Учреждение образования «Гомельский государственный университет имени Франциска Скорины»

А. А. АТВИНОВСКИЙ И. В. ПАРУКЕВИЧ

МАТЕМАТИЧЕСКИЙ АНАЛИЗ ЧИСЛОВЫЕ РЯДЫ

Практическое пособие

для студентов факультета математики и технологий программирования

Гомель ГГУ им. Ф. Скорины 2021 УДК 517.521(076) ББК 22.161.3я73 A92

Рецензенты:

доктор физико-математических наук В. М. Селькин, кандидат физико-математических наук В. Е. Евдокимович

Рекомендовано к изданию научно-методическим советом учреждения образования «Гомельский государственный университет имени Франциска Скорины»

Атвиновский, А. А.

А92 Математический анализ. Числовые ряды : практическое пособие / А. А. Атвиновский, И. В. Парукевич ; Гомельский гос. ун-т им. Ф. Скорины. – Гомель : ГГУ им. Ф. Скорины, 2021. – 44 с

ISBN 978-985-577-747-3

Практическое пособие разработано в соответствии с требованиями государственного стандарта подготовки специалистов специальностей «Математика», «Прикладная математика», «Информатика и технологии программирования». В издании содержится материал по теме «Числовые ряды».

Адресовано студентам факультета математики и технологий программирования.

УДК 517.521(076) ББК 22.161.3я73

ISBN 978-985-577-747-3

- © Атвиновский А. А., Парукевич И. В., 2021
- © Учреждение образования «Гомельский государственный университет имени Франциска Скорины», 2021

ОГЛАВЛЕНИЕ

Предисловие	4
Лабораторная работа 1. Ряды с неотрицательными членами	5
Лабораторная работа 2. Знакопеременные ряды	28
Литература	44

ПРЕДИСЛОВИЕ

Практическое пособие «Числовые ряды» по математическому анализу составлено в соответствии с действующей программой по данной дисциплине для математических специальностей университетов. Пособие содержит две лабораторные работы по следующим темам: числовые ряды с неотрицательными членами и знакопеременные ряды, которые излагаются на первом году обучения. В начале каждой лабораторной работы содержится справочный материал по теме, а также решения типовых задач. В лабораторных работах задания разделены на двадцать вариантов. В каждом задании задачи подобраны одного уровня сложности для каждого варианта. Наличие заданий разного уровня сложности позволяет преподавателю варьировать объёмом каждой лабораторной работы. Нумерация заданий своя в каждой лабораторной работе. При составлении пособия авторы использовали литературу, список которой приводится в конце.

Практическое пособие по математическому анализу предназначено, с одной стороны, для организации учебного процесса дневного отделения факультета математики и технологий программирования по специальностям 1-31 03 01 02 «Математика», 1-31 03 03 01 «Прикладная математика (научно-производственная деятельность)», 1-31 03 03 02 «Прикладная математика (научно-педагогическая деятельность)», 1-40 04 01 «Информатика и технологии программирования», 1-31 03 06 01 «Экономическая кибернетика (математические методы в экономике)». С другой стороны, оно может быть использовано при проведении практических занятий и формирования индивидуальных заданий студентам разных форм обучения

ЛАБОРАТОРНАЯ РАБОТА 1 РЯДЫ С НЕОТРИЦАТЕЛЬНЫМИ ЧЛЕНАМИ

Определение 1. Пусть $(a_n)_{n=1}^{\infty} = (a_1, a_2, ..., a_n, ...)$ — числовая последовательность. Символ

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \dots + a_k + \dots$$

называется *числовым рядом*, числа $a_1, a_2, ..., a_k, ...$ – членами ряда, а число $a_k - k$ -м или *общим членом* ряда.

В дальнейшем в качестве индекса суммирования в выражении используются любые буквы латинского алфавита, например i, j, n.

Определение 2. Сумма конечного числа n первых членов числового ряда

$$S_n = a_1 + a_2 + ... + a_n = \sum_{k=1}^{\infty} a_k$$

называется *n*-й частичной суммой данного ряда.

Определение 3. Если для последовательности $(S_n)_{n=1}^{\infty}$ частичных сумм ряда $\sum_{k=1}^{\infty} a_k$ существует конечный предел $\lim_{n \to \infty} S_n = S \; ,$

$$\lim_{n\to\infty} S_n = S ,$$

то ряд $\sum_{k=0}^{\infty} a_k$ называется cxodsumcs, а число S-cymmoŭ этого ряда:

$$S = a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{k=1}^{\infty} a_k.$$

Если предел последовательности $\left(S_n\right)_{n=1}^\infty$ не существует или равен бесконечности, то ряд называют расходящимся.

Пишут также

$$\sum_{k=1}^{\infty} a_k = \infty.$$

Будем говорить, что общий член числового ряда $\sum_{k=1}^{\infty} a_k$ стремится κ нулю, если $\lim_{k \to \infty} a_k = 0$.

Из определения видно, что изучение сходимости и других свойств рядов сводится к изучению или переформулировке соответствующих свойств последовательностей.

Теорема 1. Необходимым условием сходимости ряда $\sum_{k=1}^{\infty} a_k$ является стремление к нулю его общего члена.

Теорема 2 (критерий Коши). Для сходимости ряда $\sum_{k=1}^{\infty} a_k$, $a_k \in \square$ необходимо и достаточно, чтобы выполнялось условие Коши:

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \in \square : \forall n > n_{\varepsilon}, n \in \square ; \forall p \in \square \mapsto \left| \sum_{k=n+1}^{n+p} a_k \right| < \varepsilon.$$

Определение 4. Числовой ряд

$$a_{n+1} + a_{n+2} + \dots = \sum_{k=n+1}^{\infty} a_k$$

называется остатком ряда $\sum_{n=1}^{\infty} a_n$ после n-го члена.

Теорема 3. Если ряд $\sum_{k=1}^{\infty} a_k$ сходится, то и любой его остаток сходится. Если какой-то остаток ряда сходится, то сам ряд также сходится.

Следствие. Если числовой ряд $\sum_{k=1}^{\infty} a_k$ сходится, то

$$\lim_{n\to\infty}\sum_{k=n}^{\infty}a_k=0.$$

Приведенные ниже две теоремы показывают, какими свойствами обладают сходящиеся числовые ряды.

Теорема 4. Перестановка, отбрасывание или добавление конечного числа членов ряда не влияет на его сходимость (расходимость).

Теорема 5. Пусть сходятся ряды $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$, тогда при любых

 $\lambda, \mu \in \square$ сходится ряд $\sum_{k=1}^{\infty} (\lambda a_k + \mu b_k)$ и его сумма равна

$$\sum_{k=1}^{\infty} (\lambda a_k + \mu b_k) = \lambda \sum_{k=1}^{\infty} a_k + \mu \sum_{k=1}^{\infty} b_k.$$

Отметим, что из сходимости ряда $\sum_{k=1}^{\infty} (a_k + b_k)$ в общем случае не следует сходимость рядов $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$.

Теорема 6. Для сходимости ряда

$$\sum_{k=1}^{\infty} a_k , \ a_k \ge 0 \ \forall k \in \square$$

необходима и достаточна ограниченность последовательности его частичных сумм.

Теорема 7 *(признак сравнения).* Пусть при некотором $k_0 \in \square$ выполнено неравенство $0 \le a_k \le b_k$, $\forall k \ge k_0$, тогда:

- сходимость ряда $\sum_{k=1}^{\infty} b_k$ влечет за собой сходимость ряда $\sum_{k=1}^{\infty} a_k$;
- расходимость ряда $\sum_{k=1}^{\infty}a_k$ влечет за собой расходимость ряда $\sum_{k=1}^{\infty}b_k$.

Следствие. Пусть $\forall k \in \square$ выполняются неравенства $a_k > 0$, $b_k > 0$ и существует

$$\lim_{k\to\infty}\frac{a_k}{b_k}=L\in(0,\infty).$$

Тогда ряды $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ сходятся или расходятся одновременно.

Теорема 8 *(интегральный признак сходимости ряда).* Пусть функция f(x) убывает к нулю на $[1,+\infty)$. Тогда ряд $\sum_{k=1}^{\infty} f(k)$ и интеграл $\int_{0}^{\infty} f(x) dx$ сходятся или расходятся одновременно.

Теорема 9 *(признак Даламбера).* Пусть $a_k > 0 \ \forall k \in \square$, тогда:

— если существует число q<1 такое, что при некотором k_0 верно неравенство $\frac{a_{k+1}}{a_k} \le q<1$ $\forall k \ge k_0$, то ряд $\sum_{k=1}^\infty a_k$ сходится;

— если при некотором k_0 верно неравенство k_0 $\frac{a_{k+1}}{a_k} \leq 1 \ \forall k \geq k_0$, то ряд $\sum_{k=1}^\infty a_k$ расходится.

Теорема 10 (признак Даламбера в предельной форме). Пусть $a_k > 0 \ \forall k \in \square$, и существует

$$\lim_{x\to\infty}\frac{a_{k+1}}{a_k}=q.$$

Тогда:

- если q < 1, то ряд $\sum_{k=1}^{\infty} a_k$ сходится;

- если q > 1, то ряд $\sum_{k=1}^{\infty} a_k$ расходится;

— если q=1, то ряд $\sum_{k=1}^{\infty}a_k$ может быть как сходящимся, так и расходящимся.

Теорема 11 *(признак Коши).* Пусть $a_k \ge 0 \ \forall k \in \square$, тогда:

- если существует число q < 1 такое, что при некотором $k_0 \in \square$ верно неравенство $\sqrt[k]{a_k} \le q < 1 \ \, \forall k \ge k_0$, то ряд $\sum_{k=1}^\infty a_k$ сходится;
- если при некотором $k_0 \in \square$ $\exists k \ge k_0 := \sqrt[k]{a_k} \ge 1$, то ряд $\sum_{k=1}^{\infty} a_k$ расходится, и даже его общий член не стремится к нулю.

Теорема 12 (признак Коши в предельной форме). Пусть $a_k \ge 0$ $\forall k \in \square$ и существует

$$\overline{\lim}_{k\to\infty} \sqrt[k]{a_k} = q.$$

Тогда:

- если q < 1, то ряд $\sum_{k=1}^{\infty} a_k$ сходится;
- если q>1, то ряд $\sum_{k=1}^{\infty}a_k$ расходится, и при этом его общий член не стремится к нулю;

— если q=1, то ряд $\sum_{k=1}^{\infty}a_k$ может быть как сходящимся, так и расходящимся.

Следствие. Утверждение теоремы 12 сохранится, если в ней условие существования $\varlimsup_{k\to\infty} \sqrt[k]{a_k} = q$ заменить на условие существования $\lim_{k\to\infty} \sqrt[k]{a_k} = q$.

Теорема 13 *(признак Раабе).* Пусть $a_k > 0 \ \forall k \in \square$, тогда:

— если существует число r > 1 такое, что при некотором k_0 верно неравенство

$$k\left(\frac{a_k}{a_{k+1}}-1\right) \ge r > 1 \quad \forall k \ge k_0,$$

то ряд $\sum_{k=1}^{\infty} a_k$ сходится;

- если при некотором k_0 верно неравенство

$$k\left(\frac{a_k}{a_{k+1}}-1\right) \le 1 \quad \forall k \ge k_0,$$

то ряд $\sum_{k=1}^{\infty} a_k$ расходится.

Теорема 14 (Признак Раабе в предельной форме). Пусть $a_k > 0 \ \forall k \in \square$, и пусть существует

$$\lim_{k\to\infty} n\left(\frac{a_k}{a_{k+1}}-1\right) = r.$$

Тогда:

- если r>1, то ряд $\sum_{k=1}^{\infty}a_k$ сходится;
 - если r < 1, то ряд $\sum_{k=1}^{\infty} a_k$ расходится;
- если r=1, то ряд $\sum_{k=1}^{\infty}a_k$ может быть как сходящимся, так и расходящимся.

Решение типовых примеров

1 Доказать сходимость ряда непосредственно и найти его сумму.

$$\sum_{k=1}^{\infty} \frac{1}{(2k-1)(2k+1)}.$$

Решение. Поскольку

$$\frac{1}{(2k-1)(2k+1)} = \frac{1}{2} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right),$$

то частичную сумму ряда можно записать в виде

$$S_n = \frac{1}{2} \left(1 - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{5} \right) + \dots + \frac{1}{2} \left(\frac{1}{2n - 1} - \frac{1}{2n + 1} \right) = \frac{1}{2} \left(1 - \frac{1}{2n + 1} \right).$$

Тогда по определению сходящегося ряда

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1}{2} \left(1 - \frac{1}{2n+1} \right) = \frac{1}{2}.$$

Значит, ряд сходится и сумма ряда S = 0.5.

2 Исследовать сходимость рядов:

a)
$$\sum_{k=0}^{\infty} (-1)^k a, a \in \square \setminus \{0\},$$
 \emptyset $\sum_{k=0}^{\infty} aq^k, a \in \square \setminus \{0\}.$

Решение. а) Для ряда

$$\sum_{k=0}^{\infty} (-1)^k a = a - a + a - \dots$$

составим частичные суммы:

$$S_1 = a, S_2 = 0, ..., S_{2n-1} = a, S_{2n} = 0, ...$$

Поскольку подпоследовательности S_{2n} и S_{2n-1} имеют разные пределы, то последовательность частичных сумм S_n этого ряда не имеет предела и поэтому данный ряд расходится.

б) Сумма n первых членов ряда

$$\sum_{k=0}^{\infty} aq^{k} = a + aq + aq^{2} + \dots + aq^{k} + \dots$$

имеет вид

$$S_n = a + aq + aq^2 + ... + aq^n = \frac{a(1 - q^n)}{1 - q}, q \neq 1.$$

Так как

$$\lim_{n\to\infty}q^n = \begin{cases} 0, |q|<1\\ \infty, |q|>1 \end{cases},$$

To

$$\lim_{n \to \infty} q^n = \begin{cases} 0, |q| < 1 \\ \infty, |q| > 1 \end{cases}$$

$$\lim_{n \to \infty} S_n = \begin{cases} \frac{a}{1 - q}, |q| < 1 \\ \infty, |q| > 1 \end{cases}$$

$$\infty$$

При q = -1 ряд $\sum_{k=0}^{\infty} aq^k$ совпадает с рядом $\sum_{k=0}^{\infty} (-1)^k a$, который расходится (смотри пункт a)), а при q = 1 частичная сумма ряда примет вид $S_n = na$, следовательно $S = \lim_{n \to \infty} S_n = \infty$, то есть ряд расходится.

Следовательно, ряд $\sum_{k=0}^{\infty} aq^k$ сходится при |q| < 1 и его сумма $S = \frac{a}{1-a}$, при $|q| \ge 1$ он расходится.

3 Доказать расходимость гармонического ряда

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} + \dots = \sum_{k=1}^{\infty} \frac{1}{k}.$$

Решение. Очевидно, что необходимое условие сходимости ряда выполняется $\left(\lim_{k\to\infty}\frac{1}{k}=0\right)$, однако гармонический ряд расходится. Докажем, что он расходится двумя способами.

1-й способ. Действительно, предположим, что гармонический ряд сходится и его сумма равна S. Тогда

$$\lim_{n\to\infty}(S_{2n}-S_n)=\lim_{n\to\infty}S_{2n}-\lim_{n\to\infty}S_n=S-S=0.$$

Из неравенства

$$S_{2n} - S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} \ge n \cdot \frac{1}{2n} = \frac{1}{2} \quad \forall n \in \square$$

предельным переходом по n, получаем противоречие: которое и доказывает данное утверждение.

2-й способ. Воспользуемся критерием Коши:

доказывает данное утверждение.

пособ. Воспользуемся критерием Коши:
$$\left|a_{k+1}+a_{k+2}+...+a_{k+p}\right| = \left|\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{k+p}\right| = .$$

$$= \frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{k+p}.$$

Для любого $p \in \square$ положим k = p, получим:

$$\left|a_{k+1} + a_{k+2} + \dots + a_{k+p}\right| \ge \frac{1}{2p} + \frac{1}{2p} + \dots + \frac{1}{2p} = \frac{1}{2}.$$

Таким образом, для любого $\varepsilon \in (0;0,5)$ критерий Коши не выполняется. Следовательно, гармонический ряд расходится.

4 Исследовать сходимость обобщенного гармонического ряда (ряда Дирихле)

$$\sum_{k=1}^{\infty} \frac{1}{k^q}, q \in \square.$$

Решение. При q = 1 ряд совпадает с гармоническим рядом и расходится.

Если $q \le 0$, то $\frac{1}{k^q} \ge 1$ $\forall k \in \square$, а значит, не выполняется необходимое условие сходимости ряда. В этом случае ряд расходится.

Пусть $q > 0, q \ne 1$. Воспользуемся интегральным признаком сходимости ряда. Положим $f(x) = \frac{1}{r^q}$. Функция f(x) монотонно убывает на промежутке $[1; +\infty)$.

Обобщенный гармонический ряд сходится и расходится одновременно с интегралом $\int_{-\infty}^{+\infty} \frac{dx}{x^q}$.

Известно (убедится самостоятельно), что несобственный интеграл равен

$$\int_{1}^{+\infty} \frac{dx}{x^{q}} = \begin{cases} \frac{1}{1-q}, & q > 1\\ +\infty, & q \le 1. \end{cases}$$

Следовательно, обобщенный гармонический ряд сходится при q > 1 и расходится при $q \le 1$.

5 Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} \frac{2n+1}{3n+5}.$$

Решение. Вычислим предел

$$\lim_{n \to \infty} \frac{2n+1}{3n+5} = \frac{2}{3} \neq 0.$$

 $\lim_{n \to \infty} \frac{2n+1}{3n+5} = \frac{2}{3} \neq 0$.

лолняется ряд р Следовательно, не выполняется необходимое условие сходимости ряда, а значит, данный ряд расходится.

6 Исследовать сходимость рядов с помощью признака сравнения:

a)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
; б) $\sum_{n=1}^{\infty} \sin \frac{2}{\sqrt{n}}$; в) $\sum_{n=1}^{\infty} \frac{3n^3 - 2n + 5}{n^4 + 4n^2 + 2n - 1}$.
Решение. a) Так как $\frac{1}{n^n} \le \frac{1}{n^2}$ $\forall n \ge 2$ и обобщенный гармониче-

ский ряд $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится (q=2>1), то, согласно признаку сравнения, сходится и данный ряд.

б) Сравним ряд $\sum_{n=1}^{\infty} \sin \frac{2}{\sqrt{n}}$ с обобщённым гармоническим рядом $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}}$. Согласно признаку сравнения в предельной форме, из асимптотических формул (убедиться самостоятельно) следует, что

$$\sin \frac{2}{\sqrt{n}} \square \frac{2}{\sqrt{n}}$$
, при $n \to +\infty$.

Так как ряд $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}}$ расходится (q=0,5<1), то расходится и исходный ряд.

в) Сравним ряд
$$\sum_{n=1}^{\infty} \frac{3n^3 - 2n + 5}{n^4 + 4n^2 + 2n - 1}$$
 с гармоническим рядом $\sum_{n=1}^{\infty} \frac{3}{n}$.

Согласно признаку сравнения в предельной форме, из асимптотических формул

$$\frac{3n^3 - 2n + 5}{n^4 + 4n^2 + 2n - 1} \square \frac{3}{n}, \quad n \to \infty$$

следует, что исходный ряд расходится вместе с гармоническим рядом.

7 Исследовать сходимость рядов с помощью признака Даламбера.

a)
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$
; 6) $\sum_{n=1}^{\infty} \frac{3^n}{n^3}$; B) $\sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!}$.

Решение. а) Вычислим предел

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{(n+1)!}{(n+1)^{n+1}} : \frac{n!}{n^n} = \lim_{n\to\infty} \frac{n^n (n+1)!}{n!(n+1)^{n+1}} = \lim_{n\to\infty} \frac{n^n}{(n+1)^n} = \frac{1}{e} < 1.$$

Значит, по признаку Даламбера данный ряд сходится.

б) Вычислим предел:

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \frac{3^{n+1}}{(n+1)^3} : \frac{3^n}{n^3} = \lim_{n\to\infty} \frac{3^{n+1}n^3}{3^n(n+1)^3} = 3\lim_{n\to\infty} \frac{n^3}{(n+1)^3} = 3 > 1.$$

Значит, согласно признаку Даламбера исходный ряд расходится.

в) Так как

$$a_{n+1} = \frac{(2n+1)!!}{(2(n+1))!!} = \frac{(2n-1)!!(2n+1)}{(2n)!!(2n+2)} = a_n \cdot \frac{2n+1}{2n+2},$$

TO

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{2n+1}{2n+2} = 1.$$

Значит, согласно признаку Даламбера в предельной форме, вопрос о сходимости ряда остается открытым. Воспользуемся признаком Раабе. Рассмотрим предел

$$\lim_{n \to \infty} n \cdot \left(\frac{a_n}{a_{n+n}} - 1 \right) = \lim_{n \to \infty} n \cdot \left(\frac{2n+1}{2n+2} - 1 \right) = \lim_{n \to \infty} \frac{n}{2n+2} = \frac{1}{2} < 1.$$

Следовательно, ряд расходится.

Утверждение о расходимости ряда можно было доказать при помощи признака Даламбера следующим образом.

Доказательство будем проводить от противного. Предположим, что ряд $\sum_{n=1}^{\infty} \frac{(2n+1)!!}{(2n+2)!!}$ сходится. Тогда

$$\forall q \in (0,1) \exists n_q \in \square : \forall n > n_q \Rightarrow \frac{a_{n+1}}{a_n} = \frac{2n+3}{2n+4} < q.$$

Но из этого утверждения следует, что найдется номер n_q , начиная с которого будет выполняться неравенство

$$n < \frac{1}{2(1-q)}.$$

Что невозможно в силу принципа Архимеда. Полученное противоречие и доказывает расходимость ряда.

8 Исследовать сходимость рядов с помощью признака Коши.

Решение. а) Так как

$$\lim_{n\to\infty} \sqrt[n]{a_n} = \lim_{n\to\infty} \sqrt[n]{\left(\frac{n}{2n+1}\right)^n} = \lim_{n\to\infty} \frac{n}{2n+1} = \frac{1}{2} < 1,$$

то согласно признаку Коши, данный ряд сходится.

б) Так как

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \left(\frac{6n+3}{6n+1} \right)^{0,5n} = \left(1^{+\infty} \right) = \lim_{n \to \infty} \left(1 + \frac{2}{6n+1} \right)^{0,5n} = \lim_{n \to \infty$$

то согласно признаку Коши, данный ряд расходится.

9 Исследовать сходимость ряда

$$\sum_{k=2}^{\infty} \frac{1}{k \ln^2 k}$$

с помощью интегрального признака.

Решение. Исходный ряд, согласно интегральному признаку, сходится или расходится одновременно с интегралом

$$\int_{2}^{+\infty} \frac{1}{k \ln^2 k}.$$

При этом подынтегральная функция принимает положительные значения на промежутке $[2;+\infty)$ и её производная отрицательна, следовательно, функция убывает.

$$\int_{2}^{+\infty} \frac{1}{x \ln^{2} x} = \lim_{a \to \infty} \int_{2}^{a} \frac{dx}{x \ln^{2} x} = \lim_{a \to \infty} \int_{2}^{a} \frac{d(\ln x)}{\ln^{2} x} = \lim_{a \to \infty} \left(-\frac{1}{\ln x} \right) \Big|_{2}^{a} =$$

$$= \lim_{a \to \infty} \left(\frac{1}{\ln 2} - \frac{1}{\ln a} \right) = \frac{1}{\ln 2}.$$

Таким образом, несобственный интеграл сходится, а значит, сходится и числовой ряд.

10 Найти все значения α, при которых сходится ряд

$$\sum_{n=1}^{\infty} \left(n^3 \arcsin(n^{-5}) \right)^{\alpha}.$$

Решение. Воспользуемся признаком сравнения в предельной форме. Так как

$$\left(n^3 \arcsin \frac{1}{n^5}\right)^{\alpha} \Box \left(n^3 \cdot \frac{1}{n^5}\right)^{\alpha} \Box \left(\frac{1}{n^2}\right)^{\alpha} = \frac{1}{n^{2\alpha}}, n \to \infty,$$

то исходный ряд сходится одновременно с рядом $\sum_{n=1}^{\infty} \frac{1}{n^{2\alpha}}$, который является обобщённо-гармоническим и сходится при $2\alpha < 1$, значит при $\alpha < 0,5$ ряд будет сходиться.

11 Исследовать сходимость ряда:

Решение. а) Оценим члены данного ряда:

$$\frac{\sin(n^{-3})}{n\ln^2 \operatorname{tg}(n^{-1})} \le \frac{1}{n\ln^2 \operatorname{tg}(n^{-1})} \square \frac{1}{n\ln^2(n^{-1})}, \ n \to \infty.$$
отрим ряд
$$\sum_{n=2}^{\infty} \frac{1}{n\ln^2(n^{-1})}$$

Рассмотрим ряд

$$\sum_{n=2}^{\infty} \frac{1}{n \ln^2(n^{-1})}$$

и исследуем его сходимость, используя интегральный признак. Так как

$$\int_{2}^{+\infty} \frac{dx}{x \ln^{2}(x^{-1})} = \int_{2}^{+\infty} \frac{d(\ln x)}{\ln^{2}(x^{-1})} = \int_{2}^{+\infty} \frac{d(\ln x)}{\ln^{2} x} = \frac{1}{\ln x} \Big|_{2}^{+\infty} = -\frac{1}{\ln 2},$$

то данный интеграл сходится, а значит, сходится и ряд

$$\sum_{n=2}^{\infty} \frac{1}{n \ln^2(n^{-1})}.$$

По признаку сравнения будет сходящимся и ряд

$$\sum_{n=2}^{\infty} \frac{\sin(n^{-3})}{n \ln^2(tg(n^{-1}))}.$$

б) Из асимптотических формул (убедиться самостоятельно) следует, что

$$\operatorname{tg} \frac{1}{n} \square \frac{1}{n}$$
; $\operatorname{arctg} \frac{1}{\sqrt{n}} \square \frac{1}{n}, n \to \infty$ при $n \to +\infty$,

поэтому

$$\ln \frac{1 + \lg \frac{1}{n}}{1 + \operatorname{arctg} \frac{1}{\sqrt{n}}} \, \Box \, \ln \frac{1 + \frac{1}{n}}{1 + \frac{1}{\sqrt{n}}} = \ln \frac{n + 1}{n + \sqrt{n}} = \ln \frac{n + \sqrt{n} - \sqrt{n}}{n + \sqrt{n}} = \ln \frac{n + \sqrt{n} - \sqrt{n}}{n + \sqrt{n}} = \ln \frac{n + \sqrt{n} - \sqrt{n}}{n + \sqrt{n}} = \ln \frac{n + \sqrt{n} - \sqrt{n}}{n + \sqrt{n}} = \ln \frac{n + \sqrt{n} - \sqrt{n}}{n + \sqrt{n}} = \ln \frac{n + \sqrt{n}}{$$

$$= \ln \left(1 + \frac{1 - \sqrt{n}}{n + \sqrt{n}} \right) \Box \frac{1 - \sqrt{n}}{n + \sqrt{n}} \Box \frac{1}{n}, \text{ при } n \to +\infty.$$

Согласно признаку сравнения в предельной форме, из расходимости гармонического ряда следует, что расходится и исходный ряд.

Доказать сходимость ряда непосредственно и найти его сумму.

1.1 a)
$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{6^n}$$
; 6) $\sum_{n=1}^{\infty} \frac{6}{9n^2 + 12n - 5}$.
1.2 a) $\sum_{n=1}^{\infty} \frac{2}{n(n+2)}$; 6) $\sum_{n=1}^{\infty} \frac{1}{n^2 + n - 2}$.
1.3 a) $\sum_{n=1}^{\infty} \frac{5 - 5^n}{15^n}$; 6) $\sum_{n=1}^{\infty} \frac{24}{9n^2 + 12n - 5}$.
1.4 a) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$; 6) $\sum_{n=1}^{\infty} \frac{9}{9n^2 + 21n - 8}$.
1.5 a) $\sum_{n=1}^{\infty} \frac{5 + 2^n}{10^n}$; 6) $\sum_{n=1}^{\infty} \frac{14}{49n^2 - 28n - 45}$.
1.6 a) $\sum_{n=1}^{\infty} \frac{3}{(n+1)(n+4)}$; 6) $\sum_{n=1}^{\infty} \frac{1}{49n^2 - 7n - 12}$.
1.7 a) $\sum_{n=1}^{\infty} \frac{3^n - 5^n}{15^n}$; 6) $\sum_{n=1}^{\infty} \frac{12}{36n^2 + 12n - 35}$.
1.8 a) $\sum_{n=1}^{\infty} \frac{8}{n(n+3)}$; 6) $\sum_{n=1}^{\infty} \frac{3}{9n^2 - 3n - 2}$.
1.9 a) $\sum_{n=1}^{\infty} \frac{3 \cdot 5^n - 2}{10^{2n}}$; 6) $\sum_{n=1}^{\infty} \frac{8}{16n^2 + 8n - 15}$.
1.10 a) $\sum_{n=1}^{\infty} \frac{1}{(3n-1)(3n+2)}$; 6) $\sum_{n=1}^{\infty} \frac{8}{16n^2 - 8n - 15}$.
1.12 a) $\sum_{n=1}^{\infty} \frac{2-n}{n(n+1)(n+3)}$; 6) $\sum_{n=1}^{\infty} \frac{7}{49n^2 - 35n - 6}$.
1.13 a) $\sum_{n=1}^{\infty} \frac{7}{10^n}$; 6) $\sum_{n=1}^{\infty} \frac{1}{49n^2 - 35n - 6}$.

6)
$$\sum_{n=1}^{\infty} \frac{6}{9n^2 + 12n - 5}.$$
6)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + n - 2}.$$
6)
$$\sum_{n=1}^{\infty} \frac{24}{9n^2 + 12n - 5}.$$
6)
$$\sum_{n=1}^{\infty} \frac{9}{9n^2 + 21n - 8}.$$
6)
$$\sum_{n=1}^{\infty} \frac{14}{49n^2 - 28n - 45}.$$
6)
$$\sum_{n=1}^{\infty} \frac{7}{49n^2 - 7n - 12}.$$
6)
$$\sum_{n=1}^{\infty} \frac{12}{36n^2 + 12n - 35}.$$
6)
$$\sum_{n=1}^{\infty} \frac{3}{9n^2 - 3n - 2}.$$
6)
$$\sum_{n=1}^{\infty} \frac{8}{16n^2 + 8n - 15}.$$
6)
$$\sum_{n=1}^{\infty} \frac{8}{16n^2 - 8n - 15}.$$
6)
$$\sum_{n=1}^{\infty} \frac{5}{25n^2 + 5n - 6}.$$
6)
$$\sum_{n=1}^{\infty} \frac{7}{49n^2 - 35n - 6}.$$

 $6)\sum_{n=1}^{\infty}\frac{14}{49n^2-14n-49}.$

1.14 a)
$$\sum_{n=1}^{\infty} \frac{4}{(2n+3)(2n+5)}$$
;

$$6) \sum_{n=1}^{\infty} \frac{6}{9n^2 + 6n - 8}.$$

1.15 a)
$$\sum_{n=1}^{\infty} \frac{(2+2^n)^2}{8^n}$$
;

$$6) \sum_{n=1}^{\infty} \frac{2}{4n^2 + 8n + 3}.$$

1.16 a)
$$\sum_{n=1}^{\infty} \frac{4^n + 0.3^n}{9^n}$$
;

$$6) \sum_{n=1}^{\infty} \frac{6}{36n^2 - 24n - 5}.$$

1.17 a)
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)(2n+3)}$$
;

$$6) \sum_{n=1}^{\infty} \frac{4}{4n^2 + 4n - 3}.$$

1.18 a)
$$\sum_{n=1}^{\infty} \frac{0,2^n(3^n+5^n)}{2^n}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{4}{4n^2 + 4n - 3}$$
.
6) $\sum_{n=1}^{\infty} \frac{9}{9n^2 + 3n - 20}$.
6) $\sum_{n=1}^{\infty} \frac{12}{3n^2 + 3n - 20}$.

1.19 a)
$$\sum_{n=1}^{\infty} \frac{1}{(n+6)n}$$
;

6)
$$\sum_{n=1}^{\infty} \frac{12}{36n^2 - 12n - 35}$$
.

1.20 a)
$$\sum_{n=1}^{\infty} \frac{4^n - 26^n + 9^n}{10^n};$$

$$6) \sum_{n=1}^{\infty} \frac{14}{49n^2 - 70n - 24}.$$

2 Исследовать сходимость ряда с помощью признака сравнения.

2.1 a)
$$\sum_{k=1}^{\infty} \frac{k^2 + k + 1}{k^4 + k^2 + 2};$$

$$6) \sum_{k=1}^{\infty} \frac{5^{k}}{1+5^{2k}}.$$

2.2 a)
$$\sum_{k=1}^{\infty} \frac{k^3 - 2k + 7}{k^4 - 4k^3 + 2k - 5};$$

$$6) \sum_{k=1}^{\infty} \frac{\cos(0.5\pi - \pi k^{-1})}{\sqrt[3]{k^5}}.$$

2.3 a)
$$\sum_{k=1}^{\infty} \frac{7}{7^k + k}$$
;

$$6) \sum_{k=1}^{\infty} \frac{3k^2 - \sqrt[3]{k}}{2k^3 - k + 1}.$$

2.4 a)
$$\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}+6}$$
;

$$6) \sum_{k=1}^{\infty} \frac{e^{\frac{1}{k^2}} - 1}{e^{\frac{2}{k}} - 1}.$$

2.5 a)
$$\sum_{k=1}^{\infty} \frac{2^k}{k(2^k+1)}$$
;

$$6) \sum_{k=1}^{\infty} \frac{k-4}{\sqrt[3]{k^2(k^2+4)}}.$$

2.6 a)
$$\sum_{k=1}^{\infty} \frac{\sin^2 k}{k\sqrt{k^2+1}}$$
;

$$6) \sum_{k=1}^{\infty} \frac{7k^2 - 3}{\sqrt{k^3 + 2k^2 + 3}}.$$

2.7 a)
$$\sum_{k=1}^{\infty} \frac{5^k + (-1)^k}{k(5^k + 9)};$$

$$6) \sum_{k=1}^{\infty} \frac{k+2}{\sqrt[3]{k^4 - k^2 + 4}}.$$

2.8 a)
$$\sum_{k=1}^{\infty} \frac{8^k + (-1)^k}{8^{3k} + 2};$$

$$6) \sum_{k=1}^{\infty} \frac{2k^3 - k + 4}{k^4 + 3k - 5}.$$

2.9 a)
$$\sum_{k=1}^{\infty} \sin \frac{1}{k^2}$$
;

$$6) \sum_{k=1}^{\infty} \frac{5k^{11} - 2k + 8}{2k^{12} + 7}.$$

2.10 a)
$$\sum_{k=1}^{\infty} \frac{k^5 + \sin k}{k^3 + 6k^2};$$

$$6) \sum_{k=1}^{\infty} \frac{\sqrt{k} + 10}{2k^2 + 3k - 5}.$$

2.11 a)
$$\sum_{k=1}^{\infty} \frac{1}{3^k (k+1)}$$
;

6)
$$\sum_{k=1}^{\infty} 2k^2 + 3k - 5$$

6) $\sum_{k=1}^{\infty} \frac{k^5 + k - 1}{k^4 + 3k^2 - 2}$
6) $\sum_{k=1}^{\infty} \frac{k + 1}{k^3 + 6k^2 + 2}$

2.12 a)
$$\sum_{k=1}^{\infty} \frac{\cos^2 k}{k^3 \sqrt{k^2 + 1}}$$
;

$$6) \sum_{k=1}^{\infty} \frac{k+1}{k^3 + 6k^2 + 2}.$$

2.13 a)
$$\sum_{k=1}^{\infty} \sin \frac{3 + (-1)^k}{k^3}$$
;

$$6) \sum_{k=1}^{\infty} \frac{2k^2 + 1}{k^3 + 6\sqrt{k} + 2}.$$

2.14 a)
$$\sum_{k=1}^{\infty} \frac{\arctan k}{k\sqrt{k^2+6}}$$
;

$$6) \sum_{k=1}^{\infty} \frac{2k^3 + k + 1}{\sqrt{k^6 + 6k^2 + 2}}.$$

2.15 a)
$$\sum_{k=1}^{\infty} \frac{5+3(-1)^k}{2^{k+3}};$$

6)
$$\sum_{k=1}^{\infty} \frac{1}{3\sqrt{k} + 7}$$
.

2.16 a)
$$\sum_{k=1}^{\infty} \frac{7^k}{k^3 + k + 8^k};$$

$$6) \sum_{k=1}^{\infty} \frac{7k^2 - 3}{\sqrt{k^3 + 2k^2 + 3}}.$$

2.17 a)
$$\sum_{k=1}^{\infty} \frac{k-1}{k\sqrt{k}+k}$$
;

$$6) \sum_{k=1}^{\infty} \frac{\sin(k^{-1})}{k^3 - k + 3}.$$

2.18 a)
$$\sum_{k=1}^{\infty} \left(\frac{1}{3^k} + \frac{k+1}{k^2 \sqrt{k}} \right);$$

6)
$$\sum_{k=1}^{\infty} \frac{5}{k^3 + 2}$$
.

2.19 a)
$$\sum_{k=1}^{\infty} \frac{\operatorname{arctg} k^{2}}{\sqrt[4]{k^{7}} + k};$$
2.20 a)
$$\sum_{k=1}^{\infty} \frac{e^{k^{-1}} - 1}{k + \ln k};$$

6)
$$\sum_{k=1}^{\infty} \frac{k^4 - k\sqrt{k} + 5}{\sqrt[5]{k^{21}} - k + 2}.$$

2.20 a)
$$\sum_{k=2}^{\infty} \frac{e^{k^{-1}} - 1}{k + \ln k}$$

6)
$$\sum_{k=1}^{\infty} \frac{k - \sqrt{k} - 2}{6k^{10} + k}$$
.

3 Исследовать сходимость ряда с помощью признака Даламбера.

3.1 a)
$$\sum_{n=1}^{\infty} \frac{n^{10}}{(n+1)!};$$

6)
$$\sum_{n=1}^{\infty} \frac{(2n+1)!!}{1 \cdot 4 \cdot ... \cdot (3n+1)}$$
.

3.2 a)
$$\sum_{n=1}^{\infty} \frac{n^3}{3^n}$$
;

3.3 a)
$$\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdot ... \cdot (3n-2)}{e^n n!}$$
; 6) $\sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot ... \cdot (3n)}{(n+1)!} \arcsin \frac{1}{2^n}$.

3.4 a)
$$\sum_{n=1}^{\infty} \frac{\arctan 3^{-n}}{n!}$$
;

3.5 a)
$$\sum_{n=1}^{\infty} \frac{1 \cdot 5 \cdot ... \cdot (4n-3)}{3 \cdot 6 \cdot ... \cdot 3n}$$
;

3.6 a)
$$\sum_{n=1}^{\infty} \frac{5^n e^{n+1}}{n! \arctan n}$$
;

3.7 a)
$$\sum_{n=1}^{\infty} \frac{n!(2n+1)!}{(3n)!};$$

3.8 a)
$$\sum_{n=1}^{\infty} \frac{n!3^n}{n^n}$$
;

3.9 a)
$$\sum_{n=1}^{\infty} \frac{n^{12}}{(n-1)!}$$
;

3.10 a)
$$\sum_{n=1}^{\infty} \frac{(3n)!}{4^n (n!)^3}$$

3.10 a)
$$\sum_{n=1}^{\infty} \frac{(3n)!}{4^{n}(n!)^{3}};$$
 6)
$$\sum_{n=1}^{\infty} \frac{(2n+1)!!}{3^{n}n!}.$$

3.11 a)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot ... (3n+2)}{4^{n}(n-1)!};$$
 6)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot ... \cdot (3n+2)}{2^{n}(n+1)!}.$$

3.12 a)
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot ... \cdot (2n-1)}{3^{n} n!};$$
 6)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 9 \cdot ... \cdot (7n-5)5^{n}}{(2n)!}.$$
3.13 a)
$$\sum_{n=1}^{\infty} \frac{n^{12}}{(n-1)!};$$
 6)
$$\sum_{n=1}^{\infty} \frac{4 \cdot 7 \cdot 10 \cdot ... \cdot (3 + n+4)}{(n+2)!}.$$

3.13 a)
$$\sum_{n=1}^{\infty} \frac{n^{12}}{(n-1)!}$$
;

3.14 a)
$$\sum_{n=1}^{\infty} \frac{(2n+1)!}{(3n+4)3^n};$$

3.15 a)
$$\sum_{n=1}^{\infty} \frac{n!7^n}{n^n}$$
;

3.16 a)
$$\sum_{n=1}^{\infty} \frac{(3n)!}{(n!)^3 4^{3n}};$$

3.17 a)
$$\sum_{n=1}^{\infty} \frac{n!(2n+1)!}{(3n)!};$$

6)
$$\sum_{n=1}^{\infty} \frac{(2n+1)!!}{3^n n!}$$
.

$$6) \sum_{n=1}^{\infty} \frac{3 \cdot 6 \cdot \dots \cdot (3n)}{(n+1)!} \arcsin \frac{1}{2^n}.$$

6)
$$\sum_{n=1}^{\infty} \frac{(2n+1)!!}{n!} \operatorname{arctg} \frac{1}{5^n}$$
.

$$6) \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}.$$

6)
$$\sum_{n=1}^{\infty} \frac{(2n+1)!!}{2 \cdot 5 \cdot ... \cdot (3n-1)}$$
.

$$\frac{1}{2}; \qquad 6) \sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^{2}}.$$

$$6) \sum_{n=1}^{\infty} \frac{(2n+1)!!}{2 \cdot 5 \cdot \dots \cdot (3n-1)}.$$

$$6) \sum_{n=1}^{\infty} \frac{1 \cdot 6 \cdot \dots \cdot (5n-4)}{5^{n}(n+1)!}.$$

$$6) \sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdot \dots \cdot (3n-1)}{5^{n}(n+1)!}.$$

6)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot 8 \cdot ... \cdot (3n-1)}{1 \cdot 6 \cdot 11 \cdot ... \cdot (5n-4)}.$$

$$6) \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{4^n n!}.$$

6)
$$\sum_{n=1}^{\infty} \frac{(2n+1)!!}{3^n n!}.$$

6)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot ... \cdot (3n+2)}{2^{n} (n+1)!}.$$

6)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 9 \cdot ... \cdot (7n-5)5^n}{(2n)!}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{4 \cdot 7 \cdot 10 \cdot \dots (3 \ n+4)}{(n+2)!} \arcsin(7^{-n})^n$$
.

$$\text{6) } \sum_{n=1}^{\infty} \frac{(2n)!!}{2 \cdot 6 \cdot 10 \cdot \ldots \cdot (4n+2)} \arcsin \frac{1}{2^n}.$$

6)
$$\sum_{n=1}^{\infty} \frac{(2n)!!}{(n!)^2}$$
.

6)
$$\sum_{n=1}^{\infty} \frac{(2n)!!}{4^n(n!)}$$
.

$$6) \sum_{n=1}^{\infty} \frac{2 \cdot 6 \cdot \dots \cdot (4n+2)}{8^n n!}.$$

3.18 a)
$$\sum_{n=1}^{\infty} \frac{n^2 - 3n + 5}{2^n \operatorname{arctg} n};$$

6)
$$\sum_{n=1}^{\infty} \frac{(2n-1)!}{5^n(n!)}$$
.

3.19 a)
$$\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$$
;

$$6) \sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdot \dots \cdot (3n+2)}{n!} \arcsin \frac{1}{2^n}.$$

3.20 a)
$$\sum_{n=1}^{\infty} \frac{1 \cdot 5 \cdot ... \cdot (4n-3)}{2 \cdot 6 \cdot ... \cdot (4n-2)};$$

$$6) \sum_{n=1}^{\infty} \frac{n!(3n-1)!}{(2n)!}.$$

4 Исследовать сходимость ряда с помощью признака Коши.

4.1 a)
$$\sum_{n=1}^{\infty} \frac{2^n (n+1)!}{n}$$
;

$$6) \sum_{n=1}^{\infty} \frac{1}{n} \left(\cos \frac{1}{n} \right)^{n^{-1}}.$$

4.2 a)
$$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n}}{\sqrt{\ln^n(n+1)}};$$

6)
$$\sum_{n=1}^{\infty} \frac{\sin^n(\pi n^{-1})}{3n^2 + n}$$
.

4.3 a)
$$\sum_{n=1}^{\infty} \left(\frac{5n}{n+2} \right)^n$$
;

$$6) \sum_{n=1}^{\infty} \frac{n^3 + 1}{n^{4n} \cos^n(n^{-1})}.$$

4.4 a)
$$\sum_{n=1}^{\infty} \left(\frac{2n}{n+1} \right)^n$$
;

$$6) \sum_{n=1}^{\infty} \frac{2n-1}{2n+1} \operatorname{arctg}^{n} \left(\frac{1}{n}\right).$$

4.5 a)
$$\sum_{n=1}^{\infty} \left(\frac{3+2n}{n} \right)^n$$
;

$$6) \sum_{n=1}^{\infty} \left(\frac{n^2 + 5}{n^2 + 6} \right)^{n^3}$$

4.6 a)
$$\sum_{n=1}^{\infty} \left(\frac{4n+2}{n+3} \right)^n$$
;

$$6) \sum_{n=1}^{\infty} \left(\frac{2n-1}{2n+1} \right)^{n(n+1)}.$$

4.7 a)
$$\sum_{n=2}^{\infty} \frac{n^2}{\sqrt{\ln^n n}}$$
;

6)
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n+1} \right)^{n^2+4n+5}$$
.

$$4.8 \text{ a) } \sum_{n=1}^{\infty} \left(\frac{5}{n+1}\right)^n;$$

6)
$$\sum_{n=1}^{\infty} \left(\frac{6n+1}{5n-3} \right)^{\frac{n^2}{2}}$$
.

4.9 a)
$$\sum_{n=1}^{\infty} \frac{n^3}{\sqrt{\ln^n (n+1)}}$$
;

6)
$$\sum_{n=1}^{\infty} \left(\frac{n+3}{n+6} \right)^{3n^2+1} \frac{1}{5^n}$$
.

4.10 a)
$$\sum_{n=1}^{\infty} \left(\frac{\sqrt{n} + 5}{2\sqrt{n} + 7} \right)^{8n}$$
;

6)
$$\sum_{n=1}^{\infty} 3^{-n} \left(\frac{n+1}{n} \right)^{n^2}$$
.

4.11 a)
$$\sum_{n=1}^{\infty} \frac{n^3}{\sqrt{\ln^n(n+1)}}$$
;

4.12 a)
$$\sum_{n=1}^{\infty} \left(\frac{3+2n}{5n} \right)^{3n}$$
;

4.13 a)
$$\sum_{n=1}^{\infty} \left(\frac{5n}{n+2} \right)^n$$
;

4.14 a)
$$\sum_{n=1}^{\infty} \frac{4n}{(n+2)^n}$$
;

4.15 a)
$$\sum_{n=1}^{\infty} \left(\frac{\sqrt{n}}{3\sqrt{n}+5} \right)^n$$
;

4.16 a)
$$\sum_{n=1}^{\infty} \frac{4n^2}{7^{n^2+1}}$$
;

4.17 a)
$$\sum_{n=1}^{\infty} \frac{0.5n+2}{n^n}$$

4.16 a)
$$\sum_{n=1}^{\infty} \frac{n!}{7^{n^2+1}};$$
 6) $\sum_{n=1}^{\infty} 2^n \left(\frac{n+1}{n+1}\right)^{n-1}.$
4.17 a) $\sum_{n=1}^{\infty} \frac{0.5n+2}{n^n};$ 6) $\sum_{n=1}^{\infty} \left(\frac{\sqrt{n}+2}{\sqrt{n}+3}\right)^{\sqrt{n^3}}.$
4.18 a) $\sum_{n=1}^{\infty} 3^{-n} \left(\frac{n}{n+1}\right)^{n^2+2n};$ 6) $\sum_{n=1}^{\infty} \left(\frac{(n+4)}{(2n+6)}\right)^{n^2} \sin^2(n+1)$
4.19 a) $\sum_{n=1}^{\infty} \left(\frac{1}{2^n} - \frac{1}{2^n}\right)^{n^2+n};$ 6) $\sum_{n=1}^{\infty} \left(\frac{n-1}{2^n}\right)^{n^2+4n+5}.$

4.19 a)
$$\sum_{n=1}^{\infty} \left(\frac{1}{2} - \frac{1}{2n}\right)^{n^2 + n}$$
;

4.20 a)
$$\sum_{n=1}^{\infty} \frac{8^n}{n^n n!}$$
;

$$6) \sum_{n=1}^{\infty} 6^n \left(\frac{n}{n+3} \right)^{n^2}.$$

6)
$$\sum_{n=1}^{\infty} \left(\frac{2n-1}{2n+1} \right)^{n^2}$$
.

6)
$$\sum_{n=1}^{\infty} 3^{n+1} \left(\frac{n+2}{n+3} \right)^{n^2}$$
.

6)
$$\sum_{n=1}^{\infty} \left(n+3 \right)^{8\sqrt{n^3}}$$
6)
$$\sum_{n=1}^{\infty} \left(\frac{\sqrt{n+5}}{\sqrt{n+7}} \right)^{8\sqrt{n^3}}$$

6)
$$\sum_{n=1}^{\infty} \frac{n^{n+1}}{(3n^2 + 2n + 1)^{0.5(n+3)}}.$$

$$6) \sum_{n=1}^{\infty} 2^n \left(\frac{n-1}{n+1} \right)^{n^2}.$$

$$6) \sum_{n=1}^{\infty} \left(\frac{\sqrt{n}+2}{\sqrt{n}+3} \right)^{\sqrt{n^3}}$$

6)
$$\sum_{n=1}^{\infty} \left(\frac{(n+4)}{(2n+6)} \right)^{n^2} \sin^n n$$
.

6)
$$\sum_{n=1}^{\infty} \left(\frac{n-1}{n+1} \right)^{n^2+4n+5}$$
.

$$6) \sum_{n=1}^{\infty} \left(\frac{n-2}{n+2} \right)^{\sqrt{n^4+3n+2}}$$

5 Исследовать сходимость числового ряда с помощью интегрального признака.

$$5.1 \sum_{k=1}^{\infty} \frac{k \ln(k^2 + 4)}{k^2 + 4}.$$

$$5.2 \sum_{k=1}^{\infty} \frac{\ln(k+2)}{k+2}.$$

$$5.3 \sum_{k=1}^{\infty} \frac{\cos^2 k}{k^2 + 1}.$$

$$5.11 \sum_{k=3}^{\infty} \frac{\arcsin \frac{1}{k}}{k^2 + 4}.$$

$$5.12 \sum_{k=3}^{\infty} \frac{1}{k \ln k \ln \ln k}.$$

$$5.13 \sum_{k=1}^{\infty} \frac{4 \ln^3 k}{k}.$$

$$5.4 \sum_{k=1}^{\infty} \frac{1}{(k+1)\ln^3(k+1)}$$
.

$$5.5 \sum_{k=1}^{\infty} \frac{\ln(k+1)}{k+1}.$$

$$5.6 \sum_{k=1}^{\infty} \frac{k}{k^2 + 9}.$$

$$5.7 \sum_{k=1}^{\infty} \frac{\ln^3(3k+1)}{3k+1}.$$

$$5.8 \sum_{k=1}^{\infty} \frac{\text{arctg } k}{\sqrt[3]{k^{10}} + 1}.$$

$$5.9 \sum_{k=2}^{\infty} \frac{1}{k^2 \ln k^2}.$$

$$5.10 \sum_{k=2}^{\infty} \frac{8}{k \ln^4 k}.$$

$$5.14 \sum_{k=1}^{\infty} ke^{-k^2}$$
.

$$5.15 \sum_{k=1}^{\infty} k^2 3^{-k^3}.$$

$$5.16 \sum_{k=1}^{\infty} \frac{k^2}{(k^3+4)\ln(k^3+4)}.$$

$$5.17 \sum_{k=1}^{\infty} \frac{\ln^2 3k}{3k}.$$

$$5.17 \sum_{k=1}^{\infty} \frac{\ln^2 3k}{3k}.$$

$$5.18 \sum_{k=1}^{\infty} \frac{\ln^6 (2k+3)}{2k+3}.$$

$$5.19 \sum_{k=1}^{\infty} \frac{3}{2k+3}.$$

$$5.19 \sum_{k=2}^{\infty} \frac{3}{k \ln k}$$
.

$$5.20 \sum_{k=1}^{\infty} k^2 e^{-k^3}$$
.

6 Найти все значения α , при которых сходится данный ряд.

6.1
$$\sum_{n=1}^{\infty} \left(1 - \cos \frac{1}{n} + \sin \frac{1}{n^2} \right)^{\alpha}$$
.

$$6.2 \sum_{n=1}^{\infty} \left(e^{\operatorname{tg}_{n}^{-1}} - 1 \right)^{\alpha}.$$

$$6.3 \sum_{n=1}^{\infty} \left(5^{\arctan \frac{2}{n^3}} - 1 \right)^{\alpha}.$$

$$6.4 \sum_{n=1}^{\infty} \left(\frac{1}{n^2} \sin \frac{\pi}{4n} \right)^{\alpha}.$$

$$6.4 \sum_{n=1}^{\infty} \left(\frac{1}{n^2} \sin \frac{\pi}{4n} \right)^{\alpha}.$$

$$6.5 \sum_{n=1}^{\infty} \left(\arctan \frac{1}{n} - \sin \frac{1}{3n} \right)^{\alpha}.$$

$$6.6 \sum_{n=1}^{\infty} \ln^{\alpha} \left(1 - \frac{2}{n} \right).$$

6.7
$$\sum_{n=1}^{\infty} \left(\arctan \frac{1}{n} - \ln \left(1 + \frac{1}{4n} \right) \right)^{\alpha}$$
. 6.17 $\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{n^{\alpha}}$.

$$6.11 \sum_{1}^{\infty} \left(n \sin \frac{1}{n^2} \right)^{\alpha}.$$

$$6.12 \sum_{n=1}^{\infty} \left(4^{\sin^2\frac{1}{n}} - 1\right)^{\alpha}$$
.

$$6.13 \sum_{n=1}^{\infty} \left(e^{\frac{2}{n^2}} - \cos \frac{1}{n} \right)^{\alpha}.$$

$$6.14 \sum_{n=2}^{\infty} \left(\ln \frac{n+1}{n-1} - \frac{2}{n-1} \right)^{\alpha}.$$

$$6.15 \sum_{n=1}^{\infty} \sin^{\alpha} \left(1 - \sin \frac{1}{n} \right).$$

$$6.16 \sum_{n=1}^{\infty} \ln^{\alpha} \left(1 - \sin \frac{1}{n} \right).$$

6.17
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{n^{\alpha}}$$
.

$$6.8 \sum_{n=1}^{\infty} \left(e^{1/n} - 1 - \frac{1}{3n} \right)^{\alpha}$$

6.18
$$\sum_{n=1}^{\infty} \left(2 - 2 \cos \frac{1}{\sqrt{n}} \right)^{\alpha}$$
.

$$6.9 \sum_{n=1}^{\infty} \left(e^{\frac{1}{n} \sin \frac{1}{n}} \right)^{\alpha}.$$

6.19
$$\sum_{n=1}^{\infty} n^{\alpha} \left(\ln(n^2 + 1) - 2 \ln n \right).$$

$$6.10 \sum_{n=1}^{\infty} \left(tg \frac{1}{n} - \sin \frac{1}{2n} \right)^{\alpha}.$$

6.20
$$\sum_{n=1}^{\infty} \left(1 - \cos \frac{1}{n^2} \right)^{\alpha} \ln^{\alpha} \left(1 + \frac{2}{n} \right)$$

7 Исследовать сходимость числового ряда.

7.1
$$\sum_{n=1}^{\infty} \frac{1 - \cos(n!)^{-1}}{\ln^2 \left(1 + \operatorname{tg}(n^{-1})\right)}.$$

$$7.11 \sum_{n=1}^{\infty} \left(1 - \frac{1}{\sqrt{\ln(n+1)}}\right).$$

$$7.2 \sum_{n=1}^{\infty} (e^{1/n} - 1) \sin^2(n+1)^{-0.5}.$$

7.12
$$\sum_{n=1}^{\infty} \arcsin \frac{\sqrt{n}+1}{n^3+3n+2}$$
.

7.3
$$\sum_{n=1}^{\infty} \frac{\ln(e^n + n^2)}{n^2 \ln^2(n+1)}$$
.

$$7.13 \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \arcsin \frac{1}{\sqrt[5]{n^4}}$$
.

7.4
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{n+3} \ln \frac{3n-1}{3n+1}$$
. 7.14 $\sum_{n=1}^{\infty} \ln \frac{1+\operatorname{tg} n^{-3}}{1+\operatorname{arctg} n^{-2}}$.

$$7.14 \sum_{n=1}^{\infty} \ln \frac{1 + \lg n^{-3}}{1 + \operatorname{arctg} n^{-2}}$$

$$7.5 \sum_{n=1}^{\infty} \left(\frac{n-1}{n+1} \right)^n \frac{\ln n}{\sqrt[3]{n^3 + 2}}.$$

$$7.15 \sum_{n=1}^{\infty} \sin^{n} \left(\frac{\pi}{4n} \right) \left(\operatorname{arctg} \left(\frac{1}{n} \right) + 1 \right).$$

$$7.6 \sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n\sqrt[3]{n}} \right).$$

$$7.16 \sum_{n=1}^{\infty} \frac{0.3^n + 1}{n! + 4n} \ln \left(2 - \frac{4n + 1}{4n + 3} \right).$$

$$7.7 \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{(2n+1)^2 \ln^2(n+1)}.$$

$$7.17 \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n!} \left(\arctan \frac{1}{2\sqrt{n}} \right).$$

$$7.8 \sum_{n=1}^{\infty} \frac{n!!}{n!} \operatorname{arctg} \frac{1}{3^n}.$$

7.18
$$\sum_{n=1}^{\infty} \left(1 - \cos \frac{2\pi}{n} \right)$$
.

$$7.9 \sum_{n=1}^{\infty} \frac{n \ln \left(n^2 + 1\right)}{\sqrt{n^5 + 3n + 2}}.$$

7.19
$$\sum_{n=1}^{\infty} \left(\sqrt[3]{n^7} + \operatorname{arctg} \frac{n}{2n^2 + 1} \right) \frac{e^5 n}{n!}$$
.

$$7.10 \sum_{n=1}^{\infty} \left(\frac{n-1}{2^n (n+1)} \right)^{\sin(n^{-1})}.$$

$$7.20 \sum_{n=1}^{\infty} \ln \frac{n+3}{n^2+4}.$$

- 8 Доказать следующие утверждения.
- 8.1 Если существует $n_0 \in \square: \forall n \geq n_0 \Rightarrow a_n \geq 0, b_n > 0$, кроме того, числовой ряд $\sum_{n=1}^\infty b_n$ сходится и $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, то числовой ряд $\sum_{n=1}^\infty a_n$ также сходится.
- 8.2 Если $\exists n_0 \in \square: \forall n \geq n_0 \Rightarrow a_n \geq 0, b_n > 0$, кроме того, числовой ряд $\sum_{n=1}^{\infty} b_n$ расходится и $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$, то ряд $\sum_{n=1}^{\infty} a_n$ расходится.
- 8.3 Если существует $\lim_{n\to\infty}(n\cdot a_n)=a\neq 0$, то числовой ряд $\sum_{n=1}^\infty a_n$ расходится.
- 8.4 Если выполняется неравенство $0 < a_{n+1} \le a_n \ \forall n \in \square$ и числовой ряд $\sum_{n=1}^{\infty} a_n$ сходится, то $\lim_{n \to \infty} (n \cdot a_n) = 0$.
- 8.5 Если числовой ряд $\sum_{n=1}^{\infty} a_n$ с неотрицательными членами сходится, то ряд $\sum_{n=1}^{\infty} a_n^2$ сходится.
- 8.6 Если $(n \cdot a_n)$ ограниченная последовательность с неотрицательными членами, то числовой ряд $\sum_{n=1}^{\infty} a_n^2$ сходится.
- 8.7 Если ряд $\sum_{n=1}^{\infty} a_n$ сходится, то остаток ряда $\sum_{n=m}^{\infty} a_n$ также сходится для любого $m \in \square$.
- 8.8 Если для любого $m \in \square$ остаток ряда $\sum_{n=m}^{\infty} a_n$ сходится, то ряд $\sum_{n=1}^{\infty} a_n$ также сходится.
- 8.9 Если числовые ряды $\sum_{n=1}^{\infty}a_n^2$ и $\sum_{n=1}^{\infty}b_n^2$ сходятся и $a_n\geq 0, b_n\geq 0,$ то сходится и числовой ряд $\sum_{n=1}^{\infty}a_nb_n$.

- 8.10 Если числовой ряд $\sum_{n=1}^{\infty}a_n^2$ сходится и $a_n\geq 0$, то сходится и числовой ряд $\sum_{n=1}^{\infty}\frac{a_n}{n}$.
- 8.11 Если ряд $\sum_{n=1}^{\infty} \frac{a_n}{\sqrt{n}}$ сходится и $a_n \ge 0$ убывающая последовательность, то ряд $\sum_{n=1}^{\infty} a_n^2$ также сходится.
- 8.12 Ряд с неотрицательными членами сходится, если ограничена сверху хотя бы одна подпоследовательность его частичных сумм.
- 8.13 Если выполняется неравенство $0 < a_{n+1} \le a_n \ \forall n \in \square$ и существует $\lim_{n \to \infty} \frac{a_{2n}}{a_n} = q < \frac{1}{2}$, то числовой ряд $\sum_{n=1}^{\infty} a_n$ сходится.
- 8.14 Если выполняется неравенство $0 < a_{n+1} \le a_n \ \forall n \in \square$ и существует $\lim_{n \to \infty} \frac{a_{2n}}{a_n} = q > \frac{1}{2}$, то числовой ряд $\sum_{n=1}^{\infty} a_n$ расходится.
- 8.15 Если выполняется неравенство $0 < a_{n+1} \le a_n \ \forall n \in \square$, то числовой ряд $\sum_{n=1}^\infty a_n$ сходится или расходится одновременно с числовым рядом $\sum_{n=1}^\infty 2^n a_{2^n}$.

ЛАБОРАТОРНАЯ РАБОТА 2 ЗНАКОПЕРЕМЕННЫЕ РЯДЫ

Определение 1. Ряд $\sum_{k=1}^{\infty} a_k$ называется абсолютно сходящимся, если сходится ряд $\sum_{k=1}^{\infty} |a_k|$.

Теорема 1. Абсолютно сходящийся ряд сходится.

Теорема 2. Если ряд $\sum_{k=1}^{\infty} a_k$ абсолютно сходится, а последовательность $\left\{b_k\right\}_{k=1}^{\infty}$ ограничена, т. е. $\exists M>0: \forall k\in N \to \left|b_k\right| \leq M$, то ряд $\sum_{k=1}^{\infty} a_k b_k$ абсолютно сходится.

 $\sum_{k=1}^{\infty}a_k v_k$ чосолютно сходится. **Теорема 3.** Если ряды $\sum_{n=1}^{\infty}a_n$ и $\sum_{n=1}^{\infty}b_n$ абсолютно сходятся, то при любых λ и μ абсолютно сходится ряд

$$\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n).$$

Следующие две теоремы показывают, что абсолютно сходящиеся ряды обладают некоторыми свойствами сумм конечно числа слагаемых.

Определение 2. Пусть заданы $\sum_{k=1}^{\infty} a_k$ и отображение $k \to n_k$ являющееся взаимно однозначным соответствием $\square \leftrightarrow \square$. Тогда ряд $\sum_{k=1}^{\infty} a_{n_k}$ называют *рядом с переставленными членами* (по отношению к ряду $\sum_{k=1}^{\infty} a_k$).

Теорема 4. Если ряд $\sum_{k=1}^{\infty} a_k$ сходится абсолютно, то и ряд $\sum_{k=1}^{\infty} a_k^*$, полученный перестановкой членов ряда $\sum_{k=1}^{\infty} a_k$, сходится абсолютно, при этом их суммы равны.

Теорема 5. Пусть ряды $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} b_n$ сходятся абсолютно, тогда ряд составленный из всевозможных (без повторений) попарных произведений членов исходных рядов, сходится абсолютно и его сумма

$$\sum_{j=1}^{\infty} a_{n_j} b_{n_j} = \sum_{n=1}^{\infty} a_n \cdot \sum_{n=1}^{\infty} b_n.$$

Определение 3. Ряд $\sum_{n=1}^{\infty} a_n$ называется *условно сходящимся*, если этот ряд сходится, а ряд $\sum_{n=1}^{\infty} |a_n|$ расходится.

При исследовании ряда на сходимость и абсолютную сходимость иногда оказывается полезным следующее утверждение.

Теорема 6. Если ряд $\sum_{n=1}^{\infty} a_n$ абсолютно сходится, то ряды $\sum_{n=1}^{\infty} b_n$

и $\sum_{n=1}^{\infty} (a_n + b_n)$ одновременно либо абсолютно сходятся, либо условно сходятся, либо расходятся.

Рассмотрим частный случай знакопеременного ряда.

Определение 4. Ряд

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n ,$$

где $a_n > 0$ при всех $n \in \square$, называется знакочередующимся.

Теорема 7 (признак Лейбница). Пусть

- 1) a_n монотонно убывающая последовательность, т. е. $a_n \ge a_{n+1} > 0 \ \forall n \in \square$;
- 2) a_n бесконечно малая последовательность, т. е. $\lim_{n\to\infty}a_n=0$. Тогда знакочередующийся ряд сходится.

При этом остаток ряда

$$r_n = \sum_{k=n+1}^{\infty} (-1)^{k+1} a_k$$

по абсолютной величине не превосходит абсолютной величины первого из его членов, т. е.

$$|r_n| \leq a_n$$
.

Теорема 8 (признак Дирихле). Пусть числовая последовательность $\{a_n\}_{n=1}^{\infty}$ монотонно стремится к нулю, а последовательность частичных сумм ряда $\sum_{n=0}^{\infty} b_n$ ограничена, тогда ряд $\sum_{n=0}^{\infty} a_n b_n$ сходится.

Теорема 9 (признак Абеля). Пусть числовая последовательность $\{a_n\}_{n=1}^{\infty}$ монотонна и ограничена, а ряд $\sum_{n=1}^{\infty} b_n$ сходится, тогда ряд $\sum_{n=0}^{\infty} a_n b_n$ сходится.

Теорема 10 (*Римана*). Пусть ряд $\sum_{n=1}^{\infty} a_n$ сходится, но не абсолютно. Тогда для любого действительного числа А можно так переставить члены этого ряда, что полученный ряд будет сходиться к A.

Решение типовых примеров

1 Исследовать сходимость ряда $\sum_{k=1}^{\infty} (-1)^k$.

Решение. Ряд $\sum_{k=1}^{\infty} (-1)^k$ является расходящимся, как $\lim_{k \to \infty} (-1)^k$ не существует.

Ряды

$$(1-1)+(1-1)+(1-1)+...$$

И

$$(1-1)+(1-1)+(1-1)+...$$

 $1-(1-1)-(1-1)-(1-1)-...$

полученные из него путем объединения его членов, соответственно сходятся:

$$(1-1)+(1-1)+(1-1)+...=0$$
,
 $1-(1-1)-(1-1)-(1-1)-...=1$.

Таким образом, для исходного ряда сумма ряда не существует, а ряды, полученные из него указанным объединением его членов, имеют конечные суммы.

2 Доказать абсолютную сходимость рядов:

Решение. a) Ряд, составленный из абсолютных величин исходного ряда, имеет вид

$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

и является сходящимся как геометрический (q=0,5<1) . Значит ряд $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2^n}$ является абсолютно сходящимся.

б) Составим ряд из абсолютных величин:

$$\sum_{n=1}^{\infty} \left| \frac{(n+1)\cos 2n}{\sqrt[3]{n^7 + 3n + 4}} \right| = \sum_{n=1}^{\infty} \frac{(n+1)|\cos 2n|}{\sqrt[3]{n^7 + 3n + 4}},$$

который исследуем на сходимость по признаку сравнения. Так как

$$\frac{(n+1)|\cos 2n|}{\sqrt[3]{n^7+3n+4}} \le \frac{n+1}{\sqrt[3]{n^7+3n+4}} \square \frac{n}{\sqrt[3]{n^7}} = \frac{1}{n^{4/3}}, \ n \to \infty$$

и ряд $\sum_{n=1}^{\infty} \frac{1}{n^{4/3}}$ сходится как ряд Дирихле ($\alpha=4/3>1$, то ряд из абсолют-

ных величин сходится, а значит, исходный ряд сходится абсолютно.

3 Исследовать сходимость ряда

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^4}$$

с помощью признака Лейбница. Если ряд сходится, то с точностью до 0,01 вычислить его сумму.

Решение. Этот ряд является знакочередующимся рядом, удовлетворяющим условиям признака Лейбница. Во-первых, из неравенства

$$1 > \frac{1}{2^4} > \frac{1}{3^4} > \dots > \frac{1}{n^4} > \dots$$

следует, что последовательность $a_n = n^{-4}$ является убывающей.

Во-вторых, так как

$$\lim_{n\to\infty}\frac{1}{n^4}=0\,,$$

то последовательность a_n – бесконечно малая.

Замечание. Данный ряд сходится, причем абсолютно, поскольку ряд

$$\sum_{n=1}^{\infty} \left| \frac{\left(-1\right)^{n-1}}{n^4} \right| = \sum_{n=1}^{\infty} \frac{1}{n^4}$$

является сходящимся обобщенным гармоническим рядом (q=4>1). Из абсолютной сходимости следует и сходимость этого ряда.

Определим число членов, которые нужно взять, чтобы вычислить его сумму с заданной точностью.

Если

$$\left| \frac{(-1)^{n-1}}{n^4} \right| = \frac{1}{n^4} < 0,01$$
 или $\frac{1}{n^4} < \frac{1}{100}$, $a_4 = \frac{1}{4^4} < \frac{1}{100}$.

TO

$$a_4 = \frac{1}{4^4} < \frac{1}{100}.$$

Следовательно, нужно взять четыре члена данного Вычислим его сумму

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^4} \approx 1 - \frac{1}{2^4} + \frac{1}{3^4} - \frac{1}{4^4} \approx 0,95.$$

4 С помощью признака Дирихле исследовать сходимость ряда

$$\sum_{k=1}^{\infty} \frac{\sin k\alpha}{k}.$$

Peшение. Последовательность $a_k = \left(\frac{1}{k}\right)_{k=1}^{\infty}$ монотонно убывающая, так как

$$\frac{a_{k+1}}{a_k} = \frac{1}{k+1} : \frac{1}{k} = \frac{k}{k+1} < 1 \ \forall k \in \square ,$$

и является бесконечно малой, так как

$$\lim_{k\to\infty}\frac{1}{k}=0.$$

Рассмотрим последовательность

$$B_n = \left(\sum_{k=1}^n \sin k\alpha\right)_{n=1}^\infty.$$

При $\alpha \neq 2m\pi, m \in \square$, имеем

$$\sum_{k=1}^{n} \sin k\alpha = \sin \alpha + \sin 2\alpha + \dots + \sin n\alpha =$$

$$= \frac{2\sin \alpha \sin \frac{\alpha}{2} + 2\sin 2\alpha \sin \frac{\alpha}{2} + \dots + 2\sin n\alpha \sin \frac{\alpha}{2}}{2\sin \frac{\alpha}{2}} =$$

$$= \frac{\cos \frac{\alpha}{2} - \cos \frac{3\alpha}{2} + \cos \frac{3\alpha}{2} - \dots + \cos \left(n - \frac{1}{2}\right) \frac{\alpha}{2} - \cos \left(n + \frac{1}{2}\right) \frac{\alpha}{2}}{2\sin \frac{\alpha}{2}} =$$

$$= \frac{\cos \frac{\alpha}{2} - \cos \left(n + \frac{1}{2}\right) \frac{\alpha}{2}}{2\sin \frac{\alpha}{2}}.$$

Поэтому

$$\left| \sum_{k=1}^{n} \sin k\alpha \right| \le = \frac{\left| \cos \frac{\alpha}{2} \right| + \left| \cos \left(n - \frac{1}{2} \right) \frac{\alpha}{2} \right|}{2 \left| \sin \frac{\alpha}{2} \right|} \le \frac{1}{\left| \sin \frac{\alpha}{2} \right|}.$$

При $\alpha \neq 2m\pi, m \in \square$, все рассматриваемые суммы ограничены. В силу признака Дирихле исходный ряд сходится.

При $\alpha \neq 2m\pi, m \in \square$, все члены ряда обращаются в нуль и ряд также сходится.

5 Исследовать сходимость ряда с помощью признака Абеля

$$\sum_{k=1}^{\infty} \frac{\sin k\alpha}{k} \sin \frac{\pi}{k}.$$

 $Peшение. \ \ \Pi\text{оследовательность} \ \ a_k = \left(\sin\frac{\pi}{k}\right)_{k=1}^{\infty} \ \ \text{ограничена, так}$ как $\left|\sin\frac{\pi}{k}\right| \leq 1 \ \forall k \in \square$. Убедимся в том, что она является монотонной.

Для этого рассмотрим функцию $f(x) = \sin \frac{\pi}{x}$, для которой $f(k) = a_k$.

Так как

$$f'(x) = \left(\sin\frac{\pi}{x}\right)' = -\frac{\pi}{x^2}\cos\frac{\pi}{x} > 0 \quad \forall x > \pi,$$
 ьность a , монотонно убывает для всех $k > \infty$

то последовательность a_k монотонно убывает для всех $k \geq 4$.

Кроме того, ряд $\sum_{k=1}^{\infty} \frac{\sin k\alpha}{k}$ сходится по признаку Дирихле (смотри пример 4). Тогда согласно признаку Абеля ряд $\sum_{k=1}^{\infty} \frac{\sin k\alpha}{k} \sin \frac{\pi}{k}$ также сходится.

6 Исследовать сходимость и абсолютную сходимость ряда

Решение. а) По признаку Лейбница ряд

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n}$$

сходится, так как последовательность $a_n = \frac{1}{n}$ является убывающей и бесконечно малой при $n \to \infty$ (проверить самостоятельно).

С другой стороны, ряд

$$\sum_{n=1}^{\infty} \left| \frac{\left(-1\right)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{1}{n}$$

является расходящимся гармоническим рядом. Значит, ряд

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{n}$$

является условно сходящимся.

б) Для любого $n \in \square$ рассмотрим разность

$$a_n - a_{n+1} = \frac{2n+1}{n^2(n+1)} - \frac{2n+3}{(n+1)^2(n+2)} = \frac{4n^2 + 5n + 2}{n^2(n+1)^2(n+2)} = \frac{2}{n(n+2)} > 0.$$

Значит, последовательность a_n монотонно убывает, причем

$$\lim_{n\to\infty}\frac{2n+1}{n^2(n+1)}=0.$$

Таким образом, ряд сходится по признаку Лейбница.

С другой стороны, ряд

$$\sum_{n=1}^{\infty} \left| \frac{\left(-1\right)^{n-1} (2n+1)}{n^2 (n+1)} \right| = \sum_{n=1}^{\infty} \frac{2n+1}{n^2 (n+1)}$$

сходится по признаку сравнения в предельной форме, так как

$$\frac{2n+1}{n^2(n+1)} \square \frac{2}{n^2}, \quad n \to \infty$$

и ряд

$$\sum_{n=1}^{\infty} \frac{2}{n^2}$$

является сходящимся обобщенно гармоническим (q=2>1). Таким образом, исходный ряд сходится абсолютно.

Замечание. Так как из абсолютной сходимости ряда следует сходимость ряда, то для решения задачи достаточно было доказать только абсолютную сходимость ряда

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n-1} (2n+1)}{n^2 (n+1)}.$$

7 Составить сумму, разность, произведение рядов

$$\sum_{k=1}^{\infty} \frac{1}{2^k}$$
 и $\sum_{k=1}^{\infty} \frac{(-1)^k}{3^k}$

и исследовать их сходимость.

Pешение. Ряд $\sum_{k=1}^{\infty} \frac{1}{2^k}$ есть геометрический со знаменателем $q_1 = 0, 5$, его сумма равна

$$S_1 = \frac{1}{1 - 0.5} = 2$$
.

Второй ряд $\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{3^k}$ — геометрический ряд со знаменателем $q_2 = -1/3$, его сумма

$$S_2 = \frac{1}{1 + 1/3} = \frac{3}{4}.$$

По определению суммы двух рядов полученный ряд имеет вид

$$\sum_{k=1}^{\infty} \left(\frac{1}{2^k} + \frac{\left(-1\right)^k}{3^k} \right).$$

Данный ряд сходится как сумма двух сходящихся рядов, поэтому его сумма

$$S = S_1 + S_2 = 2,75$$
.

Аналогично рассуждая, получим, что ряды

$$\sum_{k=1}^{\infty} \left(\frac{1}{2^k} - \frac{\left(-1\right)^k}{3^k} \right) \text{и } \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{3^k}$$

также сходятся.

1 Доказать абсолютную сходимость ряда.

1.1
$$\sum_{n=1}^{\infty} \frac{\sin(2n+0,25\pi)}{n\sqrt[3]{n+2}}$$
.

1.2
$$\sum_{n=1}^{\infty} \sqrt{\frac{n^2+3}{n^3+4n}} \ln \left(1+\frac{\left(-1\right)^n}{n}\right)$$
.

1.2
$$\sum_{n=1}^{\infty} \sqrt{n^3 + 4n} \ln \left(\frac{1}{n} + n \right)$$
.
1.3 $\sum_{n=1}^{\infty} \frac{\cos(0.25\pi n)}{(n+2)\sqrt{\ln^3(n+3)}}$.
1.4 $\sum_{n=1}^{\infty} n^3 \sin n \cdot e^{-\sqrt{n}}$.
1.5 $\sum_{n=1}^{\infty} \frac{\arctan((-n)^n)}{\sqrt[4]{2n^6 + 3n + 1}}$.
1.6 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[4]{n}} \arcsin \frac{\pi}{4n}$.
1.7 $\sum_{n=1}^{\infty} \frac{(-n)^n}{(4n)!}$.
1.8 $\sum_{n=1}^{\infty} \frac{\arccos((-n))}{\sqrt[3]{n^6 + 3n^2 + 5}}$.
1.9 $\sum_{n=1}^{\infty} \frac{(-1)^n \ln^2(n+1)}{n^4\sqrt{n+1}}$.
1.10 $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[4]{n}} \arctan \frac{1}{4n}$.

$$1.4 \sum_{n=1}^{\infty} n^3 \sin n \cdot e^{-\sqrt{n}}$$

1.5
$$\sum_{n=1}^{\infty} \frac{\arctan(-n)^n}{\sqrt[4]{2n^6 + 3n + 1}}$$

$$1.6 \sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\sqrt[5]{n}} \arcsin \frac{\pi}{4n}$$

$$1.7 \sum_{n=1}^{\infty} \frac{\left(-n\right)^n}{(4n)!}$$

1.8
$$\sum_{n=1}^{\infty} \frac{\operatorname{arcctg}(-n)}{\sqrt[3]{n^6 + 3n^2 + 5}}$$

1.9
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n \ln^2(n+1)}{n^4 \sqrt{n+1}}.$$

$$1.10 \sum_{n=1}^{\infty} \frac{\left(-1\right)^n}{\sqrt[4]{n}} \operatorname{arctg} \frac{1}{4n}.$$

$$1.11 \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} \ln^2 n}{2^n}$$

$$1.12 \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} \sin^2 n}{5^n}.$$

$$1.12 \sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} \sin^2 n}{5^n}$$

$$1.13 \sum_{n=1}^{\infty} \cos^3 n \cdot \operatorname{arctg} \frac{n+1}{n^3+2}.$$

1.14
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} n^3 \cos^4 n}{5^n}.$$

1.15
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1} (2n)!}{\left(n+1\right)^{n}}.$$

1.16
$$\sum_{n=2}^{\infty} \frac{\left(-1\right)^{n+1} \sin^2\left(n^{-0.5}\right)}{\ln^2 n}.$$

1.17
$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^n \sin^2(n+1)}{n\sqrt{n^6+1}}.$$

$$1.18 \sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{\sqrt[4]{n}} \right) \arctan \frac{\sin 4n}{4n}.$$

1.19
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}} \arcsin \frac{3}{n}$$
.

1.20
$$\sum_{n=1}^{\infty} \frac{(n+1)\cos 2n}{\sqrt[4]{n^7 + n - 1}}.$$

D. CKOPINIHIS 2 Исследовать сходимость ряда с помощью признака Лейбница. Если ряд сходится, то с точностью до 0,01 вычислить его сумму.

$$2.1 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{k^k}.$$

$$2.2 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k+1}}{k2^k}.$$

$$2.3 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{\left(2k\right)!}.$$

$$2.4 \sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{k^3}$$
.

$$2.5 \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^4}.$$

$$2.5 \sum_{k=1}^{\infty} \frac{(-1)^k}{k^4}.$$

$$2.6 \sum_{k=1}^{\infty} \frac{(-1)^k}{3^k k!}.$$

$$2.7 \sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{\sqrt{(k+2)^3}}.$$

$$2.8 \sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{\left(k+1\right)^k}$$
.

$$2.11 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{k^6}.$$

$$2.12 \sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{\sqrt[5]{k^2+1}}$$

$$2.13 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{4^k}.$$

$$2.14 \sum_{k=1}^{\infty} \left(-1\right)^{k-1} \ln \left(1 + \frac{1}{k^2}\right).$$

$$2.15 \sum_{k=1}^{\infty} \frac{\left(-1\right)^k 2^k}{k^3}.$$

$$2.16 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k} 4^{k}}{5^{k}}.$$

2.17
$$\sum_{k=1}^{\infty} (-1)^{k-1} \operatorname{tg}\left(\frac{1}{k^2}\right)$$
.

$$2.18 \sum_{k=1}^{\infty} (-1)^{k-1} \sin \left(\frac{3}{k^6} \right)$$

$$2.9 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{5^k}.$$

$$2.19 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{3^k k^4}.$$

$$2.10 \sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{\sqrt{k^4+2}}$$
.

$$2.20 \sum_{k=1}^{\infty} (-1)^{k-1} \operatorname{ctg} 2^{-k} .$$

3 Исследовать сходимость ряда с помощью признака Дирихле.

$$3.1 \sum_{n=1}^{\infty} \frac{\sin 2n}{n\sqrt[3]{n+2}}$$

$$3.11 \sum_{n=1}^{\infty} \frac{\sin 7n}{n+2^n}.$$

$$3.2 \sum_{n=1}^{\infty} \frac{n \cos 3\pi n}{n^2 + n + 2}.$$

$$3.11 \sum_{n=1}^{\infty} \frac{\sin 7n}{n+2^n}.$$

$$3.12 \sum_{n=1}^{\infty} \operatorname{tg}\left(\frac{\pi}{n}\right) \sin 4n.$$

$$3.13 \sum_{n=1}^{\infty} \arcsin\left(\frac{1}{n}\right) \sin 7n$$

$$3.3 \sum_{n=1}^{\infty} \sin \frac{2\pi}{n} \cos 5n.$$

$$3.13 \sum_{n=1}^{\infty} \arcsin\left(\frac{1}{3^n}\right) \sin 7n.$$

$$3.4 \sum_{n=1}^{\infty} \operatorname{arctg}\left(\frac{3}{n^2}\right) \cos 3n.$$

$$3.14 \sum_{n=1}^{\infty} \frac{\cos(0,5\pi n)}{\ln(n+1)}.$$

$$3.5 \sum_{n=1}^{\infty} \sin\left(\frac{2}{5^n}\right) \sin 2n$$

$$3.4 \sum_{n=1}^{\infty} \operatorname{arctg}\left(\frac{3}{n^{2}}\right) \cos 3n. \qquad 3.14 \sum_{n=1}^{\infty} \frac{\cos(0, 5\pi n)}{\ln(n+1)}.$$

$$3.5 \sum_{n=1}^{\infty} \sin\left(\frac{2}{5^{n}}\right) \sin 2n. \qquad 3.15 \sum_{n=1}^{\infty} \sin\left(\frac{2}{\sqrt{n^{4}+2}}\right) \sin 4n.$$

$$3.6 \sum_{n=1}^{\infty} \operatorname{tg}\left(\frac{3}{n^{6}}\right) \cos 5n. \qquad 3.16 \sum_{n=1}^{\infty} \frac{\cos n}{\ln^{2}(n+1)}.$$

$$3.7 \sum_{n=1}^{\infty} \frac{\cos 2n}{n^{2} \ln(n+1)}. \qquad 3.17 \sum_{n=1}^{\infty} \operatorname{arctg}\left(\frac{1}{n^{3}}\right) \sin n.$$

$$3.6 \sum_{n=1}^{\infty} \operatorname{tg}\left(\frac{3}{n^6}\right) \cos 5n$$

$$3.16 \sum_{n=1}^{\infty} \frac{\cos n}{\ln^2(n+1)}.$$

$$3.7 \sum_{n=1}^{\infty} \frac{\cos 2n}{n^2 \ln(n+1)}.$$

$$3.17 \sum_{n=1}^{\infty} \operatorname{arctg}\left(\frac{1}{n^3}\right) \sin n$$

$$3.8 \sum_{n=1}^{\infty} \frac{\cos 5n}{n\sqrt[4]{n+5}}$$

$$3.18 \sum_{n=1}^{\infty} \frac{n \sin 3n}{n^2 + 3n + 1}.$$

$$3.9 \sum_{n=2}^{\infty} \frac{\sin(0,3n)}{\ln n}.$$

$$3.19 \sum_{n=1}^{\infty} \operatorname{tg}\left(\frac{2}{n}\right) \sin 2n.$$

$$3.10 \sum_{n=1}^{\infty} \arcsin\left(\frac{1}{n^3}\right) \cos n.$$

$$3.20 \sum_{n=1}^{\infty} \frac{\sin n}{2n+5^n}.$$

4 Исследовать сходимость ряда с помощью признака Абеля.

$$4.1 \sum_{n=1}^{\infty} 3^{-n^2} \operatorname{tg}\left(\frac{3}{n^6}\right) \cos 5n.$$

$$4.11 \sum_{n=1}^{\infty} \sin \frac{2\pi}{n} \cos 5n \ln \left(1 + \frac{1}{2^n}\right)$$

$$4.2 \sum_{n=1}^{\infty} \frac{n \cos 3\pi n \ln(1+n^{-1})}{n^2+2}.$$

$$4.12 \sum_{n=1}^{\infty} tg\left(\frac{\pi}{n}\right) \sin 4n(e^{n^{-1}} + 2).$$

$$4.3 \sum_{n=1}^{\infty} \frac{e^{n^{-1}} \sin 7n}{n+2^n}.$$

$$4.4 \sum_{n=1}^{\infty} \frac{\cos 2n \ln(1+n^{-2})}{\ln(n+1)}.$$

$$4.5 \sum_{n=1}^{\infty} 5^{-\sqrt{n}} \sin\left(\frac{2}{5^n}\right) \sin 2n.$$

$$4.6 \sum_{n=1}^{\infty} \frac{\sin 2n}{2^n n \sqrt[3]{n+2}}.$$

$$4.7 \sum_{n=1}^{\infty} 5^{-n} \operatorname{arctg}\left(\frac{3}{n^2}\right) \cos 3n.$$

$$4.8 \sum_{n=1}^{\infty} \frac{n \sin 3n \arctan(3^{-n})}{n^2 + 3n + 1}.$$

$$4.9 \sum_{n=1}^{\infty} \frac{n \sin 2n}{n+1} \operatorname{tg}\left(\frac{2}{n}\right).$$

$$4.10 \sum_{n=1}^{\infty} \frac{\sin n \arccos\left(2^{-n}\right)}{2n+5^n}.$$

$$4.13 \sum_{n=1}^{\infty} 4^{-n^2} \arcsin\left(\frac{1}{3^n}\right) \sin 7n.$$

$$4.14 \sum_{n=1}^{\infty} \frac{(e^{-n}+1)\cos(0,5\pi n)}{\ln(n+1)}.$$

$$4.15 \sum_{n=1}^{\infty} 2^{-n} \sin \left(\frac{2}{\sqrt{n^4 + 2}} \right) \sin 4n.$$

$$4.16 \sum_{n=1}^{\infty} \frac{\cos n \ln(2^{-n})}{\ln^2(n+1)}.$$

$$4.17 \sum_{n=1}^{\infty} 2^{-n} \operatorname{tg}\left(\frac{1}{n^3}\right) \sin n.$$

$$4.18 \sum_{n=1}^{\infty} \frac{\cos 5n \arcsin n}{n\sqrt[4]{n+5}}.$$

$$4.19 \sum_{n=2}^{\infty} \frac{n \sin(0,3n)}{(n+2) \ln n}.$$

$$4.20 \sum_{n=1}^{\infty} \frac{n \cos n}{n+3} \arcsin\left(\frac{1}{n^3}\right).$$

5 Исследовать сходимость и абсолютную сходимость ряда.

5.1 a)
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{3^k}$$
;

5.2 a)
$$\sum_{k=1}^{\infty} \frac{\left(-5\right)^k}{1+\left(-5\right)^{2k}};$$

5.3 a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2 + 4}$$
;

5.4 a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k!}$$
;

5.5 a)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k\sqrt{k}}$$
;

5.6 a)
$$\sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{k \ln k}$$
;

$$6) \sum_{k=1}^{\infty} \frac{(-1)^k \sin^2(0,5k)}{\sqrt[5]{k+1}}.$$

6)
$$\sum_{k=1}^{\infty} \frac{\cos(k+0,25\pi)}{\ln^2(k+1)}$$
.

$$6) \sum_{k=1}^{\infty} \frac{(-1)^k \cos^2 2k}{\sqrt{k}}.$$

$$\delta) \sum_{k=1}^{\infty} \frac{\sin k}{\sqrt[5]{k}}$$

$$6) \sum_{k=1}^{\infty} \left(-1\right)^{\frac{k(k-1)}{2}} \frac{1}{\sqrt{k+1}} \left(1 + \frac{2}{k}\right)^{k}.$$

$$6) \sum_{k=1}^{\infty} \frac{\sin^4 k - 3/8}{\sqrt{k+1}}.$$

5.7 a)
$$\sum_{k=2}^{\infty} \frac{(-1)^{k-1}}{\sqrt{k \ln k}};$$

5.8 a)
$$\sum_{k=2}^{\infty} \frac{\left(-1\right)^{k-1}}{\left(k \ln k\right)^2};$$

5.9 a)
$$\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k+2^k}$$
;

5.10 a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{3k(3k-1)}$$
;

5.11 a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2 + 4}$$
;

5.12 a)
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{1+3^{2k+1}};$$

5.13 a)
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1} k^2 2^k}{2^k + 1};$$

5.14 a)
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1} \left(2^k + \left(-1\right)^k\right)}{2^k + k}$$
; 6) $\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{k \ln(k+1)}$.

5.15 a)
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{k+3^{2k+1}};$$

5.16 a)
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k k}{k^2 + 2}$$
;

5.17 a)
$$\sum_{k=2}^{\infty} \frac{\left(-1\right)^{k-1}}{k^2 \ln k^2};$$

5.18 a)
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1} 5^k}{5^k + k};$$

5.19 a)
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k k}{k^5 + 3k + 4}$$
;

5.20 a)
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{2+7^{k+1}}$$
;

$$6) \sum_{k=1}^{\infty} \frac{\cos k \cos(1/k)}{\sqrt[4]{k}}.$$

$$6) \sum_{k=1}^{\infty} \frac{\ln^6 k}{\sqrt{k}} \cos \frac{\pi k}{6}.$$

$$6) \sum_{k=1}^{\infty} \cos \left(\pi k + \frac{\pi}{6} \right) \ln \left(1 + 2/k \right).$$

$$6) \sum_{k=1}^{\infty} \frac{(k+1)\sin 2k}{k^2 - \ln k}.$$

6)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k \ln(k+1) \ln \ln(k+2)}$$
.

$$6) \sum_{k=1}^{\infty} \frac{\sin(k\pi/3)}{k^5}.$$

$$6) \sum_{k=1}^{\infty} \frac{\cos k \cos k^{-1}}{\sqrt[4]{k}}.$$

$$6) \sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{k \ln\left(k+1\right)}.$$

6)
$$\sum_{k=1}^{\infty} \left(-1\right)^k \frac{1}{\sqrt{k^2+1}} \left(1 + \frac{1}{k}\right)^k$$
.

$$6) \sum_{k=1}^{\infty} \frac{(-1)^k \cos^2 k}{\sqrt[5]{k^7 + 1}}.$$

$$6) \sum_{k=1}^{\infty} \frac{\cos^2 k - 2}{\sqrt{k+1}}.$$

$$6) \sum_{k=1}^{\infty} \frac{\left(-1\right)^k \cos^2 k}{k \ln\left(k+2\right)}.$$

$$6) \sum_{k=1}^{\infty} \frac{\sin k \sin k^{-1}}{\sqrt[3]{k}}.$$

$$6) \sum_{k=1}^{\infty} \frac{(k+3)\cos k}{k^2 + 2\ln k}.$$

6 Составить сумму, разность, произведение рядов и исследовать их сходимость.

6.1
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{4^k}$$
 и $\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{3^k}$.

6.2
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k+1}}{k(k+1)}$$
 и $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k+1}}{(k+2)(k+1)}$.

6.3
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{\left(2k\right)!}$$
 и $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k}}{k!}$.

6.4
$$\sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{\left(k+1\right)^3}$$
 и $\sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{3^k}$.

6.5
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{2^k}$$
 и $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{k^6}$.

6.6
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{k!}$$
 и $\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{k^2}$.

6.7
$$\sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{2^k}$$
 и $\sum_{k=0}^{\infty} \frac{\left(-1\right)^k}{k^2}$

6.8
$$\sum_{k=1}^{\infty} \frac{\left(-2\right)^k}{\left(k+1\right)^2}$$
 и $\sum_{k=1}^{\infty} \frac{\left(-2\right)^k}{k^2}$.

6.9
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{5^k}$$
 и $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{k+1}$.

6.2
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{k(k+1)}$$
 if $\sum_{k=1}^{\infty} \frac{(-1)^k}{(k+2)(k+1)}$.

6.3 $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(2k)!}$ if $\sum_{k=1}^{\infty} \frac{(-1)^k}{k!}$.

6.4 $\sum_{k=0}^{\infty} \frac{(-1)^k}{(k+1)^3}$ if $\sum_{k=0}^{\infty} \frac{(-1)^k}{3^k}$.

6.5 $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2^k}$ if $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k^6}$.

6.6 $\sum_{k=1}^{\infty} \frac{(-1)^k}{k!}$ if $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2}$.

6.7 $\sum_{k=0}^{\infty} \frac{(-1)^k}{2^k}$ if $\sum_{k=0}^{\infty} \frac{(-1)^k}{k^2}$.

6.8 $\sum_{k=1}^{\infty} \frac{(-2)^k}{(k+1)^2}$ if $\sum_{k=1}^{\infty} \frac{(-2)^k}{k^2}$.

6.9 $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{5^k}$ if $\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k+1}$.

6.10 $\sum_{k=1}^{\infty} \left(\frac{3}{2}\right)^k$ if $\sum_{k=1}^{\infty} \left(2^k + \frac{1}{2^{k+1}}\right)$.

$$6.11 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{k^{6}} \text{ и } \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{k}.$$

$$6.12 \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{\left(k+1\right)!} \text{ и } \sum_{k=1}^{\infty} \frac{\left(-1\right)^{k}}{k!}.$$

6.12
$$\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{(k+1)!}$$
 и $\sum_{k=1}^{\infty} \frac{\left(-1\right)^k}{k!}$

6.13
$$\sum_{k=1}^{\infty} \frac{\left(-2\right)^{k-1}}{3^k}$$
 и $\sum_{k=1}^{\infty} \frac{\left(-2\right)^k}{3^{k+1}}$.

6.14
$$\sum_{k=1}^{\infty} \frac{\left(-5\right)^{k-1}}{7^k}$$
 и $\sum_{k=1}^{\infty} \frac{\left(-5\right)^k}{7^{k+1}}$.

- 6.15 $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{3^k}$ и $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k-1}}{k^4}$.
- 6.16 $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k+1}}{k}$ и $\sum_{k=1}^{\infty} \frac{\left(-1\right)^{k+1}}{k+1}$.
- 6.17 $\sum_{k=0}^{\infty} \frac{\left(-1\right)^{k}}{\sqrt{k}-1}$ и $\sum_{k=0}^{\infty} \frac{\left(-1\right)^{k}}{k-1}$.
- PHIOMINITY MARIENA OF THE PRINTERS OF THE PRIN

ЛИТЕРАТУРА

- 1 Демидович, В. П. Сборник задач и упражнений по математическому анализу: учебное пособие для вузов / В. П. Демидович. М.: Наука, 1977. 624 с.
- 2 Зверович, Э. И. Вещественный и комплексный анализ : учебное пособие : в 6 ч. Книга 3. Ч. 4. Функциональные последовательности и ряды. Интегралы, зависящие от параметра / Э. И. Зверович. Минск : Высш. шк., 2008. 365 с.
- 3 Зорич, В. А. Математический анализ : в 2 ч. Ч. 1 / В. А. Зорич. М. : Наука. Главная редакция физико-математической литературы, 1981.-544 с.
- 4 Кудрявцев, Л. Д. Учебник для студентов университетов и вузов : в 3 т. Т. 1. Курс математического анализа / Л. Д. Кудрявцев. М. : Высш. шк., 1988. 712 с.
- 5 Сборник задач по математическому анализу : Интегралы. Ряды : учебное пособие для вузов / Л. Д. Кудрявцев [и др.]. М. : Наука, Гл. ред. физ.-мат. лит., 1986. 528 с.
- 6 Сборник индивидуальных заданий по высшей математике : учебное пособие для вузов : в 3 ч. Ч. 2 / под ред. А. П. Рябушко. Минск : Высш. шк., 1991. 349 с.
- 7 Тер-Крикоров, А. М. Курс математического анализа : учебное пособие для вузов / А. М. Тер-Крикоров, М. И. Шабунин. М. : Наука, Гл. ред. физ.-мат. лит., 1988. 816 с.

Атвиновский Александр Алексеевич, **Парукевич** Ирина Викторовна

МАТЕМАТИЧЕСКИЙ АНАЛИЗ ЧИСЛОВЫЕ РЯДЫ

Практическое пособие

Редактор *В.И. Шкредова* Корректор *В.В. Калугина*

Подписано в печать 04.06.2021. Формат 60х84 1/16. Бумага офсетная. Ризография. Усл. печ. л. 2,8. Уч.-изд. л. 3,1. Тираж 25 экз. Заказ 291.

Издатель и полиграфическое исполнение: учреждение образования «Гомельский государственный университет имени Франциска Скорины». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 3/1452 от 17.04.2017. Специальное разрешение (лицензия) № 02330/450 от 18.12.2013. Ул. Советская, 104, 246028, Гомель.

PHIO WILLIAM IN THE PRINTERS OF THE PRINTERS O

PHIO SHILO PHILLIP IN THE PRINCE OF THE PRIN

PHIO WILLIAM IN THE PRINTERS OF THE PRINTERS O

А. А. АТВИНОВСКИЙ И. В. ПАРУКЕВИЧ

МАТЕМАТИЧЕСКИЙ АНАЛ числовые ряды

PHIO WILLIAM IN THE PRINTERS OF THE PRINTERS O