A new property of local formations of finite groups

D.V.KOROTKEVICH

Dedicated to Professor Wolfgang Gaschütz on the occasion of his 80th birthday

In this paper we introduce a new definition of a 3-normal subgroup and prove that every Local formation \mathfrak{F} consists precisely of finite groups in which each Sylow subgroup is either a normal F-subgroup or else a F-normal F-subgroup.

All groups considered are finite, and all group classes are non-empty. Definitions of a formation and a local formation are due to W.Gaschütz [1]. Let $\mathfrak{F} = LF(f)$ be a local formation where $f: \{\text{primes}\} \to \{\text{formations}, \emptyset\}$. By the definition, \mathfrak{F} consists exactly of groups G having a f-central chief series $G = G_0 \supset G_1 \supset ... \supset G_t = 1, t \geq 0$, in which $G/C_G(G_{i-1}/G_i) \in \mathfrak{F}(p)$ for every prime divisor p of $|G_{i-1}:G_i|$. In particular, if f(p)=(1)for every prime p, then \mathfrak{F} coincides with the class \mathfrak{N} of nilpotent groups.

We use standard notations [2, 3]. Recall that a chief factor H/K of G is called f-central $\subseteq G$ if $G/C_G(H/K) \in f(p)$ for every prime divisor p of H/K. A normal subgroup N of G \equiv called f-hypercentral if all its G-chief factors are f-central in G. Following [2] we denote $Z^f(G)$ the product of all f-hypercentral subgroup of G. $P^G = \langle P^x : x \in G \rangle$, P_G is the

product of all normal subgroup of G contained in P

Lemma 1. If K is a normal subgroup of G then $Z^f(G) \cap K$ coincides with the product of all f-hypercentral subgroups of G contained in K.

Proof follows from the Jordan-Hölder theorem and the fact that the product of two f-Lypercentral subgroups is f-hypercentral as well.

Definition. Let A be a subgroup of G. We denote by $Z^f(A,G)$ the largest normal subgroup of G such that $A_G \subseteq Z^f(A,G) \subseteq A^G$ and all G-chief factors between A_G and $Z^f(A,G)$ are f-central in G. Set $N_G^f(A) = \mathbb{Z}^f(A,G)N_G(A)$. We call A a f-normal subgroup of G if $N_G(A) \neq G$ but $N_G^f(A) = G$. If $\mathfrak{F} = LF(F)$ and f = F is the largest integrated function then we say \mathfrak{F} -normal instead f-normal and write $Z^{\mathfrak{F}}(A,G)$ and $N^{\mathfrak{F}}(G)$.

We note that $Z^f(A,G)/A_G$ is f-hypercentral in G. Moreover, by lemma 1, $Z^f(A,G)/A_G$

coincides with $Z^f(G/A_G) \cap A^G/A_G$.

The following lemma is well-known.

Lemma 2. Let P be a Sylow subgroup of G, and N a normal subgroup of G. $N_G(PN) \geq N_G(P)N$.

Proof. Evidently, $N_G(PN) \supseteq N_G(P)N$. Let $x \in N_G(PN)$. Then $PN = P^xN$ and $P^x = P^y$ for some $y \in PN$. Therefore $xy^{-1} \in N_G(P)$ and we have $x \in N_G(P)y \subseteq N_G(P)N$.

Lemma 3. Let A be a subgroup of G and N a normal subgroup of G. Then the following statements hold:

1) if $N \subseteq A$ then $N_{G/N}^f(A/N) = N_G^f(A/N)$;

2) if A is f-normal in G then AN is either normal or f-normal in G;

3) if A is f-normal in G, then AN/N is either normal or f-normal in G/N.

Proof. Since $N \subseteq A_G$, the statement 1) follows directly from the definition of $N_G^f(A)$. Prove 2). Let A be f-normal in G, i.e. $BN_G(A) = G$ where $B = Z^f(A, G), N_G(A) \neq G$. Suppose

that AN is not normal in G. Let H/K be a G-chief factor such that $B\supseteq H\supset K\supseteq A_G$. By the condition, H/K is f-central. Consider

$$HN/KN \simeq H/H \cap KN = H/K(H \cap N).$$

Clearly, this factor is either identity or G-isomorphic to H/K and f-central. Therefore we have that BN/A_GN is f-hypercentral in G/A_GN . Since $A_GN\subseteq (AN)_G$ and $BN\subseteq A^GN=(AN)^G$, then BN is contained in $Z^f(AN,G)$. Now from $BN_G(A)=G$ and $N_G(A)\subseteq N_G(AN)$ it follows that $Z^f(AN,G)N_G(AN)=G$, i.e. AN is f-normal in G.

Statement 3) follows from 1) and 2). Lemma is proved.

Theorem. Let $\mathfrak{F} = LF(f)$ be a local formation. A group G belongs to \mathfrak{F} if and only if ever Sylow subgroup of G is either a normal \mathfrak{F} -subgroup of G or a f-normal \mathfrak{F} -subgroup of G.

Proof. If $G \in \mathfrak{F}$ then $Z^f(G) = G$ and it is clear that every Sylow subgroup of G is either normal or f-normal in G and belongs to \mathfrak{F} .

Conversely, suppose that G is a group such that every Sylow subgroup of G belongs to $\mathfrak F$ and is either normal or f-normal in G. Evidently, if G is nilpotent then $G \in \mathfrak F$. Suppose that G is non-nilpotent. Let N be a minimal normal subgroup of G. By lemma 3, G/N has the same property, i.e. every Sylow subgroup of G/N belongs to $\mathfrak F$ and is either normal or f-normal. By induction, $G/N \in \mathfrak F$, and we have that $N = G^{\mathfrak F}$ is a unique minimal normal subgroup of G. Let F be an arbitrary non-normal Sylow subgroup of F. If F is not contained in F, then F and therefore F in F in F is F in F is F in F in

Резюме. Рассматриваются только конечные группы. Вводится новое определение \mathfrak{F} -пормальной подгруппы и доказывается, что если \mathfrak{F} — локальная формация, то оне состоит в точности из всех групп, в которых каждая силовская подгруппа является либо нормальной, либо \mathfrak{F} -пормальной \mathfrak{F} -подгруппой.

References

- [1] W.Gaschütz, Zur Theorie der endlichen auflösbaren Gruppen, Math. Z., 80 (1963), 300–305.
- [2] L.A.Shemetkov, Formations of finite groups, Nauka, Moscow, 1978 (Russian).
- [3] K.Doerk. T.Hawkes, Finite soluble groups, Berlin-New York, Walter de Gruyter, 1992.

Francisk Scorina Gomel State University 246019 Gomel, Belarus

Received June 1, 2000