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Abstracts

The calculation procedure of far-infrared absorption by composites with metallic inclusions
is proposed. The calculated absorption spectra of Pd −KCl composite in the far-infrared
region are in a good agreement with experimental data.

1. Introduction

The anomalous far-infrared FIR absorption by small metal particles has been a puzzling
problem for a long time [1]-[6]. Despite the classical effective medium theories give a correct
description of light scattering and absorption by small metal particles in the visible frequency
region, they predict too small FIR absorption [1]-[5]. Many theoretical approaches have
been proposed to explain this phenomenon, including effects of coating the particle surfaces,
clustering of individual particles into needle-shaped structures [4], quantum size effects, direct
coupling of external electric fields to phonons through unscreened surface ions in the small
particles [5]. Nevertheless, all these approaches could not explain the above phenomenon
and the problem of FIR absorption in small metal particles has been remained a ”mystery”
[4].

In this study we show that the above phenomenon can be explained if we will take into
account the fact that the wavelength in metallic inclusions is reduced due to a large dielectric
permeability of the metallic inclusions. Therefore, we have modified the classical Maxwell-
Garnet approximation (MGT ) for a dilute suspension of small metallic particles. Our nu-
merical calculations of the absorption coefficient of random small metal particle composite
are in good agreement with the experimental results [3]. Furthermore, we have derived the
expression connecting the maximum of the absorption coefficient with the radius of metallic
inclusions.

2. Theory

The classical Maxwell-Garnet theory gives for the effective dielectric permeability ε̃of the
metal-dielectric composites with small spherical metallic inclusions the following expression
[1]-[4]
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ε̃− ε
ε̃+ 2ε

= f
εp − ε
εp + 2ε

(1)

where ε is the dielectric permeability of the matrix, εp is the dielectric permeability of
the metallic inclusions, f is the inclusions concentration.

Note that direct calculation of effective dielectric permittivity of composites with high
conductive metallic inclusions σp ∼ 1017-1018 s−1 using equation (1) is not valid in the FIR
ν ∼ (1-100) cm−1. In this case we have

a/λ 〈〈 1
a/λp ≥ 1

(2)

were ais the radius of metal particles, λis the wavelength of incident radiation, λpis the
wavelength in the metallic particles.

To modify MGT approximation in the case of high conductive metallic inclusions it is
necessary to analyze more accurately the process of interaction of electromagnetic radiation
with spherical particle of radius a using Mie theory. For this purpose let us consider the ho-
mogeneous dielectric matrix with real dielectric constant ε and the electrically small metallic
spherical inclusions with complex dielectric permittivity εp. The scattering cross-section of
an isolated sphere is given by the following expression

Qsca =
2π

k2

∞∑

n=1

(2n+ 1)(|an|2 + |bn|2) (3)

here k is the wave vector of the incident wave. The coefficients an and bn have the form

an =
mψ′

n(x)ψn(mx)− ψ′
n(mx)ψn(x)

mξ′n(x)ψn(mx)− ψ′
n(mx)ξn(x)

(4)

bn =
ψ′
n(x)ψn(mx)−mψ′

n(mx)ψn(x)

ξ′n(x)ψn(mx)−mψ′
n(mx)ξn(x)

(5)

x = ka =
2piNa

λ
(6)

m =
Np

N
(7)

were x is the diffraction parameter, N is the refractive index of the matrix, Np is the
refractive index of the particle, µp is the magnetic permeability of the particle, µ is the
magnetic permeability of the matrix, ψn, ξnare Riccati -Bessel functions. In case of high
conductive metallic particle the coefficient b1 may have the same order as the coefficient a1,
while the terms a2, b2 and all others can be neglected. To find the coefficients a1 and b1 it
is necessary to expend the expressions (4) in series in x, confining the first terms (precision
up to x 5 ). After a series of manipulations we have the expressions for the coefficients

a1 =
2

3i
x3

1− ε
εp
g (mx)

1 + 2 ε
εp
g (mx)

+O
(
x5
)
q (8)

b1 =
2

3i
x3

1− µ
µp
g (mx)

1 + 2 µ
µp
g (mx)

+O
(
x5
)

(9)
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were

g (mx) =
mx

2

ψ′
1 (mx)

ψ1 (mx)
=

1

2

[
(mx)2 − 1

]
sin (mx) +mxcos (mx)

sin (mx)−mxcos (mx)
The Eq.(8-9) have an appropriate form

a1 =
2

3i
x3

εpF (mx)− ε
εpF (mx) + 2ε

+O
(
x5
)

(10)

b1 =
2

3i
x3

µpF (mx)− µ
µpF (mx) + 2µ

+O
(
x5
)

(11)

were the function F (z) is

F (z) = 2
sin(z)− z cos(z)

(z2 − 1) sin(z) + z cos(z)
(12)

herewith z → 0, F (z)→ 1.
The coefficients a1 and b1 at |mx| << 1 and |x| << 1 turn to

a1 →
2

3i
x3

εp − ε
εp + 2ε

+O
(
x5
)

(13)

b1 →
2

3i
x3

µp − µ
µp + 2µ

+O
(
x5
)

(14)

In this case the coefficients a1 and b1 have the same order. The coefficient a1 represents
the electric dipole interaction with the particle, while the coefficient b1 is related to the
magnetic dipole interaction. For the nonmagnetic media µ = µp = 1, and then b1 → 0.
Now comparing the equations (6) and (7) we can see, that the behavior of spherical metallic
particle in electromagnetic field can be considered as one having the dielectric permittivity
ε̄p (ω) and magnetic µ̄p (ω) permeability

ε̄p(ω) = εp(ω)F (mx) (15)

µ̄p(ω) = µp(ω)F (mx) (16)

Thus, substituting the renormalised expressions ε̄p (ω) and µ̄p (ω) into Eq. (1) we can
correctly calculate the effective permittivity and permeability of the composite medium in
the following approximation

ε̃− ε
ε̃+ 2ε

= f
ε̄p − ε
ε̄p + 2ε

(17)

µ̃− µ
µ̃+ 2µ

= f
µ̄p − µ
µ̄p + 2µ

(18)

Together with the expression for the absorption coefficient

α =
2ω

c
Im
√
ε̃(ω)µ̃(ω) (19)

the expressions Eq.(15)-Eq.(19) give the complete solution of the problem of the FIR ab-
sorption of electromagnetic waves by the composites with high conductive spherical metallic
inclusions.
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3. Numerical calculations and discussion

The complex permittivity for metallic inclusions has the following form

εp = ε′p + i
4πσ

ω
= ε′p + iε′′p (20)

where σis the conductivity of metallic inclusions.
In the FIR ω ∼ (1÷ 100)cm−1 the value σ practically does not depend on the frequency

and nearly equals to σ0. Moreover, the imaginary part of the permittivity ε′′p increases with
frequency decreasing, and thus, we can neglect the real part of the permittivity ε′p

εp = i
4πσ0
ω

= ip (21)

Taking into account a skin depth for metallic particles

δ =
c√

2πµpσω
(22)

we can write for nonmagnetic inclusions

mx =
r

2
(1 + i) (23)

were r = 2a/δ is a parameter of the theory. We further assume that we have a nonmag-
netic matrix µ = 1. Using equations (17-22) we have

ε̃(ω) = ε(1 +
3fε

α−1
E − f

) (24)

µ̃(ω) = (1 +
3f

α−1
M − f

) (25)

here

αE =
1− ε

2εp
[H(mx)− 1]

1 + ε
εp
[H(mx)− 1]

(26)

αM =
1− 1

2µp
[H(mx)− 1]

1 + 1
µp
[H(mx)− 1]

(27)

Hz =
z2

1− zctg(z) (28)

were the following function was introduced for a convenience

F (z)−1 =
1

2
(H(z)− 1) (29)

Dividing here the real and imaginary parts we have in the case of low concentration
f << 0.1

ε̃ = εm[(1 + 3f − 9fDεp
2p

) + i
9fCεp
2p

] (30)
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µ̃ = [(1 + 3f − 9f(C + 1 + iD)

2(C + 1)2 +D2
)] (31)

were

H−1(r) = A(r) + iB(r) (32)

D = − B

A2 +B2
(33)

C =
A

A2 +B2
− 1 (34)

B(r) = − 2

r2
− 1

r
(
sh(r) + sin(r)

ch(r)− cos(r) ) (35)

A(r) =
1

r
(
sh(r)− sin(r)
ch(r)− cos(r) ) (36)

In this approximation from Eqs.(19,27) we obtain

α =
9πf

λ

√
εp(

ε

εp
[

B

A2 +B2
− 1] + A) (37)

The Eq. (??) determines the magnitude of absorption as a function of incident wave-
length (λ=2πc/ω) and the parameters of the system f, aand σ. On Figs.[1,2] the numerical
calculations of FIR absorption coefficient as a function of the wavelength are shown for Pd
particles with a radius a = 1µm embedded in KCl matrix. The calculations were performed
using Eq.(37). The calculated curves are in good agreement with experimental results taken
from [3]. From Eq.(37) a very important condition follows, relating the wavelength λ0,
conductivity of the particles σ0 and their size a0 at the point r0

a20σ0 ≈
r20λ0
4π
≈ 5 ∗ 10−3λ0 (38)

i.e. the maximum of the absorption coefficient α(λ, σ, a) at fixed wavelength λ0is reached
with those values σ0and a0, which satisfy the relation (38). Thus, from (38) we can obtain the
radius of the particles which have the maximum absorption coefficient at a given wavelength.
On the Fig.[3] the calculated absorption coefficient for the composite with filling coefficient
f = 0.01 the wavelength ω = 70sm−1 as a function of radii of metallic inclusions and their
conductivity is shown. The calculated absorption coefficient α of a composite with metallic
inclusions as a function of the particle conductivity σ and the wavelengthω is shown on
Fig.[4]. As can be seen from these calculations the maximum of the absorption coefficient is
shifted with increasing the radii of the metallic particles.

Thus, we have showed that the anomalous FIR absorption in small metallic particles can
be explained by the account of the wavelength dependence of the permittivity of metallic
particles. The modified Maxwell-Garnet approximation (MGT) for a dilute suspension of
small metallic particles correctly predicts the value of FIR absorption. Finally, we have
obtained the expression connecting the maximum of the absorption coefficient with the
radius of metallic inclusions.
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