 - O$, известно: номинальное напряжение на зажимах первичной обмотки трансформатора $U_{\text{ном1}} = 6000$ В, напряжения холостого хода на вторичных обмотках трансформатора $U_{20} = 400$ В, напряжение короткого замыкания $u_k = 5,5$ %, мощность короткого замыкания $P_k = 2400$ Вт, мощность холостого хода $P_0 = 600$ Вт, ток холостого хода $I_0 = 0,07$ $I_{\text{ном1}}$. Определить:

- 1) сопротивление обмоток трансформатора R_1 , X_1 , R_2 , X_2 ;
- 2) эквивалентное сопротивление Z_o (сопротивление намагничивающей цепи) и его составляющие R_o и X_o , которыми заземляется магнитная цепь трансформатора;
- 3) угол магнитных потерь δ. Построить характеристики трансформатора:
- а) Зависимость $U_2 = f_1(-)$ напряжения U_z от нагрузки(внешняя характеристика);
- б) Зависимость $\eta = f_2(-)$ коэффициента полезного действия от нагрузки ;
- в) зависимость $\eta = f_2(-)$ к.п.д. от нагрузки; коэффициент нагрузки трансформатора (коэффициент мощности нагрузки принять $\cos \varphi_2 = 0.75$).

Построить векторную диаграмму трансформатора при нагрузке, состовляющей 0,8 от номинальной мощности трансформатора $S_{\text{ном}}$ и соs $\phi_2 = 0.75$. Составить T — образную схему замещения трансформатора.

Решение.

Определяем номинальный ток первичной обмотки $I_{\text{Hom1}} = S_{\text{Hom}} / (\sqrt{3} \cdot U_{\text{Hom1}}) = 100 \cdot 1000 / (\sqrt{3} \cdot 6000) = 9,6 \text{ A}.$

Определяем ток холостого хода и соз ф:

$$\begin{split} I_0 &= 0.07 I_{\text{HoM1}} = 0.07 \cdot 9,6 = 0,67 \text{ A};\\ \cos \phi_0 &= P_0 \ / \ (\sqrt{3} \cdot U_{\text{HoM1}} \cdot I_0 \) = 600 \ / \ (\sqrt{3} \cdot 6000 \cdot 0,67) = 0,086,\\ \phi_0 &= 85^\circ. \end{split}$$

Находим угол магнитных потерь $\delta = 90^{\circ}$ - $\phi_0 = 90^{\circ}$ - $85^{\circ} = 5^{\circ}$.

Сопротивления короткого замыкания:

$$Z_k = U_{k,\phi} / I_{k,\phi} = 0,055.6000 / (\sqrt{3.9},6) = 19,6 \text{ Om};$$
 $R_k = P_k / 3 I_k^2 = 2400.3 / 3.9,6^2 = 8,7 \text{ Om},$
 $X_{\kappa} = \sqrt{(Z_k^2 - R_k^2)} = \sqrt{(19,6^2 - 8,7^2)} = 17,9 \text{ Om}.$

Сопротивление первичной обмотки:

$$R_1 = R_2' = R_k / 2 = 8.7 / 2 = 4.35 \text{ OM};$$

 $X_{d1} = X_{d2}' = X_k / 2 = 19.9 / 2 = 8.95 \text{OM}.$

Сопротивление вторичной обмотки:

$$R_2 = R_2'/n^2 = 4,35/225 = 0,0193 \text{ Om};$$

$$X_{d2}=X_{d2}^{\prime}/n_2=8,95/225=0,0398$$
 Ом; где $n=U_{\text{ном I}}/U_{z0}=6000/400=15.$

Определяем сопротивление намагничивающей цепи:

$$Z_0 = U_{\text{t.ф.}} / I_{0,\phi} = 6000 / \sqrt{(3.0,67)} = 5180 \text{ OM};$$

$$R_0 = P_0/3 \cdot I_0^2 = 600/3 \cdot 0.67^2 = 447 \text{ OM};$$

$$X_0 = \sqrt{(Z_0^2 - R_0^2)} = \sqrt{(5180^2 - 447^2)} = 5160 \text{ Om.}$$

Для построения внешней характеристики $U_2 = f_1(\beta)$, находим потерю во вторичной обмотке трансформатора ΔU_2 , % = $\beta(u_a\% \cdot \cos \varphi_2 + u_p\% \sin \varphi_2)$,

где u_a %, u_p % - активные и реактивные падения напряжений.

$$u_a\% = u_k\%\cos\varphi_{k_a}\cos\varphi_k = R_k / Z_k$$

$$_{Ua}\% = 5,5.8,7/19,9 = 2,4\%;$$

$$u_p\% = \sqrt{((u_k\%)^2 - (u_a\%)^2)} = \sqrt{((5,5)^2 - (2,4)^2)} = 4,95\%.$$

Напряжение на зажимах вторичной обмотки трансформатора определяется по формуле

$$U_2 = U_{20} / 100(100 - \Delta U_2\%).$$

Задаваясь разными значениями β , определяем напряжение U_2 (таблица 3.2):

Таблица 3.2

			7.00011111
β	$\Delta U_2\%$	U ₂ ,B	η
0,01	- <	7 -	0,555
0,025	7.	_	0,757
0.05	110		0,757
0,1	0,507	397,97	0,924
0,2	1.014	395,94	0,956
0,3	1,521	393,92	0,965
0.4	2,028	391,89	0,967
20,5	2,535	389,86	0,969
0,6	3,042	287,83	0,969
0,7	3,549	385,80	0,969
0,8	383,78	383,78	0,964
0,9	383,78	385,80	0,963
1,0	5,070	379,72	0,962

Для построения зависимости $\eta = f_2(\beta)$, расчёт к.п.д. производим по формуле

 $\eta = \beta S_{\text{HOM}} \cos \varphi_2 / (\beta S_{\text{HOM}} \cos \varphi_2 + P_0 + \beta^2 P_k).$

Результаты расчета сведены в таблице.

3.2.Полученные характеристики показаны на рис. 3.7.

Определяем, при какой нагрузке трансформатор имеет максимальный кпл:

$$\beta_{\text{max}} = \sqrt{P_0} / P_k = \sqrt{600/2400} = 0.5; \ \eta_{\text{max}} = 0.969.$$

Построение векторной диаграммы (рис. 3.8) начнем с вектора фазного напряжения $\dot{U}_{2\phi} = \dot{U}_2$ значение, которого для $\beta = 0.8$ и $\cos \phi_2 = 0.75$ равно

$$U_{2d} = 383,78/\sqrt{3} = 220 \text{ B}$$

 $U_{2\phi}=U_{2\phi}$ n = 222·15 = 3330 B. Вектор тока $I_{2\phi}$ отстаёт по фазе от вектора $U_{2\phi}$ на заданный угол ω и ω $U_{2\phi}=U_{2\phi}$ на $U_{$ =115.6 A:

$$I_2 = I_2 / n = 115.6 / 15 = 7.72 \text{ A}$$

Падение напряжения на вторичной обмотке

 $R_2 I_2 = 4,35.7,72 = 33,6 B; X_{d2} I_2 = 8,95.7,72 = 68,3 B.$ Электродвижущую силу Е2 находим из уравнения электрического состояния, составленного по второму закону Кирхгофа для вторичной цепи

$$\dot{E}_2 = \dot{U}_2 + R_2 \dot{I}_2 + jX_{d2}\dot{I}_2$$

Вектор магнитного потока Φ_{m} опережает вектор E_{2} на 90°, а ток холостого хода I_0 опережает магнитный поток Φ_{m} на угол потерь δ . Ток в первичной обмотке трансформатора І получаем из уравнений магнитодвижущих сил

$$I_1 = I_0 + (-I_2),$$

Вектор напряжения первичной обмотки трансформатора U₁ определяем из уравнения электрического состояния, составленного по второму закону Кирхгофа для первичной цепи

$$U_1 = - \dot{E}_1 + R_1 \dot{I}_1 + j x_{d2} \dot{I}_1.$$

Током холостого хода можно пренебречь и принять $\hat{I}_1 = \hat{I}_2$ или определить \hat{I}_1 по диаграмме. Тогда падения напряжения в первичной обмотке будут:

 $R_1I_1 = 4,35.7,76 = 33.8 \text{ B}; X_{d1}I_1 = 8,95.7,76 = 69.4 \text{ B}.$

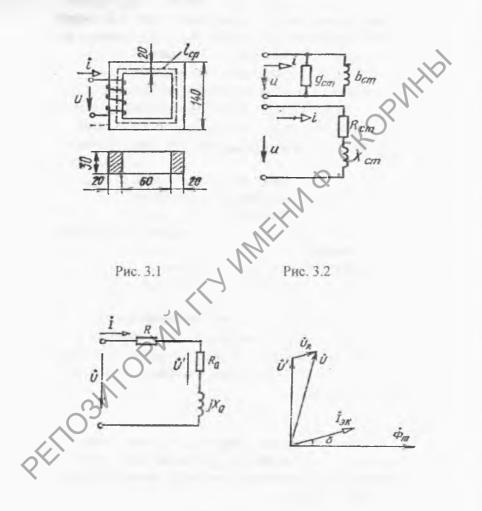
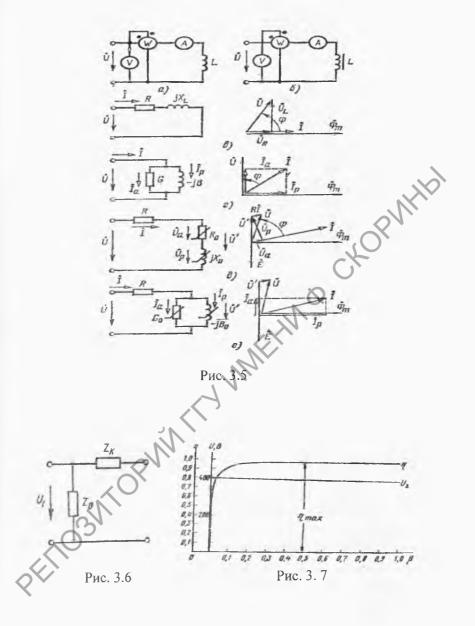
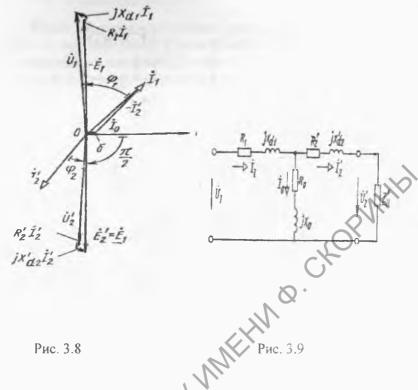




Рис. 3.3

Рис. 3.4

4. Электрические машины переменного тока

4.1 Асинхронные электрические машины

Асинхронные малины характеризуются скольжением $S = (n_1 - n_2)/n_1$

где n_1 — частота вращения магнитного поля (синхронная частота вращения),об/мин, n_2 — частота вращения ротора, об/мин.

Частота вращения ротора

$$U_2 = 60 \cdot f_1 / p(1-S),$$

где f_1 — частота переменного напряжения сети; p — число пар полюсов машины.

Вращающееся магнитное поле пересекает обмотки статора и ротора, и индуцирует в них э.д.с., действующие значения которых при неподвижном роторе равны

 $E_1 = 4,44 \; \text{Kw}_1 \; f_1 \; W_1 \; \Phi_T; \; E_2 = 4,44 \; \text{Kw}_2 \; f_2 \; W_2 \; \Phi_T,$ где $W_1, \; W_2$ — число последовательно соединённых витков обмоток фаз статора и ротора;

 Kw_1 , Kw_2 – обмоточные коэффициенты статора и ротора;

 Φ_m — амплитудное значение магнитного потока вращающегося поля, Вб.

Э.д.с. индуцируется в обмотке вращающегося ротора $E_{2s} = 4.44 \text{ Kw}_2 \text{ Sf}_1 \text{ W}_2 \Phi_m = \text{SE}_2.$

Ток во вращающемся роторе определяется так

 $I_{2s} = E_{2s}/(\sqrt{(R_2^2 + (X_2 S)^2)}),$

где R_2 – активное сопротивление обмотки неподвижного ротора; X_2 – индуктивное сопротивление рассеяния неподвижного ротора.

Вращающиеся момент (Н.м.) асинхронного двигателя рассчитывается по формуле

 $M = K_A I_{2s} \Phi_T \cos \varphi_2$

где $K_{\rm д}$ — постоянный коэффициент, определённый конструктивными данными двигателя; ϕ_2 — угол сдвига фаз между током ротора и его э.д.с.

К.п.д. асинхронного двигателя

 $\eta = P_1/P_2 \cdot 100 \% = (P_1 - \Sigma P) / P_1 \cdot 100 \%$

где P_2 – полезная мощность на валу двигателя (Вт); P_1 – мощность, подводимая к двигателю (Вт);

ΣР – суммарная мощность потерь в двигателе (Вт).

Механическая характеристика $\pi_2 = f(M)$ при $U_1 = \text{const}$ и $f_1 = \text{const}$ является основной характеристикой асинхронных электрических машин.

Обозначение типа электродвигателя расшифровыва-

(A) - порядковый номер серии; А – асинхронный; Х – алюминевая оболочка и чугунные щиты (отсутствие Х означает, что корпус выполнен из чугуна); В – двигатель встроен в оборудование; Н – исполнение защищённое 1Р23, для закрытых двигателей испслнения 1Р44 обозначение защиты не приводится; Р – двигатель с повышенным пусковым моментом; С – сельско-

корийственного назначения; цифра после буквенного обозначения показывает частоту оси вращения в мм (100,112,и т.д.); буквы S, M, L — после цифр — установочные размеры по длине корпуса (S — станина самая короткая, М — промежуточная, L — самая длинная), цифра после размера — число полюсов, буква У — климатическое исполнение, последняя цифра — категория размещения.

В обозначениях типов двухскоростных двигателей после установочного размера указывают через дробь оба числа полюсов.

Задача 4.1. Трёхфазный асинхронный электродвигатель с короткозамкнутым ротором типа 4AP 160 S6 У3 имеет номинальные данные: мощность $P_{\text{ном}} = 11$ кВт, напряжение $U_{\text{ном}} = 380$ В; частота вращения ротора $n_2 = 975$ об/мин; к.п.д. = 0,855; коэффициент мощности $\cos\phi_{\text{ном}} = 0,83$; кратность пускового тока $I_{\text{п}}/I_{\text{ном}} = 7$; кратность пускового момента $M_{\text{п}}/M_{\text{ном}} = 2,0$; способность к перегрузке $M_{\text{тах}}/M_{\text{ном}} = 2,2$; частота тока в сети $f_1 = 50$ Гц. Определить:

- 1) потребляемую мощность;
- 2) номинальный, пусковой и максимальный моменты;
- 3) номинальный и пусковой токи;
- 4) номинальное скольжение;
- 5) частоту тока в роторе;
- 6) суммарные потери в двигателе.

Расцифровать его условное обозначение. Можно ли осуществить пуск двигателя при номинальной нагрузке, если напряжение в сети при пуске снизилось на 20%.

Решение.

1. Мощность, потребляемая из сети

$$P_1 = P_{\text{hom}} / \eta_{\text{hom}} = 11/0,855 = 12,86 \text{kBt}.$$

- 2. Номинальный момент. развиваемый двигателем $M = 9.55 \cdot P_{Hom} / n_2 = 9.55 \cdot 11 \cdot 1000 / 975 = 107.7 H_em.$
- 3. Максимальный и пусковой моменты:

$$M_{\text{max}} = 2.2 M_{\text{HoM}} = 2.2 107.7 = 23 M_{\text{H}}$$

$$M_n = 2M_{HOM} = 2.107,7 = 215,4 \text{ H-M}.$$

4. Номинальный и пусковой токи:

$$I_{\text{Hom}} = P_{\text{Hom}} \cdot 1000/(\sqrt{3}U_{\text{Hom}}\eta_{\text{Hom}}\cos\phi_{\text{Hom}}) =$$

=11·1000/(1,73·380·0,855·0,83) = 23,6 A;
 $I_{\text{II}} = 7.0 \cdot I_{\text{Hom}} = 7,0 \cdot 23,6 = 215,4 \text{ H·m}.$

5. Частота тока в роторе

$$f_2 = f_1 S = 50.0,025 = 1,25 \Gamma$$
ц.

6. Номинальное скольжение

$$S_{HOM} = n_1 - n_2 / n_1 = 1000 - 975 / 1000 = 0.025 = 2.5\%.$$

- 7. Условное обозначение 4A160S6У3 расшифровывается так: двигатель четвёртой серии, асинхронный с повышенным скольжением (буква Р), высота оси вращения 160 мм, размеры корпуса по длине S (самый короткий), шестиполюсный, для умеренного климата, третья категория размещения.
- 8. При снижении напряжения в сети на 20% на выводах двигателя остаётся напряжение 0,8U_{ном} Так как момент двигателя пропорционален квадрату напряжения, то

$$M_n / M_n = (0.8U_{HOM})^2 / U_{HOM}^2 = 0.64;$$

 $M_n = 0.64M_n = 138 \text{ Hm},$

что больше $M_{\text{ном}} = 107,7 \text{ Hm}.$

Таким образом, пуск двигателя возможен.

Задача 4.2. Каждая фаза обмотки статора трёхфазного асинхронного двигателя с фазным ротором имеет число витков $W=150\,$ и обмоточный коэффициент $k_{01}=0,97.$ Амплитуда вращающего магнитного потока $\Phi_m \neq 0,006\,$ Вб. Частота тока в сети $f_1=50\,$ Гц. Активное сопротивление фазы ротора $R_2=0,4\,$ Ом, индуктивное сопротивление фазы неподвижного ротора $x_2=4,2\,$ Ом. При вращении ротора с частотой $n_2=980\,$ об/мин в фазе ротора наводится э.д.с. $E_{2s}=10\,$ В. Определить:

- 1) э.д.с. Е₁ в фазе обмотки статора;
- 2) э.д.с. в фазе обмотки подвижного ротора;
- $_{2)}$ ток в фазе ротора при нормальной работе I_2 и при пуске $I_{2\pi}$

Решение.

1. Э.д.с. в фазе статора

 $E_1 = 4,44 \cdot k_{01} \cdot W_1 \cdot f_1 \cdot \Phi_m = 4,44 \cdot 0,97 \cdot 150 \cdot 50 \cdot 0,06 = 194 \text{ B}.$

- 2. При $n_2 = 980$ об/мин частота вращения поля n_1 может быть только об/мин и скольжение ротора $S = n_1 n_2/n_1 = 1000 980 / 1000 = 0,02$.
- 3. Э.д.с. в фазе неподвижного ротора определяем из формулы $E_{2s}=E_2S$, откуда $E_2=E_{2s}/S=10/0.02=500~B$.

4. Ток в фазе ротора при пуске $I_{2n} = E_2 / \sqrt{(R_2^2 + x_2^2)} = 500 / \sqrt{(0.4^2 + 4.2^2)} = 119 \text{ A}.$

5. Индуктивное сопротивление фазного ротора при скольжении

S = 0.02; $X_{2s} = X_2S = 4.2.0.02 = 0.084 \text{ QM}$.

6. Ток в фазе вращающегося ротора $I_2 = E_{2s}/\sqrt{(R_2^2 + x_{2s}^2)} = 10/\sqrt{(0.4^2 + 0.084^2)} = 24.4 \text{ A}.$

Задача 4.3. Номинальная мощность трёхфазного асинхронного двигателя с короткозамкнутым ротором $P_{\text{ном}}=10~\text{кВт}$, номинальное напряжение $U_{\text{ном}}=380~\text{B}$, номинальная частота вращения ротора $n_{\text{ном}}=1420~\text{об/мин}$, номинальный к. п. д. $\eta=0.84~\text{и}$ номинальный коэффициент мощности $\cos\phi_{\text{ном}}=0.85$. Кратность пускового тока $I_{\text{пуск}}/I_{\text{ном}}=6.5$, а перегрузочная способность двигателя $\lambda=1.8$. Определить:

- 1) потребляемую мощность;
- 2) номинальный и максимальный (критический) вращающие моменты;
- 3) пусковой ток;
- 4) номинальное и критическое скольжение.

Решение.

Потребляемая мощность

$$P_{1\text{HOM}} = P_{\text{HOM}} / \eta_{\text{HOM}} = 10/0.84 = 11.9 \text{ kBt}.$$

Номинальный и максимальный моменты:

$$M_{HOM} = 9550P_{HOM} / n_{HOM} = 9550 \cdot 10 / 1420 = 67,3 \text{ HM};$$

 $M_{max} = \lambda M_{HOM} = 1,8 \cdot 67,3 = 121 \text{ H·M}.$

Номинальный и пусковой токи:

$$I_{\text{HOM}} = P_{I_{\text{HOM}}} / (\sqrt{3} \cdot U_{\text{HOM}} \cos \varphi_{\text{HOM}}) = 11,9 \cdot 1000 / (1,73 \cdot 380 \cdot 0,84) = 21,2 \text{ A};$$

$$I_{\text{myck}} = 6.5 I_{\text{hom}} = 6.5.21.2 = 138 A.$$

Номинальное и критическое скольжения:

$$S_{HOM} = (n_0 - n_{HOM}) / n_0 = (1500 - 1420) / 1500 = 0.053;$$

 $S_{KP} = S_{HOM}(\lambda + \sqrt{(\lambda^2 - 1)}) = 0.053(1.8 + \sqrt{(1.8^2 - 1)}) = 0.175.$

- Задача 4.4. Трёхфазный асинхронный двигатель с фазным ротором, сопротивление фаз обмоток которого $R_1=0,48$ Ом, $R_2=0,02$ Ом, $X_1=2,24$ Ом, $X_2=0,08$ Ом, соединён треугольником и работает при напряжений $U_{\text{ном}}=220$ В с частотой f=50 Гц. Число витков на фазу обмоток $W_1=187,\ W_2=36,\$ число пар полюсов p=3. Определить:
- 1) пусковые токи статора и ротора, пусковой вращающий момент. коэффициент мощности при пуске двигателя с замкнутым накоротко ротором;
- 2) токи ротора и статора, вращающий момент при работе двигателя со скольжением \$= 0,03;
- 3) критическое скольжение и критический (максимальный) момент;
- 4) величину сопротивления фазы пускового реостата для получения пускового момента, равного максимальному а также пусковые токи статора и ротора при этом сопротивлении.

Решение.

Для приведения сопротивления обмотки ротора k обмотке статора определяем коэффициент трансформации

$$n_1 = W_1 / W_2 = 187 / 36 = 5.2.$$

Приведенные значения сопротивлений роторной обмотки:

$$R_2 = R_n n^2 = 0.02.5, 2^2 = 0.54 \text{ OM}; X_2 = x_2 n^2 = 0.08.5, 2^2 = 2.16 \text{ OM}.$$

Сопротивление короткого замыкания:

$$R_k = R_1 + R_2 = 0.48 + 0.54 = 1.0 \text{ Om};$$

$$X_{k} = X_{1} + X_{2} = 2,24 + 2,16 = 4,4 \text{ OM};$$

 $Z_{k} = \sqrt{(R_{k}^{2} + X_{k}^{2})} = \sqrt{(1,0 + 4,4^{2})} = 4,51 \text{ Om}.$

Пусковые токи, пусковой момент и соз фпуск при пуске двигателя с замкнутым накоротко ротором:

$$\begin{split} I_{1\text{пуск}} &= U_{\varphi}/\,Z_{\text{k}} = 220/4,51 = 48,8 \text{ A}; \\ I_{\text{пуск}} &= n \cdot I_{1\text{пуск}} = 5,2 \cdot 48.8 = 254 \text{ A}; \\ M_{\text{пуск}} &= 3 \cdot R_2 \cdot I_{2\text{пуск}}^2/\,\Omega_0 = 3 \cdot 0,02 \cdot 254^2 = 37 \text{ H·м}, \\ \text{где }\Omega_0 &= 2\pi n_0/60 \text{ ; } n_0 = 60f_1/\text{ p}. \\ \text{Определяем коэффициент мощности} \\ \cos \phi_{\text{пуск}} &= R_k/Z_k = 1,0/4,51 = 0,222. \end{split}$$

Токи и вращающий момент при работе двигателя со

Определяем коэффициент мощности
$$\cos \phi_{\text{пуск}} = R_k/Z_k = 1.0/4,51 = 0,222.$$
 оки и вращающий момент при работе двигателя со скольжением $S = 0,03$: $Z = \sqrt{((R_1 + R_2/S)^2 + (X_1 + X_2)^2)} = \sqrt{((0,46+0,54/0,03)^2 + 4,4^2) = 18,9}$ Ом; $I_1 = U_{\varphi}/Z = 220/18,9 = 11,6$ A; $I_2 = nI_1 = 5,2\cdot11,6=60,3$ A: $M = 3\cdot(R_2/S)\cdot I_2^2/\Omega_0 = 3\cdot0,02/0,03\cdot60,3^2/104,5 = 70$ H·м.

Критическое скольжение и критический (максимальный) момент:

$$S_{\kappa p} = R_2^{-1} / \sqrt{(R_1^2 + X_k^2)} = 0.54 / \sqrt{(0.46^2 + 4.4^2)} = 0.122;$$

$$M_{max} = 3U_{\phi}^{-2} / 2\Omega_0[R_1 + \sqrt{(R_1^2 + X_k^2)}] = 0.520^2 / 2.104.5[0.46 + \sqrt{(0.46^2 + 4.4^2)}] = 141 \text{Hm}.$$

Определяем сопротивление пускового реостата. Известно ,что пусковой вращающий момент достигает максимального значения при условии, что

$$S_{\kappa p} = (R_2 + R_p) / X_k = 1,0,$$

- приведенное значение пускового рео-

$$R_p = X_k - R_2 = 4.4 - 0.54 = 3.86;$$

 $R_p = R_p / n^2 = 3.86 / 5.2^2 = 0.143 \text{ Om}.$

Тусковые токи при пуске двигателя с реостатом $Z_{\text{tryck}} = \sqrt{(R_k + R_p)} + X_k^2 = \sqrt{(1+3,86)^2 + 44,4^2} = 6,55 \text{ OM};$ $I_{1\text{myck}} = U_{\phi} / Z_{\text{myck}} = 220/6,55 = 33.6 \text{ A};$

 $I_{2\pi v c \kappa} = n I_{1\pi v c \kappa} = 5.2.33.6 = 174.7 A.$

4.2. Синхронные электрические машины

В синхронных машинах частота вращения ротора равна частоте вращающегося магнитного поля статора и определяемая следующим образом n = 60f/p, где f частота напряжения сети.

Действующее значение э.д.с., индуцируемой в одной фазе статора при холостом ходе

$$E_x = 4,44 \text{ f W}_1 \text{ Kw}_1 \Phi_m$$

где Ф_т-амплитудное значение магнитного потока ,создаваемого обмоткой возбуждения ротора Вб, W число витков одной фазы статора, включённых последовательно, Кw₁ - обмоточный коэффициент статора.

Мощность, отдаваемая трёхфазным генератором при симметричной нагрузке, определяется из выражения

$$P_2 = P_{3M} - P_3 = P_{3M} - 3R_1 \cdot I_{3M}^2$$

где Р_{эм} – электромагнитная мощность. Вт; Рэ – мощность электрических потерь в обмотке статора, Вт; R₁ - активное сопротивление обмотки фазы статора, Ом.

Вращающий момент (Нм) генератора имеет вид $M = P_{DM} / w$, где w - yгловая частота вращения генератора (рад / с).

К.п.д. трёхфазного генератора

$$\eta = P_2 / P_1 100\% = P_2 / (P + \Sigma P) \cdot 100\%$$

где Р₁ - мощность, подводимая к генератору от двигателя, Вт; Ру полезная мощность, отдаваемая генератором; Вт, ГР - суммарная мощность потерь, Вт.

$$\eta = P_2 / P_1 \cdot 100\% = (P_1 - \Sigma P) / P_1 \cdot 100\%$$

К.п.д. синхронного двигателя $\eta = P_2 \ / \ P_1 \cdot 100\% = (P_1 - \Sigma P) \ / \ P_1 \cdot 100\% \ ,$ — мощность, потребляемая двигателем от сети; полезная мощность на валу двигателя; ΣP – суммарная мощность потерь в двигателе.

Синхронные электрические машины имеют следующие характеристики:

- а) внешнюю U = f(I) при $I_B = const$ и n = const;
- б) регулировочную $I_n = f(I)$ при n = const и U = const.

Задача 4.5. Определить номинальный момент Миом. линейный ток I статора, номинальный к.п.д., активную мощность Р, реактивную мощность О, потребляемые из сети шестиполюсным синхронным двигателем. Если номинальные данные двигателя номинальная мощность Р_{ном} = 990 кВт, номинальное напряжение

 $U_{\text{ном}} = 6 \text{ кB}$, cos $\phi = 0.8$ (опережение), отношение $M_{max}/M_{Hom} = 2.2$, синхронное сопротивление X = 42 Ом, номинальная частота вращения пиом = 1000 об/мин.

Номинальная угловая скорость ротора трёхфазного инхронного двигателя (ТСД) синхронного двигателя (ТСД)

енного двигателя (ТСД)
$$\Omega_{\text{ном}} = 2 \cdot \pi n_{\text{ном}} / 60 = \text{w} / \text{p} = 314 / 3 = 105 \text{ pay/c}$$
 Номинальный момент

 $M_{HOM} = P_{HOM} / \Omega_{HOM} = (990 \cdot 10^3) / 105 = 9.43 \cdot 10^3 H \cdot M.$ Номинальный линейный ток статора, обмотка которого обычно включается по схеме "звезда"

 $I = P_{HOM} / (\eta_{HOM} \sqrt{3} \cos \varphi_{HOM}) = 990.10^3 / (\eta_{HOM} \sqrt{3}.6.10^3.0.8).$ Для определения $\eta_{\text{ном}}$ необходимо определить ток I.

Уравнение угловой характеристики имеет вид.

$$M = 3U_{\phi HoM}E_0 / (\Omega_{HoM} X \sin \theta) = M_{max} \sin \theta.$$

Находим $M_{\text{max}} = 2.2 \text{ M}_{\text{ном}} = 2.2.9,43 \cdot 10^3 = 20,75 \cdot 10^2 \text{ H·м}.$ При номинальной нагрузке:

Определяем:

$$XI = \sqrt{((E_0 \sin \theta)^2 + (E_0 \cos \theta - U_{\phi HOM})^2)} = 5,94 \text{ kB}.$$

3ная значения X = 42 Ом, получаем

$$I = 5940 / 421 = 141,4 A.$$

Определяем

$$\begin{split} \eta_{\text{hom}} &= P_{\text{hom}} / \sqrt{3} U_{\text{hom}} \text{ Icos} \phi_{\text{hom}} = \\ &= 990 \cdot 10^3 / \sqrt{3} \cdot 6 \cdot 10^3 \times \times 141, 4 \cdot 0, 8 = 0,842. \end{split}$$

Вычисляем

$$P = P_{\text{ном}} / \eta_{\text{ном}} = 1176 \text{ kBT}; Q = P \text{ tg } \phi_{\text{ном}} = 88 \text{ kBap}.$$

Задача 4.6.Найти ток, коэффициент мощности, активную и реактивную мощность турбо генератора при возбуждении $I_{\text{в}} = 500$ A, когда момент на валу M = 150 000 Hм. Паспортные данные генератора: $P_{\text{ном}} = 100$ 000 кВт; $U_{\text{ном}} = 15,75$ кВ; X = 3,1 Ом; $Cos\ \phi_{\text{ном}} = 0,9$. В режиме холостого хода при $E_0 = U_{\phi\text{ном}}$ ток возбуждения $I_{\text{во}} = 294$ A, частота вращения $I_{\text{ном}} = 3000$ об/мин.

Решение.

Фазную э.д.с. E₀ в заданном режиме определяем из условия пропорциональной зависимости её от тока возбуждения

$$E_0 / U_{\phi HOM} = I_B / I_{BO}$$

откуда

 $E_0 = U_{\text{ном}} \, I_B / (\sqrt{3} \, I_{BO}) = 15,75 \cdot 500 \, / \, (\sqrt{3} \cdot 294) = 15,46 \, кB.$ Угол рассогласования θ определяем из уравнения угловой характеристики

 $\sin \theta = M \cdot \Omega \cdot X / (3 \cdot U_{\phi_{\text{HOM}}} E_0) =$ $= 150 \cdot 10^3 \cdot 314 \cdot 3, 1 / (3 \cdot 9, 1 \cdot 10^3 \cdot 15, 46 \cdot 10^3) = 0,347; \ \theta = 20,3^\circ;$ $XI = \sqrt{((E_0 \sin \theta)^2 + (E_0 \cos \theta \cdot U_{\phi_{\text{HOM}}})^2)} = 7,5 \text{ kB};$ I = XI/X = 7,5/3,1 = 2,42 kA.

По мощности определяем активную составляющую тока и коэффициент мощности:

$$\begin{split} P &= \Omega M = 314 \cdot 150 \cdot 10^3 = 47,2 \text{ MBT;} \\ I_a &= P / 3U_{\phi \text{nom}} = 47,2 \cdot 10^6 / (3 \cdot 9 \cdot 1 \cdot 10^3) = 1,73 \text{ KA;} \\ \cos \phi &= I_a / I = 1,73 \cdot 10^3 / (2,42 \cdot 10^3) = 0,715. \end{split}$$

Реактивная мощность

 $\Phi = 3 \cup_{\phi \text{HOM}} \text{I } \sin \phi = 3.9, 1.2, 42 \times 0, 7 = 46,2 \text{ MBap.}$

Задана 4.7. Трёхфазный генератор, развивающий активную мощность $P = 35 \cdot 10^3$ кВт, подключён к шинам станции с напряжением $U_{\text{ном}} = 10,5$ кВ. Синхронное сопротивление машины X = 3,2 Ом, синхронная частота вращения ротора 3000 об/мин. Изменением поля возбуждения коэффициент мощности установлен сначала равным единице, а затем = 0,7 при индуктивном характере тока статора. Построить угловые характери-

стики и отметить на них точки, соответствующие заданным режимам. Построить векторные диаграммы генераторов. Определить реактивную мощность, отдаваемую машиной в сеть.

Решение.

Первый режим. При $\cos \varphi = 1$, векторы $U_{\phi hom}$ и iXIбудут взаимно перпендикулярными, поэтому:

$$I=P/(\sqrt{3}\ U_{\text{ном}}\cos\phi)=35/(\sqrt{3}\cdot 10,5\cdot 1)=1,92\ \text{кA};$$
 $E_0=\sqrt{(U_{\phi\text{ном}}^2+(XI)^2)}=\sqrt{(6,06^2+(3,2\cdot 1,92)^2)}=8,63\ \text{кB};$ $\sin\theta=XI/E_0=3,2\cdot 1,92/8,63=0,711,\theta=45^\circ.$ Векторная диаграмма имеет вид рис.4.1. Максимальный электромагнитный момент $M_{\text{max}}=3\ E_0U_{\phi\text{ном}}$

Векторная диаграмма имеет вид рис.4.1.

Максимальный электромагнитный момент

$$M_{\text{max}} = 3 E_0 U_{\phi \text{Hom}}$$

$$/(X\Omega)=3.8,63.10^3.6,06.10^3/(3,2.314)=156.10^3$$
 HM.

По известной амплитуде строим угловую характеристику $M(\theta) = M_{max} \sin\theta$ (кривая 1) и отмечаем т. А для которой $\theta = 45^{\circ}$.

Реактивная мощность при заданном $\cos \varphi = 1$, равна O=0.

Второй режим. При
$$\cos \varphi = 0.7$$
 угол $\varphi = 45^{\circ}$ и ток $I = 35 / (\sqrt{3.10}, 5.0, 7) = 2,74$ кА.

Построение векторной диаграммы начинаем с векторов напряжения $U_{\text{фном}}$ и тока І. Затем к вектору $U_{\text{фном}}$ пристраиваем вектор падения напряжения jXI и находим значение э д с. $E_0 = 13.8 \text{ кВ}.$

Угловую характеристику 2 строим по максимальному значению момента

$$M_{\text{max}} = 3E_0 U_{\phi \text{Hom}}/(X\Omega) = 3 \cdot 13,8 \cdot 10^3 \cdot 6,06 \cdot 10^3/(3,2 \cdot 314) =$$

$$= 250 \cdot 10^3 \text{ H} \cdot \text{M}.$$

для определения рабочей точки (точка В) и угла 0 воспользуемся соотношением

$$\sin\theta = M/M_{max} = P/\Omega M_{max} = 35 \cdot 10^6 / 136 \cdot 250 \cdot 10^3 = 0,445;$$

 $\theta = 26,5^\circ.$

Реактивная мощность

$$Q = 3U_{\Phi HOM}$$
 Isin $\varphi = 3.6,06.2,74.0,71 = 35,6$ mBap.

5. Электрические машины постлоянного тока

Напряжение на выводах U, э.д.с. E, падение напряжения в обмотке якоря $I_{\rm s}$ $R_{\rm s}$.: для генератора $E=U+I_{\rm s}$ $R_{\rm s}$. для двигателя $U=E+I_{\rm s}$ $R_{\rm s}$.

1. Электромагнитный или полный момент развиваемый двигателем

 $M_{\scriptscriptstyle \mathsf{DM}} = P/(2\cdot\pi\ a)\cdot N\Phi I_{\scriptscriptstyle \mathsf{R}}$ (Вб) или $E = pn/60a\cdot N\Phi$, откуда $\Phi = 60a/p\ n\ N\cdot E$, тогда $M_{\scriptscriptstyle \mathsf{DM}} = 60EI_{\scriptscriptstyle \mathsf{R}}/2\cdot\pi\cdot n = EI_{\scriptscriptstyle \mathsf{R}}/(\pi\cdot n/30) = EI_{\scriptscriptstyle \mathsf{R}}/w = P_{\scriptscriptstyle \mathsf{DM}}/w$. Здесь $P_{\scriptscriptstyle \mathsf{DM}} = EI_{\scriptscriptstyle \mathsf{R}}$ - электромагнитная мощность, Вт, угловая скорость вращения, рад/с.

2. Полезный номинальный момент (по валу) $M_{\text{ном}} = P_{\text{ном}} / w_{\text{ном}} = P_{\text{ном}} / (2 \cdot \pi \cdot n_{\text{ном}} / 60) = 60 P_{\text{ном}} / 2 \cdot \pi \cdot n_{\text{ном}} = (9,55 P_{\text{ном}} / n_{\text{ном}} \text{ HM}).$

Задача 5.1. Генератор с независимым возбуждением (рис.5.1) работает в номинальном режиме при напряжении на выводах $U_{\text{ном}} = 220$ В. Сопротивление обмотки якоря $R_{\text{я}} = 0.2$ Ом, сопротивление нагрузки $R_{\text{н}} = 2.2$ Ом, сопротивление обмотки возбуждения $R_{\text{в}} = 550$ Ом. Напряжение для питания обмотки возбуждения

 $U_{\rm B}$ = 110 В. Номинальная частота вращения якоря $n_{\rm ном}$ = 1200 об/мин. Определить:

- 1) э.д.с. генератора;
- 2) силу тока, отдаваемую потребителю;
- 3) силу тока в обмотке возбуждения;
 - 4) полезную мощность, отдаваемую генератором;
- 5) электромагнитный момент, преодолеваемым привод ным двигателем.

Решение.

Ток, отдаваемый в нагрузку

$$I_{H} = U_{HOM} / R_{H} = 220 / 2,2 = 100 A.$$

Ток в обмотке возбуждения

$$I_B = U_B / R_B = 110 / 55 = 2 A.$$

Ток в обмотке якоря

$$I_{B} = I_{B} + I_{B} = 100 + 2 = 102 \text{ A}.$$

Э.д.с. генератора

$$E = U_{HOM} + I_8 R_8 = 220 + 102 \cdot 0,2 = 240,4 B.$$

Полезная мощность, отдаваемая генератором

$$P_2 = U_{\phi HOM} I_H = 220 \cdot 100 = 22 \text{ kBt.}$$

Электромагнитная мощность и электромагнитный момент $P_{2M} = EI_8 = 240.4 \cdot 102 = 24600 \text{ BT} = 24.6 \text{ кBT};$

$$M_{3M} = P_{3M}/W_{HOM} = P_{3M}/(2 \cdot \pi \cdot n_{HOM}/60) =$$

=24600/(3,14·1200/60)=392H_M

Задача 5.2. Генератор независимого возбуждения имеет следующие номинальные данные номинальную мощность $P_{\text{ном}} = 200 \text{ кВт}$, номинальное напряжение $U_{\text{ном}} = 230 \text{ В}$, номинальная частота вращения $n_{\text{ном}} = 2850 \text{ об/мин}$. Сопротивление обмотки якоря в нагретом состоянии $R_{\text{я}} = 0.02 \text{ Ом}$, сопротивление обмотки возбуждения $R_{\text{в}} = 180 \text{ Ом}$. Определить момент, который развивает приводной двигатель для обеспечения номинальной работы генератора, и кпд генератора (потерями в щелочном контакте, механическими и магнитными потерями пренебречь).

Решение.

Записывая уравнения электрического состояния для якорной цепи

$$U = E_{\pi} - R_{\pi} I_{\pi}$$

и умножая его правую и левую части на значение тока $l_{\rm s}$, получаем уравнение энергетического баланса цепи якоря генератора

$$UI_{s} = E_{s} I_{s} - R_{s} I_{s}^{2}$$
 или $P_{sn} = P_{sm} - \Delta P_{sn}$

где $P_{3л}$ — выходная мощность генератора, которая для номинальной нагрузки указывается в паспортных данных машины в виде P_{80M} :

 $P_{\scriptscriptstyle 3M}$ — электромагнитная мощность, которая равна механической мощности $P_{\scriptscriptstyle Mex}$ приводного двигателя $\mathcal L$ и определяется моментом M на валу двигателя и частотой вращения n вала, соединяющего двигатель и генератор;

 $\Delta P_{30} = R_8 I_8^2$ — электрические потери в якоре генератоpa.

Таким образом, для определения момента

 $M_{HOM} = 9,55 P_{MM} / n_{HOM}$, необходимо найти мощность

 $P_{3M} = E_{R} I_{R,HOM}$, т.е. номинальный ток обмотки

$$I_{\text{N HOM}} = P_{\text{HOM}} //U_{\text{HOM}} = 200\ 000 / 230 = 870\ \text{A}$$

и э.д.с.

$$E_{\pi} = U_{HOM} + R_{\pi} I_{\pi} = 230 + 0.02 \cdot 870 = 247.4 B.$$

Тогда

$$M_{\text{HoM}} = 9,55 \cdot E_{\text{R}} I_{\text{Я.Ном}} / n_{\text{HoM}} =$$

$$= 9,55 \cdot 247,4 \cdot 870 / 2850 = 721 \text{ H·м.}$$
Т.Д.
$$\eta = P_2 / P_1 = P_{\text{HoM}} / P_{\text{3M}} = 200 / 215,24 = 0,93.$$

К.п.д.

$$\eta=P_2$$
 / $P_1=P_{\scriptscriptstyle HOM}$ / $P_{\scriptscriptstyle 3M}=200$ / $215,\!24=0,\!93$

Задача 5.3.Генератор с параллельным возбуждением (рис.5. 2) рассчитан на напряжение U_{ном} = 220 В и имеет сопротивление обмотки якоря R_я = 0.08 Ом, сопротивление обмотки возбуждения R 55 Ом. Генератор нагружен на сопротивление R_н = 1,1 Ом. К.п.д. генератора $n_{res} = 0.85$. Определить:

- 1) токи в обмотке возбуждения $I_{\rm B}$, в обмотке якоря $I_{\rm g}$ и в нагрузке Ін
- 2) э.д.с. генератора Е;
- 3) полезную мощность Р2
- 4) мощность двигателя для вращения генератора $P_{1:}$
- 5) электрические потери в обмотках якоря Р, и возбуждения Ра
- 6) суммарные потери в генераторе;
- 7) электромагнитную мощность Р.м.

Решение.

Токи в обмотке возбуждения, нагрузке и якоре

$$I_B = U_{HOM} / R_B = 220/55 = 4 \text{ A};$$

 $I_B = II / R_B = 220/1.1 = 200 \text{ A};$

$$I_{H} = U_{HOM} / R_{H} = 220/1, 1 = 200 A;$$

$$I_{B} = I_{B} + I_{H} = 4 + 200 = 204 \text{ A}.$$

Э.д.с. генератора

$$E = U_{HOM} + I_8 R_8 = 200 + 204.0,08 = 236,3 \text{ B}.$$

Полезная мощность

 $P_2 = U_{HOM} I_H = 220.200 = 44\ 000\ B_T = 44\ \kappa B_T.$

Мощность приводного двигателя для вращения генератора $P_1 = P_2/\eta_r = 44/0.85=52 \text{ кBT}.$

Электрические потери в обмотке якоря и возбуждения:

$$P_{\text{H}} = I_{\text{H}}^2 R_{\text{H}} = 204.0,08 = 3,32 \text{ kBT};$$

 $P_{\text{B}} = I_{\text{B}}^2 R_{\text{B}} = 4^2.55 = 0,88 \text{ kBT}.$

Суммарные потери мощности в генераторе

$$\Sigma P = P_1 - P_2 = 52 - 44 = 8 \text{ kBt}.$$

Электромагнитная мощность, развиваемая генератором $P_{\text{эм}} = \text{EI}_{\text{s}} = 236,3 \cdot 204 = 48,3 \text{ кBT}$

Задача 5.4. Электродвигатель постоянного тока с наратлельным возбуждением (рис 5..3) рассчитан на номинальную мощность $P_{\text{ном}} = 10$ кВт и номинальное напряжение $U_{\text{ном}} = 220$ В. Частота вращения якоря n = 3000 об/мин. Двигатель потребляет из сети ток I = 63 А. Сопротивление обмотки возбуждения $R_{\text{в}} = 85$ Ом, сопротивление обмотки якоря $R_{\text{я}} = 0,3$ Ом. Опрелелить:

- 1) потребляемую мощность из сети Р_{1:}
- 2) кпд двигателя;
- 3) полезный вращающий момент М;
- 4)ток якоря I_{s} ;
- 5)противо э.д.с. в обмотке якоря Е,
- 6) суммарные потери в двигателе;
- 7) потери в обмотках якоря $P_{\rm s}$ и возбуждения $P_{\rm s}$.

Решение.

Мощность, потребляемая двигателем из сети:

$$OPI = U_{HOM} I = 220.63 = 13900 BT = 13.9 kBT.$$

К.п.д двигателя

$$\eta_{\text{дв}} = P_{\text{ном}} / P_1 = 10 / 13,9 = 0,72.$$

Полезный вращающий момент (на валу)

$$M = 9.55 \cdot P_{HOM}/n = 9.55 \cdot 10 \cdot 1000/3000 = 31.9 \text{ H} \cdot \text{M}.$$

Для определения тока якоря предварительно находим ток возбуждения

$$I_{B} = U_{HOM} / R_{B} = 220 / 85 = 2.6 A.$$

Ток якоря

$$I_{\rm g} = I - I_{\rm g} = 6.3 - 2.6 = 60.4 \text{ A}.$$

Противо – э.д.с. обмотки якоря

$$E = U_{HOM} - I_{g} R_{g} = 220 - 60,4.0,3 = 202 A.$$

Суммарные потери в двигателе

$$\Sigma P = P_1 - P^2 = 13.9 - 10 = 3.9 \text{ kBt}.$$

Потери в обмотках якоря и возбуждения:

$$P_n = I_n^2 R_n = 60.4^2 \cdot 0.3 = 1190 BT;$$

 $P_n = U_{nom} I = 220 \cdot 2.6 = 572 BT.$

Задача 5.5. Четырех полюсный двигатель с параллельным возбуждением (рис. 5.3)присоединён к сети с $U_{\text{пом}} = 110 \text{ В}$ и потребляет ток I = 157 A. На якоре находится обмотка с сопротивлением $R_{\pi} = 0,0427 \text{ Ом}$ и числом проводников N = 360, образующих четыре параллельных ветви (a = 2). Сопротивление обмотки возбуждения $R_{\pi} = 21,8 \text{ Ом}$. Магнитный поток полюса

 $\Phi = 0,008$ Вб. Определить:

- 1) токи в обмотках возбуждения І, и якоря І,
- 2) противо э.д.с. E_i;
- 3) электромагнитный момент М,
- 4) электромагнитную мощность Рэм;
- 5) частоту вращения якоря п;
- 6) потери мощности в обмотках якоря P_{n} и возбуждения P_{n}

Решение.

Ток в обмотках возбуждения и якоря:

$$I_B = U_{HOM}$$
 $R_B = 110/21,8 = 5,05 A;$
 $I_R = 1$ $I_B = 157 - 5,05 = 151,95 A.$

Противо - э.д.с. в обмотке якоря

$$E = U_{HOM} - I_g R_g = 110 - 151,95 \cdot 0,0427 = -103,5B.$$

олектромагнитный момент

$$M_{3M} = P/(2 \cdot \pi \cdot a) \cdot \Phi \cdot N \cdot I_{R} =$$

$$=2/(2\cdot3,14\cdot2)\cdot0,008\cdot360\cdot151,95=69,7H\cdot M$$

Электромагнитная мощность

$$P_{3M} = E I_8 = 103,5.151,95 = 15,727 \text{ kBt},$$

Зная $P_{\text{эм}}$, можно найти электромагнитный момент по формуле

 $M_{_{9M}} = P_{_{9M}}/w = P_{_{9M}}/(2\pi n/60) = 69,7 H_M,$

что и было получено выше.

Здесь частота вращения якоря

$$n = 60 \cdot a \cdot E / p \cdot N \cdot \Phi = 60 \cdot 2 \cdot 103,5 / 2 \cdot 360 \cdot 0,008 =$$

=2156 об/мин.

Потери мощности в обмотках якоря и возбуждения:

$$P_{s} = I_{s}^{2} R_{s} = 151,95^{2} \cdot 0,00427 = 986 BT;$$

 $P_{b} = U_{HOM} I_{b} = 110 \cdot 5,5 = 555,5 BT.$

Задача 5.6. Электродвигатель постоянного тока с последовательным (рис. 5.4) возбуждением присоединён к цепи с напряжением $U_{\text{ном}} = 110~\text{B}$ и вращающимся с частотой п =1500 об/мин, двигатель развивает полезный момент (на валу) М = 120 Нм, кпд двигателя — 0,84. Суммарное сопротивление обмоток якоря и возбуждения $R_a + R_{nc} = 0.02~\text{Ом}$. Определить:

- 1) полезную мощность Р2;
- 2) потребляемую мощность Р
- 3) потребляемый ток из сети 1;
- 4) сопротивление пускового реостата, при котором пусковой ток ограничивается до 2,5 I;
- 5) противо э.д.с. в обмотке якоря.

Решение.

Полезную мощность двигателя определяем из формулы полезного момента

$$P_2 = M \cdot n / 9,55 = 120 \cdot 1500 / 9,55 = 18,85 \text{ kBt.}$$

Потребляемую мощность из сети

$$P_1 = P_2 / \eta_{AB} = 18,85 / 0,84 = 22,44 \text{ kBt}.$$

Ток, потребляемый из сети

$$I = P_1 / U_{\text{HOM}} = 22,44 \cdot 1000 / 110 = 204 \text{ A}.$$

Необходимое сопротивление пускового реостата

$$R_p = U_{Hom} / (2.5 \text{ I}) - (R_a + R_{nc}) = 110 / (2.5 \cdot 204) - 0.02 = 0.196 \text{ Om}.$$

Противо-э.д.с. в обмотке якоря

$$E = U_{HOM} - I(R_0 + R_{DC}) = 110 - 204.0,02 = 105.9 B.$$

Задача 5.7. Дан генератор параллельного возбуждения с номинальными данными:

 $P_{\text{ном}} = 5.2 \text{ кBT}; U_{\text{ном}} = 230 \text{ В и частотой вращения}$ n = 2860 об/мин. Сопротивление обмотки якоря $R_s = 0.75 \text{ Ом, сопротивление цепи возбуждения}$ R_в = 1540 Ом, механические и магнитные потери составляют 4% от номинальной мощности генератора. -KOBNHIPI Определить момент на валу первичного двигателя.

Решение.

Номинальный ток нагрузки

$$I_{\text{HOM}} = P_{\text{HOM}} / U_{\text{HOM}} = 5,2.100 / 230 = 22,6A.$$

Ток возбужления

$$I_B = U_{HOM} / R_B = 230 / 154 = 1,5 A.$$

Ток якоря при номинальной нагрузке

$$I_{\text{HOM}} = I_{\text{HOM}} + I_{\text{B}} = 22,6 + 1,5 = 24,1$$

Э.д.с. генератора

$$E = U_{HOM} + R_B I_{SHOM} = 230 + 0.75.24.1 = = 248A.$$

Потери в обмотке якоря и в цепи возбуждения:

$$\Delta R_{\text{\tiny H}} = R_{\text{\tiny H}} I_{\text{\tiny AHOM}}^2 = 0.75 \cdot 24.1^2 = 435 \text{ BT};$$

 $\Delta P_{\text{\tiny B}} = R_{\text{\tiny B}} I_{\text{\tiny B}}^2 = 154.15^2 = 346 \text{ BT}.$

Сумма механических и магнитных потерь

$$\Delta P_{\text{mex}} + \Delta P_{\text{m}} = 4/100.5, 2.10^3 = 208 \text{ Bt.}$$

Суммарные потери при номинальной нагрузке $\Sigma \Delta P = 435 + 345 + 208 = 989 \text{ BT} = 0.989 \text{ kBT}.$

Мощность на валу первичного двигателя

$$P_{\text{MEX,HOM}} = \Sigma \Delta P + P_{\text{HOM}} = 0.989 + 5.2 = 6.2 \text{ kBt.}$$

К.п.д. генератора при номинальной нагрузке

$$\eta_{\text{HOM}} = P_{\text{HOM}} / (P_{\text{MEX HOM}} \cdot 100) = 5.2 / (6.189 \cdot 100) = 84 \%.$$

Момент на валу первичного двигателя при номинальной нагрузке генератора

$$M_{\text{дв}} = 9550 P_{\text{мех.ном}} / n_{\text{ном}} = 9550 \cdot 6,189 / 2860 = 20,7 \text{ H·м}.$$

Задача 5.8. Двигатель параллельного возбуждения, присоединённый к сети с напряжением U_{ном} = 220 В, потребляет при номинальной нагрузке ток $I_{\text{ном}} = 20,5$

А, при холостом ходе - $I_0 = 2.35$ А. Сопротивление обмотки якоря R_s = 0.75 Ом, а в цепи возбуждения R_в = 258 Ом. Номинальная частота вращения $n_{HOM} = 1025$ об/мин. Определить:

- 1) номинальную мощность двигателя (на валу);
- 2) номинальный к.п.д.;
- 3) номинальный вращающий момент:
- 4) пусковой ток при пуске двигателя без пускового реостата:
- 5) сопротивление пускового реостата для условия $I_{\text{пуск}}$ = 2.5 Іном и пусковой момент при пуске двигателя реостатом. При решении принять, что магнитные механические потери не зависят от нагрузки.

Решение.

Номинальная мощность на валу двигателя

$$P_{HOM} = P_{IHOM} - \Sigma P$$
,

где ΣР – потери в двигателе; Р 1 ном р потребляемая мощность.

$$P_{1\text{HOM}} = U_{\text{HOM}} I_{\text{HOM}} = 220.20.5 = 4.51 \text{ kBt.}$$

Для определения потерь в цени якоря и цени возбуждения надо узнать ток в цени якоря Іяном и ток возбуждения 1,:

$$I_{B} = U_{HOM} / R_{B} = 220/258 = 0,85 \text{ A};$$

 $I_{R-HOM} = I_{HOM} - I_{B} = 20,5 - 0,85 = 19,65 \text{ A}.$

Потери в обмотке якоря и цепи возбуждения
$$\Delta P_{\text{я.ном}} = R_{\text{я}} \cdot I_{\text{я.ном}}^2 = 0,75 \cdot 19,65^2 = 290 \text{ BT;}$$

$$\Delta P_{\text{в}} = R_{\text{в}} \cdot I_{\text{в}}^2 = 258 \cdot 0,85^2 = 186 \text{ BT.}$$

Магнитные и механические потери

$$\Delta P_{\text{Mex}} + \Delta P_{\text{M}} = P_0 - \Delta P_{\text{NO}} - \Delta P_{\text{B}}$$
, the $P_0 - U_{\text{HOM}} I_0 = 220.2,35 = 517 \, \text{Bt}$.

$$P_0 - U_{HOM}I_0 = 220.2.35 = 517 \text{ Bt.}$$

_{во} - потери в обмотке якоря при холостом ходе двигателя

$$\begin{split} \Delta P_{\text{mo}} &= R_{\text{m}} (I_{\text{o}} - I_{\text{b}})^2 = 0.75 (2, \text{N}_{\text{o}}5 - 0.85)^2 = 1.7 \text{ BT;} \\ \Delta P_{\text{mex}} + \Delta P_{\text{m}} &= 517 - 1.7 - 186 = 329.3 \text{ BT;} \\ \Sigma \Delta P &= 290 + 186 + 329.3 = 805.3 \text{ BT;} \\ P_{\text{HOM}} &= 4510 - 805.3 = 3710 \text{ BT} = 3.71 \text{ kBT.} \end{split}$$

Номинальный к.п.д.

$$\eta_{\text{HOM}} = P_{\text{HOM}} / P_{1\text{HOM}} \cdot 100 = 3.71 / 4.5 \cdot 100 = 82.2 \%.$$

Номинальный вращающий момент

$$M_{HOM} = 9550 \cdot P_{HOM} / n_{HOM} = 9550 \cdot 3.71 / 1025 = 34.6 \text{ H} \cdot \text{M}$$
.

Пусковой ток двигателя при пуске реостата

$$I_{\text{myck}} = U_{\text{HOM}} / R_8 = 220/0.75 = 293 \text{ A}.$$

Сопротивление пускового реостата определяется из равенства

$$I_{\text{rryck}} = 2.5I_{\text{N-HOM}} = U_{\text{HOM}} / (R_{\text{N}} + R_{\text{p}}),$$

откуда

$$R_p = U_{HOM} / (2,5I_{R,HOM}) - R_R = 220/(2,5.19,65) - 0,75=3,73O_M$$

Определяем пусковой момент двигателя при пуске с реостатом. Известно, что вращающий момент двигателя определяется уравнением $M_{BD} = C_M \Phi I_g$ Для режима номинальной нагрузки $M_{\text{ном}} = C_{\text{м}} \Phi I_{\text{я ном}}$, а для пускового режима $M_{\text{пуск}} = C_{\text{м}} \Phi I_{\text{пуск}}$.

Полагая магнитный поток в двигателе постоянным, возьмём отношение моментов

$$M_{\text{hom}} / M_{\text{tryck}} = I_{\text{s.hom}} / I_{\text{tryck}}$$

откуда

гкуда
$$M_{\text{пуск}} = M_{\text{ном}} \cdot (I_{\text{пуск}} / I_{\text{я ном}}) = 34,6 \cdot 2,5 \cdot 19,65 / 19,65 = = 86,5 \ \text{H м.}$$

Задача 5.9. Двигатель последовательного возбуждения работает от сети с напряжением U_{ном} = 220 В. Номинальный вращающий момент двигателя и номинальная частота вращения равны $M_{\text{ном}} = 75 \text{ H·м}, n_{\text{ном}} = 1020$ об/мин, сопротивление обмоток якоря и возбуждения $R_s = 0.4$ См. $R_s = 0.3$ См. Номинальный к.п.д.

η_{ном} = 81.5%. Определить:

- 1) мощность на валу двигателя и мощность, потребляемую из сети при номинальной нагрузке;
- 2) ток двигателя;
- 3) противо э.д.с. и электромагнитную мощность (мощность, передаваемую на якорь);
- 4) потери в двигателе при номинальной нагрузке и сопротивление пускового реостата, при пусковой ток превышает номинальный в два раза.

Решение.

Номинальная мошность двигателя

 $P_{HOM} = M_{HOM} n_{HOM} / 9550 = 75.1020 / 9550 = 8 \text{ kBt.}$

Потребляемая мощность

$$P_{HOM1} = P_{HOM} / \eta_{HOM} = 8 / 0.815 = 9.8 \text{ kBt.}$$

Номинальный ток двигателя

$$I_{HOM} = P_{HOM1} / U_{HOM} = 9.8 \cdot 1000 / 220 = 44.5 A.$$

Полученный ток является током якоря и возбуждения

$$I_{R,HOM} = I_{B} = 44.5 A$$

Противо - э.д.с., наводимая в обмотке якоря

$$I_{\text{я.ном}} = I_{\text{в}} = 44.5 \text{ A.}$$
Противо — э.д.с., наводимая в обмотке якоря
 $E = U_{\text{ном}} - (R_{\text{я}} + R_{\text{в}})I_{\text{ном}} = 220 - (0.4 + 0.3) \cdot 44.5 = 188.8 \text{ B.}$
Электромагнитная мощность
 $P_{\text{эм}} = EI_{\text{я ном}} = 188.8 \cdot 44.5 = 8400 \text{ Bt} = 8.4 \text{ кВт.}$
Магнитные и механические потери
 $\Delta P_{\text{NEV}} \neq \Delta P_{\text{NEV}} = P_{\text{NEV}} - P_{\text{ROV}} = 8.4 - 8.0 = 0.4 \text{ кВт.}$

Электромагнитная мощность

$$P_{\text{3M}} = EI_{\text{8 HOM}} = 188.8.44,5 = 8400 \text{ By} = 8.4 \text{ kBy}$$

Магнитные и механические потери

$$\Delta P_{\text{M}} \neq \Delta P_{\text{Mex}} = P_{\text{3M}} - P_{\text{HOM}} = 8.4 - 8.0 = 0.4 \text{ kBt.}$$

Потери в обмотке якоря и в обмотке возбуждения:

$$\Delta P_{\text{\tiny R HOM}} = R_{\text{\tiny R}} - I_{\text{\tiny R HOM}}^2 = 0,4.44,5^2 = 792 \text{ BT};$$

$$\Delta P_B = R_B \cdot I_B^2 = 0.3 \cdot 44.5^2 = 595 \text{ Bt.}$$

Суммарные потери в двигателе

$$\Sigma \Delta P_{\text{HOM}} = 400 + 792 + 595 = 1,787 \text{ kBt.}$$

Проверим полученный результат

$$\Sigma \Lambda P_{\text{HOM}} = P_{\text{HOM}1} - P_{\text{HOM}} = 9.8 - 8.0 = 1.8 \text{ kBt.}$$

Сопротивление пускового реостата

$$R_{p} = U_{HOM} - (R_{s} + R_{b}) =$$

$$= 220 / (2 \cdot 44,5) - 0,7 = 1,77 \text{ Om.}$$

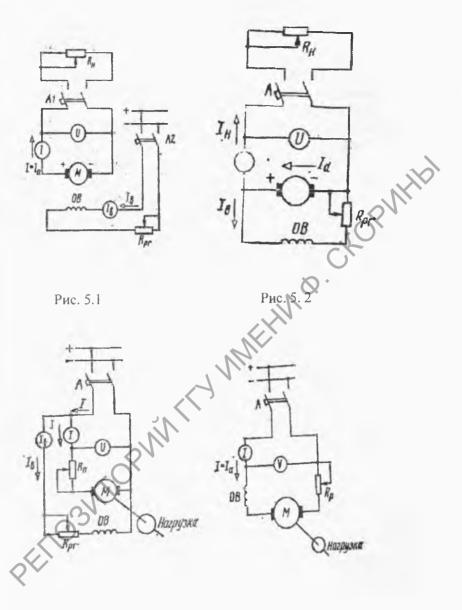


Рис.5.3

Рис. 5.4

Литература

- 1. Бокалов В.П. и др. Основы теории электрических цепей и электроники. М. Радио и связь, 1989г.
- 2. Электротехника под ред. В.Г. Герасимова. М. Высшая школа, 1985г.
- 3. Касаткин А.С., Немцов М.В. Электротехника. М. "Энергоатомиздат", 1983г.
- 4. Л.А.Бессонов. Теоретические основы электроники.
- 5. А.И.Иванов Цыганов Электротехнические устройства радиосистем. М. "Высшая школа" 1970 г.
- 6. Сборник задач по электротехнике и основам электроники. Под ред. В.Г. Герасимова. М. Высшая школа, 1987г.
- 7. 6. О.Н.Веселовский, Л.М.Браславский. Основы электротехники и электротехнические устройства радиоэлектронной аппаратуры. М., "Высшая школа", 1977г.
- 8. Шебес М.Р. Задачник по теории линейных электрических цепей. М. Высшая школас
- 9. Сборник задач по общей электротехнике под ред. В.С.Пантюшина. Изд-во "Высшая школа", 1973г.
- 10. Сборник задач по теоретическим основам электротехники. Под ред. Л.А.Бессонова, М., "Высшая школа", PENO3NIOPVI

Содержание

1. Нелинейные электрические цепи	
1.1. Нелинейные цепи постоянного тока	
1.2. Нелинейные цепи переменного тока6	
1.3. Выпрямители	
2. Магнитные цепи постоянного потока12	
2.1. Применение закона полного тока для	
анализа магнитных цепей. Влияние	
ферромагнитных материалов12	
2.2. Магнитные цепи с зазором	
в магнитопроводе	
2.3.Электромагнитные устройства18	
3. Электромагнитные устройства переменного	
магнигного потока	
3.1.Трансформаторы26	
4. Электрические машины переменного	
тока	
4.1. Асинхронные электрические машины	
4.2.Синхронные электрически	
машины	
5.Электрические машины	
постоянного тока	
Л итература	
^0	

ЭЛЕКТРОТЕХНИКА

Практическое пособие для студентов физического факультета Гомельского государственного университета им. Ф.Скорины специальностей «Физика», «Физика с дополнительной специализацией «Техническое творчество», «Физическая электроника», АСОИ (часть 3).

Авторы - составители:

Богданович Валентина Иосифовна, старший преподаватель кафедры радиофизики и электроники Гомельского государственного университета им. Ф. Скорины; Мышковец Виктор Николаевич, к. ф.-м. н., старший преподаватель кафедры радиофизики и электроники Гомельского государственного университета им. Ф. Скорины.

Рецензенты:

Ефимчик Михаил Константинович, к. ф.-м. н , доцент кафедры АСОИ Гомельского государственного университета им. Ф. Скорины;

Яковцев Игорь Николаевин, старший преподаватель кафедры общей физики Гомельского государственного университета им. Ф. Скорины

Подписано к печати 26. 04. 2000 г. Формат 60х 84 1/16. Бумага писчая № 1. Печать офсетная. Усл. п. л.4,0. Уч. - изд. л. 2,7. Тираж 50 экз. Заказ 149. Отпечатано на ротапринте Гомельского госуниверситета им. Ф.Скорины. 246099, г. Гомель, ул. Советская, 104

Bly

установа сцукацыі "Гомельскі дзяржаўны універсь і імя Францыска Скарыны" Б.Г.Б.Л.Г.Э.К.