On the Gaschütz product of ω -local formations of finite groups

A.N.SKIBA, T.R.VISHNEVSKAYA

Dedicated to Professor Wolfgang Gaschütz on the occasion of his 80th birthday

All groups considered are finite.

Recall that a formation [1] is a class of groups which is closed under taking homomorphic images and subdirect products.

Let ω be a non-empty set of primes. Every function of the form

 $f:\omega\bigcup\{\omega'\}\to\{\text{group formations}\}$

is called an ω -local satellite [2]. Recall that an ωd -group is a group whose order is divisible by at least one number in ω . Following [2] we use $G_{\omega d}$ to denote the greatest normal subgroup in G whose composition factors are ωd -groups ($G_{\omega d} = 1$ if $\pi(R) \cap \omega = \emptyset$ for each minimal normal subgroup R in G). If a formation \mathfrak{F} is such that

$$\mathfrak{F} = (G \mid G/G_{\omega d} \in f(\omega') \text{ and } G/F_p(G) \in f(p) \text{ for all } p \notin \omega \bigcap \pi(G))$$

for some ω -local satellite f, then $\mathfrak F$ is called an ω -local formation. If $\omega=\{p\}$ then the ω -local formations are called p-local. In the other extreme case, $\omega=\mathbb P$, ω -local formations are just local formations in the usual sense [1,3]. A formation $\mathfrak F$ is called ω -saturated if $\mathfrak F$ contains each group G with $G/O_{\omega}(G) \cap \Phi(G) \in \mathfrak F$. By Theorem 1 of [4], a formation $\mathfrak F$ is ω -local if and only if it is ω -saturated.

Let \mathfrak{M} and \mathfrak{H} be non-empty formations. Then the Gaschütz product (see [5]) \mathfrak{FM} of the formations \mathfrak{M} and \mathfrak{H} is the class of all groups G with $G^{\mathfrak{H}} \in \mathfrak{M}$.

There are ω -local formations $\mathfrak F$ which can be represented as a Gaschütz product $\mathfrak F=\mathfrak M\mathfrak H$ of two non- ω -local formations $\mathfrak M$ and $\mathfrak H$. Indeed, let $\mathfrak F$ be the class of all groups each composition factor of which is isomorphic to one of the following groups: A_5 , Z_2 , Z_3 , Z_5 (Z_n is a cyclic group of order n). It is clear that the formation $\mathfrak F$ is local. Using some ideas of the Kamornikov and Shemetkov's work [6] we consider the formation $\mathfrak F$ which consists of all groups whose composition factors are isomorphic to A_5 , and the formation $\mathfrak M$ which consists of all groups whose chief factors H/K satisfy one of the following conditions:

(a) composition factors of H/K are isomorphic to A_5 ;

(b) each factor group of $G/C_G(H/K)$ is not isomorphic to A_5 .

It is clear that $\mathfrak{F}=\mathfrak{MH}$ (see [6] for details) and $A_5\in\mathfrak{M}$. From [7, 8] it follows that there is a group E with a normal subgroup N such that $E/N\simeq A_5,\ N\subseteq O_2(E)\cap\Phi(E)$ and for some chief factor H/K of the group E we have $C_G(H/K)=N$ and $H\subseteq N$. Hence the formations \mathfrak{M} and \mathfrak{H} are not 2-local.

In connection with those examples we note that the Gaschütz product \mathfrak{MH} of any two ω -local formations \mathfrak{M} and \mathfrak{H} is an ω -local formation as well (see Theorem 7 of [2]). Using this result and some observations from [9] we prove the following results:

Theorem 1. Let $\mathfrak{F} \neq (1)$ be a formation. Then the Gaschütz product \mathfrak{FH} is a p-local formation for every formation \mathfrak{H} if and only if \mathfrak{F} is a p-local formation and $\mathfrak{N}_p \subseteq \mathfrak{F}$.

In this theorem \mathfrak{N}_p denotes the class of all p-groups. The symbol \mathfrak{N}_{ω} denotes the class of all nilpotent ω -groups (an ω -group is a group G with $\pi(G) \subseteq \omega$).

Corollary 1. Let $\mathfrak{F} \neq (1)$ be a formation. Then the Gaschütz product \mathfrak{FH} is an ω -local formation for every formation \mathfrak{H} if and only if \mathfrak{F} is an ω -local formation and $\mathfrak{N}_{\omega} \subseteq \mathfrak{F}$.

Corollary 2 ([10], Theorem I). Let $\mathfrak{F} \neq (1)$ be a formation. Then the Gaschütz product $\mathfrak{F}\mathfrak{H}$ is a saturated formation for every formation \mathfrak{H} if and only if \mathfrak{F} is a saturated formation of full characteristic (i.e. a group of order p belongs to \mathfrak{F} for all $p \in \mathbb{P}$).

Theorem 2. Let $\mathfrak{H} \neq (1)$ be a formation. Then the Gaschütz product $\mathfrak{F}\mathfrak{H}$ is a p-local formation for every formation \mathfrak{F} if and only if \mathfrak{H} is the class of all groups.

Corollary 3. Let $\mathfrak{H} \neq (1)$ be a formation. Then the Gaschütz product $\mathfrak{H}\mathfrak{H}$ is a ω -local formation for every formation \mathfrak{F} if and only if \mathfrak{H} is the class of all groups.

Corollary 4 ([10], Theorem II). Let $\mathfrak{H} \neq (1)$ be a formation. Then the Gaschütz product $\mathfrak{F}\mathfrak{H}$ is a saturated formation for every formation \mathfrak{F} if and only if \mathfrak{H} is the class of all groups.

Резюме. Доказано, что произведение формаций $\mathfrak{F}\mathfrak{H}$ p-локально для любой формации \mathfrak{H} тогда и только тогда, когда \mathfrak{F} p-локальна и $\mathfrak{N}_p \subseteq \mathfrak{F}$.

References

- [1] W.Gaschütz, Zur Theorie der endlichen auflösbaren Gruppen, Math. Z., 80 (1963), 300–305.
- [2] L.A.Shemetkov, A.N.Skiba, Multiply ω-local formations and Fitting classes of finite groups, Siberian Advances in Mathematics. V. 10 (2000), № 2, 1–30.
- [3] L.A.Shemetkov, Formations of finite groups, Nauka, Moscow (1978) (Russian).
- [4] A.N.Skiba, L.A.Shemetkov, On partially local formations, Dokl. Akad. Nauk Belarus, V. 39 (1995), № 3, 9–11 (Russian).
- [5] L.A.Shemetkov, Gaschütz products of group classes, Dokl. Akad. Nauk Belarus, V. 42 (1998), № 3, 22–26 (Russian).
- [6] S.F.Kamornikov, L.A.Shemetkov, Decomposable idempotents of the semigroup of formations of finite groups, Dokl. Akad. Nauk BSSR, V. 35 (1991), № 10, 869–871 (Russian).
- [7] W.Gaschütz, Zur Erweiterungstheorie der endlichen Gruppen, J. Math., 190 (1952), 93–107.
- [8] R.L.Griess, P.Schmid, The Frattini module, Arch. Math (Basel), V. 30 (1978), 256-266.
- [9] A.N.Skiba, On nontrivial factorizations of a one-generated local formation of finite groups, Proc. Int. Conf. Algebra Dedicat. Mem. A.I.Mal'cev. Novosibirsk, 21–26 Aug. 1989.
- [10] A.Ballester-Bolinches, M.D.Perez-Ramos, Some questions of the Kourovka Notebook concerning formation products, Comm. Algebra, V. 26 (1998), № 5, 1581–1587.

Francisk Scorina Gomel State University 246019 Gomel, Belarus

Received June 5, 2000