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1. Introduction

Spontaneous symmetry breaking that results in formation of light patterns in transversely
homogeneous nonlinear optical systems has attracted substantial research interest because
they hold a promise of ultrafast all-optical switching and controlling light by light. Analysis
of soliton interactions seems to be important for realizing all-optical nonlinear switching
because solitons are expected to interact (attract, repel, etc.) as effective particles. These
investigations began with radiation self-focusing in the form of self-trapping, or spatial soli-
tons when diffractive spread of a propagating beam is compensated by its focusing with a
nonlinear medium. Spatial solitons for example in a Kerr medium were found to be un-
stable. Temporal solitons in nonlinear optical fibers were shown to have high application
potential [11]. Recently, the situation has changed. An idea of spatial-temporal solitons
(light bullets) was suggested for a homogeneous medium with self-focusing nonlinearity and
anomalous dispersion [1]. Although (2+1)-dimensional solitons of a pure Kerr medium are
unstable and cannot be employed for soliton switching, recent experimental discoveries of
stable (2+1)-dimensional solitons in different nonlinear media initiated the experimental
study of three-dimensional interactions between solitary beams [2-5]. It was shown that the
collapse suppression as a result of resonant parametric interaction is possible even in media
with purely cubic (Kerr) nonlinearity [6]. Recently, two-dimensional spatial-temporal soliton
solutions to the (2+1)-dimensional modified nonlinear Schrödinger equation, were derived.
These solutions in the context of nonlinear optics constitute new dark light bullets which
can be observed in real experiments since they are stable against the wave collapse. (3+1)-
dimension optical spatial-temporal solitons called light bullets can be formed in nonlinear
media under the influence of the powerful ultrashort laser pulses. There is no analytic de-
scription for such solitons. Dynamics of their formation and their properties are determined
by numerical solutions of suitable nonlinear equations. When numerically simulating, soliton
pulses of constant in space and time profile are usually considered. This is a very particu-
lar case of light bullets. Constant solitons may be compared with constant light beams in
non-homogeneous waveguides [8]. But the constant beam in a waveguide is a very particular
case permitting observation only at specific conditions. The general case is the light beam
of periodically alternating transverse dimension. In the same way, light soliton must exist in
general case in the form of an oscillating in space and time pulse. But numerical simulating
of such a periodical soliton is very difficult to carry out. On the other hand, the spatial-
temporal profile of light bullets is not sharp shaped. Numerical simulations of the profile of
constant solitons show that they have a bell-like shape reminding the basic Gaussian func-
tion. Starting from this fact, we have tried to use the Gaussian functions when analyzing
light bullet properties.
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2. Light Bullets in Kerr Nonlinear Medium

The field envelope of a spatial-temporal light pulse obeys the following nonlinear equation
[1,8]

∂E

∂z
+

i

2k0
∆⊥ E +

i

2
k2

∂2E

∂η2
+ i

∆k2

2k0
E = 0 , (1)

where E = A0Ψ(x, y, z, t). We will use the notation: k0 represents a propagation constant
of undisturbed medium; ∆⊥ stands for the transverse Laplacian; k2 = d2k/dω2 denotes a
medium dispersion; η = t − z/u, where u is the group velocity; ∆k2 designates a nonlinear
addition to the constant of propagation. In the case of Kerr nonlinearity

∆k2

2k0
= k0 ∆n = k0 β0 | E |2= k0 β0 A

2
0 | Ψ |2= α | Ψ |2 .

At numerically simulating the light bullet properties we will assume that the Kerr local non-
linearity is just the most suitable one for description of the almost instantaneous interaction
of a light bullet with the medium. Other nonlinearities have finite time of response and
cannot determine properties of squeezed, in space and time, light bullets. In is known that
in the Kerr nonlinear media only 1-dimensional solitons are stable. Nevertheless, soliton
squeezing process takes finite time. Estimation of the collapse time shows that because the
light bullet is an ultrashort pulse there is not enough time for a soliton collapse to occur.

Let us introduce new variables in eq. (1):

x′ = x
√

2k2, y
′ = y

√
2k0, η

′ = η
√

2/k2 , (2)

then it takes on the form

∂Ψ

∂z
+ i

∂2Ψ

∂x′2
+ i

∂2Ψ

∂y′2
+ i

∂2Ψ

∂η′2
+ iα | Ψ |2 Ψ = 0 . (3)

It is obvious that eq. (3) is symmetrical with respect to the coordinates x′, y′, η′. Taking

this into account, we can use the spherical coordinate system in which ρ =
√
x′2 + y′2 + η2.

Let us consider only a radial dependence of a soliton when

∆ =
1

ρ2
∂

∂ρ
ρ2
∂

∂ρ
,

then eq. (3) will assume the form

∂Ψ

∂z
+ i∆ Ψ + iα | Ψ |2 Ψ = 0 . (4)

Let us try to find a solution in the form

Ψ = exp( iγ1 − γ2 −
ρ2

fρ20
+ i

ρ2

gρ20
) , (5)

where γ1γ2, f, g are some unknown functions of z. Because basic nonlinear effects are induced
in the neighborhood of the maximum of the pulse we can obtain an approximate form

| Ψ |2= 1− 2γ2 − 2
ρ2

fρ20
. (6)
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Substituting (5) and (6) into eq. (4), we arrive at the following system

γ′1 − 6
1

f ρ20
+ α − 2α γ2 = 0 , (7)

γ′2 + 6
1

g ρ20
= 0 , (8)

f ′

f
+ 8

1

g ρ20
= 0 , (9)

g′

g
− 4

1

f 2 ρ20
+ 4

1

g2 ρ20
+ 2 α

1

f
= 0 , (10)

where the prime stands for the derivative in z. Eqs. (7) and (8) determine the amplitude
and phase z-dependence, whereas eqs. (9) and (10) prescribe a spacial-temporal form of the
light bullet. After eliminating the g(z), eqs. (9) and (10) give

2f ′′ =
f

′2

f
+

64

ρ40
(
1

f
− δ) , (11)

where δ = 1
2
ρ20 α. Substitution f

′2 = U(f) leads eq. (11) to

dU

df
=

1

f
U(f) +

64

ρ40
(
1

f
− δ) . (12)

This equation is well known in mathematics [12] and a solution to it is

U(f) =
64

ρ40
( c f − 1 − δ f ln f ) . (13)

Thus, for the function f(z) we will have the equation

df

dz
= ± 8

ρ20
(c f − 1 − δ f ln f )1/2 . (14)

To define the constant of integration we require that f(z = 0) = f0, and f
′(z = 0) = 0.

As a result we obtain

df

dz
= ± 8

ρ20
√
f0

( f − f0 − δ f0 f ln
f

f0
)1/2 . (15)

Unfortunately, there is no solution to eq. (15) in terms of known (elementary or tran-
scendental) functions. Nevertheless, it enables us to describe some basic spatial-temporal
peculiarities of the soliton pulse. In particular, from (15) it follows that there exists an
inflection point where the equality

f(z) = fc = f0 exp (
1− δ f0
δ f0

) . (16)

Consequently, the function f(z) varies within finite limits. The variation limits are
determined by a function

F (f) = f − f0 − δ f0 f ln
f

f0
, (17)

which according to (15) is to be more than zero or equal to zero.
Approximate graphics of F (f) are given at Fig. 1a,b,c:
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Figure 1: Function F (f).

At Fig 1a f0 = 1, δ = 5; At Fig 1b f0 = 1, δ = 1; At Fig 1c f0 = 1, δ = 0, 5.

Function f(z) varies over the interval between the points at which F (f) = 0. The point of
inflection f(z) = fc coincides with the point of the maximum of the function F (f). It follows
from the figures that if fc < f0 then f(z) varies within the limits fmin. ≤ f ≤ f0, providing
that δ f0 ≥ 1. This means that the spatial size of the light bullet ranges from from f0 at
z = 0 to fmin. at z > 0, and then again increases to f0 and so on. Under condition fc > f0 (
δ f0 < 1) the spatial size ranges from f0 at z = 0 to fmax. and so on. If fc = f0 (δ f0 = 1)
then f(z) = const. Just only in in this case, we have a constant soliton pulse – constant light
bullet. From the figures and everything stated above it also follows that the minimal size of
the soliton can tend to zero when increasing the amplitude of the pulse or the nonlinearity
of the medium. This means that the soliton collapse is possible. But anyway, the constant
pulse existing under condition f0 = fc will be switched to oscillation mode with a varying
parameter δ.

The total energy of the constant light bullet

W = ǫ π3/2 k
−3/2
0 β

−3/2
0 A−1

0 (18)

decreases with the amplitude A0 increasing. It does not contradict with physics because its
size

C0 = ρ0
√
f0 =

√
1

k0β0
A−1

0 . (19)

decreases when A0 increases. This reflects the fact that the narrower is such a soliton the
less is its volume and the less energy is required for it to collapse.

For the oscillating light bullet the total energy is

W = ǫ 2−3/2 (πf0)
3/2 ρ30 A

2
0 , (20)

where W = const and

A(z) = A0 (
f0
f
)3/4 . (21)

Consequently, for a soliton squeezing (f < f0) amplitude obeys A(z) > A0, and for a
spreading (f > f0) it obeys A(z) < A0.

3. Conclusion

In this report we have analyzed relevant properties of light bullets in Kerr nonlinear medium.
It is shown that the light bullets oscillate both in space and time . The type of nonlinear-
ity and the collapse problem are discussed too. Our approach can be readily extended to
analyzing the dynamics of light bullets in different nonlinear media.
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Abstract. Gaussian functions are used to investigate properties of light bullets in Kerr
nonlinear media. It is shown that the light bullets oscillate in space and time. The type of
the nonlinearity and the collapse problem are discussed.
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