Minimal formations of universal algebras

A.D.HODALEVICH

Dedicated to Professor Wolfgang Gaschütz on the occasion of his 80th birthday

The definition of the formation of algebraic systems was first introduced by L.A.Shemetkov in [1]. L.A.Shemetkov and A.N.Skiba posed a quesion if any finite formation of algebraic systems possesses minimal subformations (problem 5.15 in [3]). We consider that problem for formations of universal algebras belonging to a Mal'cev variety. A variety is called a Mal'cev variety if it consists of algebras in which all congruences are permutable.

All necessary definitions and notations may be found in [3]. Further we consider universal algebras from some fixed Mal'cev variety. Symbol O_A means the least element of the lattice of congruences on A.

Definition. Let d_i be congruences on an algebra A such that $\alpha_1\alpha_2...\alpha_n = \beta$ and $(\alpha_1...\alpha_{i-1}\alpha_{i+1}...\alpha_n) \cap \alpha_i = O_A$ for any i = 1,...,n. Then we say that β is the direct product of congruences α_i and write $\beta = \alpha_1 \times ... \times \alpha_n$.

Remind that a non-one-element algebra A is called simple, if it has no congruences, different from trivial ones.

Lemma. Let an algebra A be the direct product of simple algebras A_1, A_2, \ldots, A_n , α_i be the kernel, corresponding to the projection A on A_i , $\beta_i = \alpha_1 \cap \ldots \cap \alpha_{i-1} \cap \alpha_{i+1} \cap \ldots \cap \alpha_n$. Then:

- 1) $\alpha_i = \beta_1 \dots \beta_{i-1} \beta_{i+1} \dots \beta_n$ is the maximal congruence on A;
- 2) β_i is the minimal congruence on A and $A^2 = \beta_1 \times \ldots \times \beta_n$;
- 3) for non-trivial congruence π on A the following decomposition holds:

$$A^2 = \pi \times \gamma_1 \times \ldots \times \gamma_t$$

where $\gamma_i \in \{\beta_1, \dots, \beta_n\}$.

Proof. Since $A/\alpha_i \simeq A_i$ is a simple algebra, α_i is a maximal congruence on A. It is obvious that there is a permutation j of numbers $1, 2, \ldots, n$ such that equality (1) holds: $\alpha_{ij} = \beta_{j1}\beta_{j2}\ldots\beta_{jn-1}$. That is why it is enough to point out that $\alpha_n = \beta_1\beta_2\ldots\beta_{n-1}$.

$$\beta_{1}\beta_{2}\dots\beta_{n-1} = (\alpha_{2}\bigcap\dots\bigcap\alpha_{n})\beta_{2}\dots\beta_{n-1} =$$

$$= (\alpha_{2}\bigcap\alpha_{3}\bigcap\dots\bigcap\alpha_{n})(\alpha_{1}\bigcap\alpha_{3}\bigcap\dots\bigcap\alpha_{n})\beta_{3}\dots\beta_{n-1} =$$

$$= (\alpha_{2}(\alpha_{1}\bigcap\alpha_{3}\bigcap\dots\bigcap\alpha_{n})\bigcap\alpha_{3}\bigcap\dots\bigcap\alpha_{n})\beta_{3}\dots\beta_{n-1} =$$

$$(\alpha_{3}\bigcap\dots\bigcap\alpha_{n})\beta_{3}\dots\beta_{n-1} = \dots = \alpha_{n-1}(\alpha_{1}\bigcap\dots\bigcap\alpha_{n-2}\bigcap\alpha_{n})\bigcap\alpha_{n} = \alpha_{n}.$$

2) The factor $A^2/\alpha_i = \beta_i \alpha_i/\alpha_i$ is perspective to the factor $\beta_i/\beta_i \cap \alpha_i = \beta_i$. Hence β_i is the minimal congruence on A. Since

$$\beta_1 \dots \beta_{i-1} \beta_{i+1} \dots \beta_n \bigcap \beta_i = \alpha_i \bigcap \beta_i = O_A,$$

so we have

$$A^2 = \beta_1 \times \ldots \times \beta_n.$$

3) $\alpha_1 \cap \ldots \cap \alpha_n = O_A$. Consequently there is at least one maximal congruence α_i that $\pi \not\subseteq \alpha_i = \beta_1 \ldots \beta_{i-1}\beta_{i+1} \ldots \beta_n$. Let us mark $\gamma_j = \beta_{ij}$ where $i_1, \ldots, i_t \in \{1, \ldots, \gamma_1, \ldots, \gamma_t = A^2 \text{ and } \pi \gamma_1 \ldots \gamma_{i-1} \gamma_{i+1} \ldots \gamma_t \cap \gamma_i = O_A \text{ for any } i = 1, \ldots, t.$ Now we show that $\pi \cap \gamma_1 \cap \ldots \cap \gamma_t = O_A$. It is obvious that $\pi \cap \gamma_1 = O_A$, and let us suppose that it was protein that $\pi \cap \gamma_1 \ldots \gamma_{t-1} = O_A$. Then

$$\pi \bigcap \gamma_1 \dots \gamma_t \subseteq \pi \gamma_1 \dots \gamma_{t-1} \bigcap \gamma_1 \dots \gamma_t =$$

$$= (\pi \gamma_1 \dots \gamma_{t-1} \bigcap \gamma_t) \gamma_1 \dots \gamma_{t-1} = \gamma_1 \dots \gamma_{t-1}.$$

Consequently $\pi \cap \gamma_1 \dots \gamma_t = O_A$ and $A^2 = \pi \times \gamma_1 \times \dots \times \gamma_t$. Lemma is proved

Remind that form A means the formation generated by an algebra A. As it is shown in [1], form $A = HR_0(A)$. Here $H\mathfrak{X}$ denotes the class of all homomorphic images of \mathfrak{X} -systand $R_0\mathfrak{X}$ denotes the class of all isomorphic copies of finite subdirect products of \mathfrak{X} -systand

Theorem. Let A be a simple algebra, containing one-element subalgebras. Then form A no proper non-one-element subformations.

Proof. Let \mathfrak{F} be a non-one-element formation and $\mathfrak{F} \subset \text{form } A$. Then for any algebra $B \in \mathbb{F}$ we have $B \simeq H_{\alpha}$, where H is the subdirect product of isomorphic copies of the algebra is a congruence on A. According to Lemma 3.16 [1]

$$H = A_1 \times \ldots \times A_n,$$

where $A_i \simeq A$ for any $i = 1, \ldots, n$. From the lemma it follows that

$$H^2 = \beta_{i1} \times \ldots \times \beta_{jn} = \alpha \times \beta_{jt} \times \ldots \times \beta_{jn}.$$

Denote $\beta_{jn} = \beta$, $\beta_{j1} \dots \beta_{jn-1} = \gamma$, $\alpha \beta_{jt} \dots \beta_{jn-1} = \tau$. Then $H^2 = \gamma \times \beta = \tau \times \beta$ $H/\tau \in \mathfrak{F}$. Let E be a one-element subalgebra of the algebra H. Then $K = \beta E$ subalgebra of the algebra H, coinciding with some equivalence class of β on the algebra β Since $\beta = \tau \beta = H^2$, we have $\gamma K = \tau K = H$. And since $\gamma \cap \beta = \tau \cap \beta = O_A$, so we $\beta = \gamma K = \gamma K$ and $\beta = \gamma K = \gamma K$ and $\beta = \gamma K = \gamma K$. Consequently, $\beta = \gamma K = \gamma K$. The theorem is proved.

The formation \mathfrak{F} is called minimal if from $\mathfrak{E} \subset \mathfrak{H} \subseteq \mathfrak{F}$ it always follows that $\mathfrak{H} = \mathfrak{F}$, where is the one-element formation of algebras.

Corollary. Any formation \mathfrak{F} of the universal algebras possessing the condition of maximum for congruences and containing one-element subalgebras has the minimal subformation.

Резюме. Рассматриваются универсальные алгебры из фиксированного мальцев многоообразия. Доказано, что формация, порожденнная простой алгеброй, имею одноэлементные подалгебры, не имеет собственных неодноэлементных подформация.

References

- [1] L.A.Shemetkov, On the product of formations of algebraic systems, Algebra and Lagrangian (1984), 721–729.
- [2] A.I.Mal'cev, Algebraic systems, Moscow, Nauka, 1970 (Russian).

[3] L.A.Shemetkov, A.N.Skiba, Formations of Algebraic Systems, Nauka, Moskow, 1989 (Russian).

Received March 21, 1999

Mathematics Department Francisk Scorina Gomel State University 246019 Gomel, Belarus