Многочастотная лазерная диагностика активной среды СО₂-лазера

К.И.Аршинов¹, Н.С.Лешенюк², В.В.Невдах³

¹Институт технической акустики НАН Беларуси, 210717, Витебск, просп. Людникова, 13 ²Международный экологический университет им. А.Д. Сахарова, 220009, Минск, Долгобродская, 23 ³Институт физики им. Б.И. Степанова НАН Беларуси, 220072, Минск, просп.Ф.Скорины, 68

 $\rm CO_2$ -лазеры все еще остаются одной из ведущих и широко распространенных (особенно для различных технологических применений) лазерных систем. Поэтому диагностика их активных сред является актуальной задачей. Основная цель этой диагностики — определение населенностей лазерных уровней и температуры газа при различных давлениях и составах смеси, условиях возбуждения. Из существующих методов диагностики (см., например, [1]) наибольшее распространение получил так называемый метод "лазерного спектрографа основанный на измерении спектрального распределения коэффициента усиления слабого сигнала (КУ) на линиях основных лазерных переходов $00^01-[10^00, 02^00]_{I,II}$ с использованием в качестве источника зондирующего излучения стабилизированного по частоте перестраиваемого $\rm CO_2$ -лазера низкого давления. В этом случае выражение для КУ в центре линии имеет вид

$$K = \frac{\lambda_{0J}^2}{8\pi} A_J C_1 \frac{2hcB_{001}}{k_B T} \{ N_3 exp[-C_2 \frac{hcB_{001}}{k_B T}] - N_{1,2} \frac{B_{100,020}}{B_{001}} exp[-J(J+1) \frac{hcB_{100,020}}{k_B T}] \} F_J,$$
(1)

NHD

где K — коэффициент усиления в центре J-й линии; λ_{0J} — длина волны; A_J — коэффициент Эйнштейна [2]; F_J — форм-фактор в центре линии усиления; $C_1 = 2J - 1$, $C_2 = J(J-1)$ для линий P-ветви; $C_1 = 2J + 3$, $C_2 = (J+1)(J+2)$ для линий R-ветви; $B_{001} = 0.3871 \text{ см}^{-1}$, $B_{100} = 0.3902 \text{ см}^{-1}$, $B_{020} = 0.3905 \text{ см}^{-1}$ [3] — вращательные постоянные; c — скорость света; h — постоянная Планка; k_B — постоянная Больцмана. В активных средах CO₂-лазеров при давлениях < 50 мм рт. ст. контура линий усиления являются смешанными и описываются функцией Фойгта. Для фойгтовского контура значение форм-фактора в центре линии F_J можно вычислить с помощью выражения [4]

$$F_J = \frac{2\sqrt{\ln 2}}{\sqrt{\pi}\Delta\nu_D} \{ \frac{a}{x + [(bx)^q + s]^{1/q}} \},\tag{2}$$

где $x = (\Delta \nu_C / \Delta \nu_D) (ln2)^{0.5}$; $\Delta \nu_C = \gamma_J p(\xi_{CO_2} + 0.73\xi_{N_2} + 0.64\xi_{He}) (300 \text{K}/T)^{0.5}$ [5] — столкновительная ширина линии; $\Delta \nu_D = (\nu_0/c) (k_B T ln4 / M_{CO_2})^{0.5}$ — доплеровская ширина линии; γ_J — значение столкновительного уширения линии [2]; p — суммарное давление газа; ξ_{CO_2} , ξ_{N_2} , ξ_{He} — доли компонентов CO₂, N₂, Не в газовой смеси; T — поступательная температура газа; ν_0 — центральная частота перехода; M_{CO_2} — масса молекулы CO₂; $a = \pi^{1/2}, b = (\pi - 2)/2, s = a^q$. Параметр q определяет относительную погрешность расчетов форм-фактора при использовании (2), которая согласно [4] не превышает 0.09% при q=1.902 и 0.9% при q=2 (в расчетах использвалось q=2). Из выражений (1) и (2) следует, что если известны контур линии, на которой измеряется КУ, и ее спектроскопические параметры, то неизвестными остаются только искомые величины — температура газа Tи населенности лазерных уровней — верхнего $00^{0}1 N_3$ и нижних $10^{0}0 N_1$, $02^{0}0 N_2$. В настоящей работе представлен алгоритм обработки результатов многочастотной лазерной диагностики активной среды CO₂-лазера на основании метода наименьших квадратов. Связь между искомыми параметрами $\{N_{1,2}, N_3, T\}$ и результатами измерений КУ определяется фундаментальной системой уравнений:

$$k_i = K_i(N_{1,2}; N_3; T) + \Delta k_i,$$

где k_i — результат *i*-го измерения КУ; Δk_i — погрешность *i*-го измерения КУ. В системе уравнений (3) помимо $\{N_{1,2}, N_3, T\}$ неизвестными являются также погрешности Δk_i , и, следовательно, система всегда недоопределена. Если же пренебречь ошибками измерений, то получается избыточная и в общем случае противоречивая система уравнений

$$k_i = K_i(N_{1,2}; N_3; T).$$
(4)

При обработке избыточных измерений уравнения (4) необходимо решать статистически, т.е. значения неизвестных параметров определяются так, чтобы минимизировать совокупность квадратов отклонений

$$\rho = \sum_{i} w_i [k_i - K_i(N_{1,2}; N_3; T)]^2, \tag{5}$$

где $w_i - i$ -й весовой коэффициент. Алгоритм расчета состоит в том, что при некоторой температуре T решается система нормальных уравнений, которая относительно $N_{1,2}$ и N_3 имеет вид

$$\frac{\partial \rho}{\partial N_3} = 0, \qquad \frac{\partial \rho}{\partial N_{1,2}} = 0,$$
 (6)

и находится сумма квадратов отклонений ρ , минимальная для данной температуры. Далее варьируется температура T и методами перебора и итераций минимизируется $\rho(T)$. Система нормальных уравнений (6) при расчете, например, N_2 и N_3 может быть представлена в виде

$$N_2 - d_1 N_3 = d_2 -d_3 N_2 + N_3 = d_4,$$
(7)

$$d_{1} = \frac{\sum_{i} w_{i} M_{1}^{2} M_{2} exp(-C_{2i} \frac{\beta_{1}}{T})}{\sum_{i} w_{i} (M_{1} M_{2})^{2}}, \qquad d_{2} = \frac{-\sum_{i} w_{i} k_{i} M_{1} M_{2}}{\sum_{i} w_{i} (M_{1} M_{2})^{2}}, \\d_{3} = \frac{\sum_{i} w_{i} M_{1}^{2} M_{2} exp(-C_{2i} \frac{\beta_{1}}{T})}{\sum_{i} w_{i} [M_{1} exp(-C_{2i} \frac{\beta_{1}}{T})]^{2}}, \qquad d_{4} = \frac{\sum_{i} w_{i} M_{1} k_{i} exp(-C_{2i} \frac{\beta_{1}}{T})}{\sum_{i} w_{i} [M_{1} exp(-C_{2i} \frac{\beta_{1}}{T})]^{2}}, \\M_{1} = \frac{\lambda_{i}^{2} A_{i} C_{1i} \beta_{2} F_{i}}{T}, \qquad M_{2} = \frac{B_{020}}{B_{001}} exp[-J_{i} (J_{i} + 1) \frac{\beta_{3}}{T}], \\\beta_{1} = \frac{h c B_{020}}{k_{B}}, \qquad \beta_{2} = \frac{2h c B_{001}}{8\pi k_{B}}, \qquad \beta_{3} = \frac{h c B_{001}}{k_{B}}.$$

Для первой итерации весовые коэффициенты принимались равными $w_i^1 = 1$, а для (j+1)-го шага [6]

$$w_i^{j+1} = \frac{1}{[k_i - K_i(N_3^j, N_2^j, T^j)]^2}.$$
(8)

При многопараметрическом поиске диагональные элементы соответствующей ковариационной матрицы представляют собой дисперсии искомых параметров $\sigma_{N_3}^2, \sigma_{T_2}^2, \sigma_T^2$ [6,7]. В общем случае связь между ковариационными матрицами прямо $\{k_i\}$ и косвенно $\{N_3, N_2, T\}$ измеряемых величин может быть записана в виде

$$COV = (b^T COV_k^{-1}b)^{-1}$$

где $b_{ij} = \frac{\partial K_i}{\partial y_j}$ $(j = 1, 2, 3; y_1 = N_3, y_2 = N_2, y_3 = T)$ в точке квазирешения. При прямых некоррелированных измерениях КУ k_i с одинаковым средним квадра-

тичным отклонением σ_k измеряемых КУ выражение (9) принимает вид:

$$COV = \sigma_k^2 (b^T b)^{-1}, \tag{10}$$

Были проведены тестовые расчеты, результаты которых показали, что погрешность определения $N_{1,2}$ сильно растет с увеличением погрешности δk_i . Повышение δk_i до 5% при расчетах для десяти линий приводит к повышению погрешности δN_1 до 200%. Использование двадцати линий *R*- и *P*-ветвей значительно уменьшают погрешность $\delta N_{1,2}$ и улучшают сходимость расчетов: $\delta k_i \sim 10\%$ соответствует $\delta N_{1,2} \sim 30\%$. Были измерены КУ в газоразрядной трубке длиной 74 см при токе разряда 30 мА и заполненной газовой смесью $CO_2: N_2: He = 1:2:17$ при давлении 20 Торр (Таблица 1).

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		таолица г. измеренные ку (м ⁻).				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			$00^01 - [10^00, 02^00]_{II}$		$00^01 - [10^00, 02^00]_I$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			<i>Р</i> -ветвь	<i>R</i> -ветвь	Р-ветвь	<i>P</i> -ветвь
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		J	k(J),m ⁻¹	$k(J), \mathbf{M}^{-1}$	$k(J), \mathbf{M}^{-1}$	$k(J), \mathbf{M}^{-1}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6	$\mathcal{F}_{\mathcal{F}}$	0.81		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		8	0.95	1.03		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		10		—	1.24	1.31
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		12	1.28			1.42
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $, (14	1.40		1.52	—
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		16	1.46	1.41	1.62	1.54
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	· / .	18	1.50	1.42	1.64	1.54
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		22		1.35	1.58	1.46
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\sim 2^{\circ}$	24			1.53	1.37
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		26	1.30	1.17	1.44	1.26
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		28	1.20	1.07	1.31	1.125
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		30	1.20	0.95	—	—
34 0.86 0.6 0.93 0.655		32	0.98	0.84	1.07	0.88
		34	0.86	0.6	0.93	0.655

На основании экспериментальных данных по представленной выше методике были определены населенности лазерных уровней и поступательная температура среды: полоса $00^{0}1 - [10^{0}0, 02^{0}0]_{I}$:

R-ветвь - $T = (366.5 \pm 0.7)$ K, $N_3 = (5.31 \pm 0.03) \times 10^{21}$ м⁻³, $N_1 = (5.6 \pm 1.3) \times 10^{19}$ м⁻³; *P*-ветвь - $T = (371.7 \pm 0.9)$ K, $N_3 = (5.03 \pm 0.03) \times 10^{21}$ м⁻³, $N_1 = (8.5 \pm 1.6) \times 10^{19}$ м⁻³;

(9)

полоса $00^{0}1 - [10^{0}0, 02^{0}0]_{II}$:

R-ветвь $-T = (364.6 \pm 0.8)$ K, $N_3 = (5.37 \pm 0.04) \times 10^{21}$ м⁻³, $N_2 = (8.95 \pm 2.5) \times 10^{19}$ м⁻³; *P*-ветвь $T = (371 \pm 1)$ K, $N_3 = (5.49 \pm 0.04) \times 10^{21}$ м⁻³, $N_2 = (1.8 \pm 0.3) \times 10^{20}$ м⁻³.

Таким образом, в настоящей работе представлены экспериментальные результаты измерения спектрального распределения КУ в активной среде CO₂-лазера, в рамках метода наименьших квадратов предложена методика расчета и приведены результаты определения населенности лазерных уровней и температуры активной среды.

Abstract. Gains measured at the center of vibrational-rotational lines of the main bands of the CO_2 molecule were used to determine, by the least-squares method, the laser-active levels population for active medium of a CW electric-discharge CO_2 laser.

Литература

- [1] Ачасов О.В., Кудрявцев Н.Н., Новиков С.С., Солоухин Р.И., Фомин Н.А. Диагностика неравновесных состояний в молекулярных лазерах. Минск: Наука и техника, 1985, с.208.
- [2] Аршинов К.И., Лешенюк Н.С., Невдах В.В. Квантовая электроника, 25 №8 (1998) 679-682.
- [3] Bridges T.J., Chang T.Y. Phys.Rev.Lett. 22 (1969), 811-815.
- [4] Кудря В.П. Оптика и спектроскопия, 55 (1983), 113-114.
- [5] Abrams R.L. Appl.Phys.Lett., 25 (1974), 609-611.

PERIOSVITOR

- [6] Мудров В.И., Кушко В.Л. Методы обработки измерений. М.: Радио и связь, 1983.
 с.304.
- [7] Лешенюк Н.С., Пашкевич В.В. ЖПС, 46 (1987), 567-573.