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All groups considered are finite. Remember that a subgroup V of G is called §-maximal if
VeFand V CU CG,U € F always implies V = U. An F-injectors of G .ds*a’subgroup
V of G with the property that V() K is an §-maximal subgroup of K for every subnormal
subgroup K of G. We denote by 7(F) the set of all primes dividing the @rders of groups in
§. If §1,..., 8, are non-empty classes of groups, then x? ;F; = F1 X,.4. X §, is the class of
groups GG which are presented in the form G = G, X...x G,, where Gu& §;. Other notations
see in [1].
The aim of this paper is to find the following applicatiofi{of theorem 1 in [2].

Theorem. Let §F = F1 X ... X Fn where n(Fs) N7(F;) =L fori # j, Ui, 7(Fi) =P, and
5 = &7 is a non-empty saturated Fitting formation fox apyi=1,... ,n. Then every group
G contains an F-injectors.

Proof. First we prove that the theorem is trug“fer’every group G such that Cg(G5) C Gp.
Suppose that Cg(Gz) € Gz. We note that by theorem in [3], every subgroup of G' contains
§j-injectors for any i. Let $; = X;.,\and V; be an §j-injector of C(Gy,). Then, by
theorem 1 in [2], V...V, is an F-injector’of G. So theorem is valid for all groups G with
Ce(Gy) C Gs.

It is not hard to see that § is &-saturated Fitting formation. Let H be a group such
that H/Z(H) € §. It is cledx that H = H, x ... H, where H; is a Hall 7 (§;)-subgroup of
H and H;/Z(H;) € §; for any 7 = 1,... ,n. Since J; is saturated, it follows, by Gaschiitz-
Lubeseder-Schmid the¢rémythat J; is local. Therefore, § = LF(f;) and f;(p) # @ for any
p € m(F;). We have thateach H;-chief factor of Z(H;) is fi-central in H;, and so H; € §.
Hence H € §, and se.J satisfies the condition of the theorem in [4]. Finally, by the theorem
in [4], G contains an F-injectors, as was to be proved.

We recall\that &, is the class of m-groups, and &, is the class of soluble 7-groups.

Corollaty 1 Let P =, 7i, mNw; = @ fori# j. Let § = X, §; where §; € {€xr,, G, }
for dnpi=1,... ,n. Then every group contains an §-injector.

Corollary 2. Let P = J_,m, mNmj =& fori # j. If § = XL, &,,, then every group
coptains an F-injector.

Corollary 3. Let P =, m, mN7; =& fori # j. If §F= x%,6,,, then every group
contains an §-injector.

Corollary 4 [5, 6]. Every group has nilpotent injectors.

Remark. A more detailed analysis shows that the Theorem is valid without the condition

UW(&'Z’) =P

Pestome. Ilycts § =F1 X ... Fn, U 7#(Fi) = P un 7(F:) N 7(F;) = & npu i # j. Loxazano,
qTo ecm § = §° ecTh HemycTad HachmenHas ¢popmanud OurTuara Mg moboroi = 1,... ,n,
TO KaXXJ1as KOHeYHas TPYNa o0/1a1aeT §-MHBEKTOPOM.
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