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a over the field F' of characteristic p for the prime p is called a p-
algebra. Nilpotent p-algebras have been studied in several papers (see for instance [3])-
Every nilpotent p-algebra R forms a p-group under the "circle operation ¢ 0y = 2 +¥y + LY
for every two elements z,y € R (see for instance [4]). This group is calledithe adjoint grou
R° of R. Examples of nilpotent p-algebras are the subalgebras af<he algebra of all uppe
triangular matrices with dimension n over GF(p).

It is well-known that the adjoint group of a nilpotent psalgebra is a p-group. This rais
the question which finite p-groups can occur as the adjointygroup of a finite nilpotent
algebra. The metacyclic groups that can occur as thefadjoint groups of a finite nilpoten
p-algebra are described by Gorlov in [3]. In [2] we(Classified for odd primes p all finite
algebras whose adjoint group has at most two generators. Surprisingly the dimension
these algebras is at most 3 (see [2], Theorem 3:6) This is not the case for p = 2, since the
exists a finite nilpotent 2-algebra with dimension 5 whose adjoint group has two generato

(see [2]). Nevertheless we have the following result.

An associative algebr

Theorem 20. Let R be a nilpatent 2-algebro whose adjoint group has only two generator
Then dim R < 5.

The notation is as follews: An algebra L over the field F is a one-generator algebra
there exists an elemefit ave L such that L is the set of all elements of form af(a) for so
polynomial f € BTl The n-th power of an algebra R is the subalgebra R* of R generat
by the set of elements of the form 2,z . ..z with k > n, where 21,%2..., %k € R. Inp
ticular R! =R. The natural number n = n(R) such that R" # 0 and R = 0 is called t
nilpotency ‘class of R. The subalgebra L of an algebra R generated by the set of elemen
1, Tgsee -, T will be denoted by ((x1, T2, ..., Tx)) whereas the subspace of the algebra
generated by these elements is (z1,Ta, ..., k). As usual Ann(R) ={z € R|zy=yz =
for all y € R} is the annihilator of R and Z(R) = {z € R |zy =yz forally € R} is t
center of R. Multiplication in the algebra K will be denoted by ”.”, while the multiplicati
i its adjoint group R° by ”o”. The k-th power of the element z € R° is ') and the k-
power of z in R is 2 Note that if k& = p™ for some positive integer m where p is t
characteristic of the ground field F, then we have 2% = z(®_ The circle commutator of t
elements @ and b in R° will be denoted by (a,b). Furthermore d(R) is the minimal numb
of generators of an algebra R and d(R°) is the minimal number of generators of its adjoi
group. The other group-theoretical notation is standard.

The following preliminary result can be found in (2], Theorem 4.3.
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.mma 1. Let G be the adjoint group of a finite nilpotent 2-algebra R with dim R = 5. If
BR) = d(G) = 2 then

=(a,b|a’ =b*=c*=1,(a,b) = ¢ (a,¢) =1, (h,c) = a®).
i this case G = ((a) x (c)) x (b), Z(G) = (a?) and G' has no abelian subgroup of index 2.
~ The next result is proved in [1], Theorem 1.3.

emma 2. Let R be a finitely generated milpotent algebra of nilpotency class n(R) over w
strary field F. Then there exists a one-generaior subalgebra L in R such that di

if at least one of the following holds Q

o

. (i) dimRi/R™" =1 for some i < n(R),
(i) n(R) > dim R — k for some integer k > 0 and dim R > 2k + 2. Cﬁ

- The above theorem will now be proved in a series of lemmas.

mma 3. Let R = ((z,y)) be a nilpotent algebra over an arbitrary field F. If R* =
7 + Ri~ly 4+ Rt for some positive integer i, dim R*/R"*+! d R # R~z + py)
all \,p € F, then there exists an element u € R sy at R = (uz,uy) + R
foreover R-' =T @ (u) with Tz C R, Ty C B’“ @

bwof. Clearly dim(R-'z+R™')/R"*! =1 and di (I?Qg Ri+1) /R = 1. Hence R =
L2 (u), R = T, ® (up) with T,z C R m&‘ y C R™!, This implies that B! =

'~ (uy,up) with T =T, NT,. If dimT > difn B*# — 1, then we are done. Suppose that
2 T = dim R*~! — 2 and dim(uq, ug) = 2
Obviously the elements u z,usz and v, Yyusy are linearly dependent. We may choose
notation such that vz = w, a % = wy are linearly independent. Now we have
= A\w, w1y = pwe with some . We show that Ay = 1. Indeed, u(az + By) =
ey + fpwy and uz(aw + Py) Q, + Bws. Since the system {ui(az + By), us(az + By}
 linearly dependent for ea ipof elements o, f € F' then there exists v € F' such that
. (az + By)) = u(az @herefore yaw, + yPwe = adw, + Pwsy, which implies that
@ = \a and YBu = B = =1,then vy = ) and yu = 1. Thus Ag = 1. Now it
W 2 DAw; — Awy = 0, (ug — M)y = we — Awe = wy — wp = 0. Hence
m7 > dim B! — 1 as asserted. Now u = u; and uz = wy,uy = pws
fent. It follows that (uz,uy) + R**' = R'. The lemma is proved.

= ((z,y)) be a nilpotent algebra over an arbitrary field F' and
@ .2 for some integer i > 1. Then dim R /RIT' < 2 for each j > 1.

ppose first that B! = R'"'z + R""'. Then R = Rz + R*™2. If dim R*/R*! = 1
en we are done by [1], Lemma 2.2. Hence we may assume that R = (wy,w,) ® R, Then

have
R = (w;, wy)e + B2 = (wyz, wyz) + B2,

is implies dim R*+! /R*+? < 2,

Suppose .now that Rf = R'~'z + R"'y + R'*!. By Lemma 3 we may assume that
Bz + R = (uz) + R and Ry + R = (uy) + R for some u € R'~!. Moreover
g =T (u) with Tz C R, Ty C R, 1t follows that

R*!' = Rz + Ry + R**? = Ruz + Ruy + R
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We may choose u = urug with u; € R2 yy € Rif >3and u; =lLug=wufori=2 Th

Ruz = R(u)uoz C R 'uez = (T @ (u))uez C (uuoz) + R,

Clearly Tupz C R™? by the definition of 7. Therefore Ruz C (uugz) + R**2 Ruy
(uuoy) + R™*2, which implies dim Ri+! /R™? < 2 as claimed. The lemma is proved.

Lemma 5. Let R be a nilpotent 2-algebra with dim R = 6 and d(R) = d(R°)«= 2. Th
n(R) = 3,dim R/R? = dim R?/R3 = dim R® = 2 and R° has no cyclic subgrodng of order

Proof. Suppose first that H is a nilpotent 2-algebra with dim H = 5, d(HN d(H°) = 2.
n(H) = 4 then by Lemma 2 there exists in H a one-generator subalgebra) L with dim [, =
Hence H® has a cyclic subgroup of order 8 which is not the case.

Suppose now that R is a nilpotent 2-algebra over the field”F*With dim R = 6 such t
d(R) = d(R°) = 2. By the above and Lemma 4 we have only %wo/possibilities:

dim B/R® = dim R*/R® = dim R® = 2. R* = 0 or v

dim R/R? = dim R?/R® = 2, dim R? = dim R* = 1, RNGY.

Assume that n(R) = 4. By Lemma 2 this implies that there exists a one-genera
subalgebra L in R such that dim [, — 4. If R° hag a céyclic subgroup of order 8, the sa
assertion holds. Suppose that such a subalgebra(f exists in R. Let S be a_subalgebra of
having L as a subalgebra with codimension 1. BY)2], Theorem 2.2, S is either a commutati
or S = ((z,y)) with (()) = L,z ¢ S\L and2y = \y* yz = uy* for some Au€EF. Itiscl
that J = ((y*)) is an ideal in R and S)J is’a commutative subalgebra in H = R/J whi
is impossible by Lemma 1. Therefofe n{R) = 3 and dim R/R? = dim R? /R® = dim R® =
By the above R° has no cyclic subgroups of order 8. The lemma is proved.

The theorem now followsdromYour final lemma.

Lemma 6. Let R be a siilpotent 2-algebra with d(R) = d(R°) = 2. Then dim R <.

Proof. Suppose that the algebra Ris a counterexample for Lemma 6 with minimal dimensi
Then dim R = 6 4nd by Lemma 5 we have n(R) = 3. Let J = R. Then J C Ann(R)
J = (d;, dy) far'sonte dy,d, € R. Obviously there are 3 one-dimensional ideals in R, nam
Ji = (d), s (By), J; = (da) with d3 = d; + dy. Consider the natural homomorphis
Vi : R pNRAS ~ H. By Lemma 1 H° ~ for each ¢ < 3. Let M be a subgroup of
generated by elements a and ¢ and N be a subgroup of R° such that ), (N) = M,d =
The structure of NV can be as follows:

(IMN = (c1) % (a1), a semidirect product with a'=at=1,¢2% =4

() N = ({a1) x (d)) x (c;) with ;2 = ¢ = at =1,

In each case the commutator subgroup of N is contained in (d). Let b; be an element
R such that 1/, gbl) = b. Using defining relations for the elements in G = (R/J,)° (Lem
1) we have b "M oa; 08, = a; 0¢; o d with A € {0,1} and b, -1

ociob =a;%20¢; 0d" wi
w € {0,1}. It follows that

e 2 — g
by Zoalobl = loaloclod\obl:aioc]odAocloa]zod)‘od“zaloclzoa]ZOd

and
e 9
by 2o¢ o b” =¢;.

Clearly ¢ ((a})) = (a®) = Z(G) which iﬁlp]ies that dim Ann

(R/Ji)=1and a2 ¢ Ann(R
Therefore (a;?,d) = J. Take s = ¢,2 0 a;?oqgr

as a generator of an ideal K of R. Note th
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& = J; for some i € {1,2,3}. Let ¢ be the natural homomorphism R onto R/K. It is easy
%o see that

Pl 0 a1 0by?) = 1p(ar) = (b)) o p(ar) 0 1h(by)?

Y o crobi®) =(er) = %(bi) 7 0h(cr) o h(br)”.

ince /K = ((4(b1),%(a1))) it follows that (b,)* € Z(R/K). On the other hand al)
Z{R/K) as well. This contradicts Lemma 1. Thus Lemma 6 and so the theorem are p %
e

Pesiome. [l0Ka3aHO, YTO Pa3VEPHOCTh HUIILIIOTEHTHON 2-are6phl He IpesbImaeT 5

DECOeIHEHHAS T'DYIINa HMeeT He Gosee AByX MOPOK IAIOIHX. Q
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