## А.Ф. АКУЛЕВИЧ, О.В. ШЕРШНЁВ, А.И. ПАВЛОВСКИЙ

## ОЦЕНКА СВЯЗИ ЗАГРЯЗНЕНИЯ ГРУНТОВЫХ ВОД САНИТАРНО-ЗАЩИТНОЙ ЗОНЫ ОАО «ГОМЕЛЬСКИЙ ХИМИЧЕСКИЙ ЗАВОД» С АТМОСФЕРНЫМИ ОСАДКАМИ

УО «Гомельский государственный университет им. Ф. Скорины», г. Гомель, Республика Беларусь, aakulevich@gsu.by, gomelgeo@yandex.ru,aipavlovsky@mail.ru

NHP

Выяснение связи грунтовых вод с атмосферными осадками довольно сложная задача, решение которой зависит от многих факторов: величины и интенсивности осадков, мощности и литологического строения зоны аэрации, климатических условий, температуры и дефицита влажности воздуха, рельефа местности, растительного покрова. Наиболее достоверно эта связь изучается прямыми методами, с помощью лизиметрических установок [1, с. 174-175].

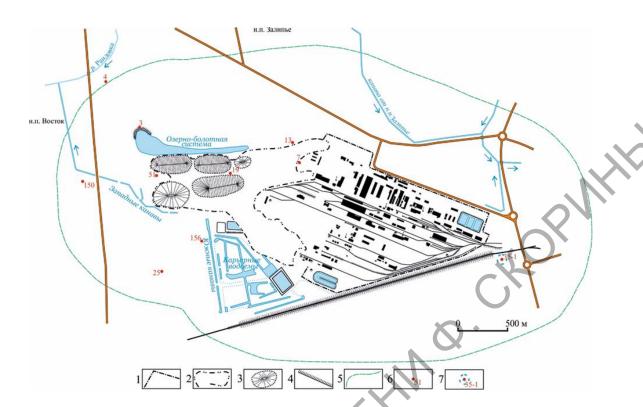
Просачивание атмосферных осадков через зону аэрации сказывается на уровнях и химическом составе подземных вод. Изменение их во времени называется режимом подземных вод, наиболее общие черты которого определяются климатом.

На территории Республики Беларусь гидрогеодинамический режим проявляется в сезонном весенне-осеннем питании в зоне зимнего промерзания с предвесенним и летне-осенним минимумом, с максимумами весной и частично осенью.

Гидрогеохимический режим территории Беларуси характеризуется весенним разбавлением грунтовых вод талыми, летним испарением грунтовых вод и выщелачиванием ими солей с увеличением минерализации вод в летне-зимнее время и уменьшением в весенний период [2, с. 149]. В естественных, ненарушенных техногенным загрязнением, условиях максимальная минерализация грунтовых вод на территории Беларуси наблюдается в предвесеннее и летнее время и, как правило, совпадает с их минимальными уровнями. Минимальные значения общей минерализации грунтовых вод, наоборот, совпадают с максимальными уровнями, что также связано с разбавлением вод талыми снеговыми или дождевыми водами. При наличии техногенного загрязнения грунтовых вод эти соотношения могут измениться на противоположные.

Принимая во внимание рабочую гипотезу, что в районе отвала фосфогипса ОАО «Гомельский химический завод» (ГХЗ) и на периферии его санитарно-защитной зоны, загрязнение грунтовых вод при просачивании атмосферных осадков должно проявиться по-разному, нами проанализированы связи между глубиной до воды и содержанием основных компонентов-загрязнителей в грунтовом водоносном горизонте. Анализ проведен по скважинам локального мониторинга подземных вод, расположенных на отвале фосфогипса (скважины 7, 19, 51) вблизи отвала фосфогипса (скважины 3, 13 и 156) и на периферии санитарно-защитной зоны (скважины 4, 25, 35-1, 150) за период с ноября 2007 по май 2018 гг., по которым имеется наибольшее количество данных. Схема расположения скважин приводится на рисунке 1.

В условиях многофакторной среды, наиболее информативным является корреляционный анализ, с использованием коэффициента корреляции Пирсона [3, с. 108]:


$$r_{xy} = \frac{\sum (x_i - \bar{x})^2 (y_i - \bar{y})^2}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}},$$
(1)

где  $x_i$ — значения, принимаемые переменной X (в нашем случае, это глубина до воды); $y_i$ — значения, принимаемые переменной Y (в нашем случае, это содержание химических компонент);  $\overline{x}$ — среднее поx;  $\overline{y}$ — среднее поy.

Результаты корреляционного анализа приведены в таблице 1.

Таблица 1 — Рассчитанные по формуле 1 значения коэффициента корреляции  $r_{xy}$  между глубиной до воды и содержанием химических компонент

|           |                                                                                       | Достоверное     |                                                  |             |           |  |
|-----------|---------------------------------------------------------------------------------------|-----------------|--------------------------------------------------|-------------|-----------|--|
|           |                                                                                       | значение коэфф. |                                                  | Коэффициен  | N         |  |
| №         | Объем                                                                                 | корреляции,     | Изучаемые                                        | T           | Теснота   |  |
| скважины  | выборки                                                                               | уровень         | компоненты                                       | корреляции, | связи     |  |
|           |                                                                                       | значимости      |                                                  | $r_{xy}$    |           |  |
|           |                                                                                       | p = 0.05        |                                                  |             |           |  |
| 3         | 12                                                                                    | 0,58            | $SO_4^{2-}$                                      | 0,080       | -         |  |
|           |                                                                                       |                 | C1 <sup>-</sup>                                  | 0,352       | _         |  |
|           |                                                                                       |                 | Сухой остаток                                    | 0,289       | _         |  |
| 4         | 24                                                                                    | 0,41            | $\mathrm{SO_4}^{2\text{-}}$                      | 0,044       | _         |  |
|           |                                                                                       |                 | Cl <sup>-</sup>                                  | 0,330       | _         |  |
|           |                                                                                       |                 | Сухой остаток                                    | 0,250       | _         |  |
| 7         | 11                                                                                    | 0,61            | SO <sub>4</sub> <sup>2-</sup>                    | 0,086       | _         |  |
|           |                                                                                       |                 | Cl                                               | 0,453       | _         |  |
|           |                                                                                       |                 | PO <sub>4</sub> <sup>3</sup> -(по P)             | 0,190       | _         |  |
| 13        | 24                                                                                    | 0,41            | $SO_4^{2-}$                                      | 0,266       | _         |  |
|           |                                                                                       |                 | Cl <sup>-</sup>                                  | 0,287       | _         |  |
|           |                                                                                       |                 | Сухой остаток                                    | 0,517       | заметная  |  |
| 19        | 11                                                                                    | 0,61            | $SO_4^{2-}$                                      | -0,055      | _         |  |
|           |                                                                                       |                 | Cl <sup>-</sup>                                  | 0,228       | _         |  |
|           |                                                                                       |                 | PO <sub>4</sub> <sup>3</sup> -(по P)             | 0,075       | _         |  |
| 25        | 24                                                                                    | 0,41            | SO <sub>4</sub> <sup>2-</sup>                    | -0,246      | _         |  |
|           |                                                                                       |                 | Cl <sup>-</sup>                                  | 0,415       | умеренная |  |
|           |                                                                                       |                 | Сухой остаток                                    | -0,100      | _         |  |
| 35-1      | 17                                                                                    | 0,48            | SO <sub>4</sub> <sup>2-</sup><br>Cl <sup>-</sup> | -0,658      | заметная  |  |
|           |                                                                                       |                 | Cl <sup>-</sup>                                  | -0,337      | _         |  |
|           |                                                                                       |                 | Сухой остаток                                    | -0,510      | заметная  |  |
| 51        | 22                                                                                    | 0,44            | $SO_4^{2-}$                                      | -0,728      | высокая   |  |
|           |                                                                                       |                 | Cl <sup>-</sup>                                  | -0,003      | _         |  |
|           |                                                                                       |                 | PO <sub>4</sub> <sup>3</sup> -(по P)             | -0,555      | заметная  |  |
|           |                                                                                       |                 | $SO_4^{2-}$                                      | 0,570       | заметная  |  |
| 150       | 13                                                                                    | 0,56            | Cl <sup>-</sup>                                  | 0,745       | высокая   |  |
|           |                                                                                       |                 | Сухой остаток                                    | 0,078       |           |  |
| 156       | 12                                                                                    | 0,58            | SO <sub>4</sub> <sup>2-</sup>                    | -0,369      | _         |  |
|           |                                                                                       |                 | Cl                                               | 0,510       | _         |  |
|           |                                                                                       |                 | Сухой остаток                                    | 0,201       |           |  |
| В таблице | В таблице 1 курсивом выделены достоверные значения коэффициента корреляции $r_{xy}$ . |                 |                                                  |             |           |  |



1 — контур промышленной площадки ГХЗ, 2 — контур отвалов фосфогипса, 3 — терриконы, 4 — насыпи и дамбы, 5 — зона санитарной охраны ГХЗ, 6 — скважины на грунтовые воды, по которым изучалось влияние осадков на химический состав подземных вод, 7 — резервная скважина локальной сети мониторинга подземных вод.

Рисунок 1 — Расположение скважин на грунтовые воды, по которым изучалось влияние осадков на химический состав подземных вод

Анализируя таблицу 1 можно отметить, что вблизи отвала фосфогипса более четко проявляется связь величины загрязнения с глубиной залегания грунтовых вод, по сравнению с периферией, причем, эта связь проявляется по-разному для скважины 13 и для скважины 51. Так для скважины 13 наблюдается достоверная или близкая к достоверной прямой связи глубины залегания уровня и величины загрязнения подземных вод. Это подтверждает наше предположение, что загрязнение к скважине поступает со стороны отвала подземным путем (возможно диффузией), а за счет атмосферных осадков и стока с сельскохозяйственных полей происходит уменьшение минерализации. В скважине 51 и по сульфатам и по фосфору фосфатному отмечается заметная обратная связь концентрации компонентов-загрязнителей с глубиной залегания грунтовых вод, что подтверждает поверхностное поступление загрязнения в грунтовый горизонт в этом месте, наблюдаемое по растеканию поверхностных вод вблизи скважины 51.

В скважине 4 находящейся на периферии санитарно-защитной зоны (рисунок 1) нет корреляции содержания компонент с глубиной до воды. Возможно, это связано с несколькими источниками поступления ионов в скважину: сверху за счет просачивания, сбоку за счет бокового притока и снизу за счет перетекания через днепровскую морену.

В скважине 25 дальней периферии отмечается рассогласованное поведение компонент. Хотя, если судить по хлорид-иону, то поведение его соответствует естественному режиму грунтового горизонта.

Наиболее понятно поведение химических компонент в скважине 35-1. Рост загрязнения в скважине при уменьшении глубины залегания грунтовых вод связан с тем, что скважина определенное время (2010 – 2012 гг.) находилась в контуре поверхностного загрязнения через зону аэрации.

Анализируя таблицу 1 можно отметить, что малая выборка (скважины 3, 7, 19, 150, 156) затрудняет анализ тесноты связи между расположением скважин относительно отвала, глубиной до воды и концентрацией контролируемого компонента в подземных водах. На отвале расположены скважины 7 и 19, а на удалении от отвала — скважины 150 и 156. Независимо от удаленности от отвала фосфогипса наибольшая корреляция с глубиной до грунтовых вод отмечается у хлорид-иона, которая имеет достоверную (в скважинах 25, 150) или близкую к достоверной (в скважинах 7, 156) прямо пропорциональную связь (таблица 1). Для большинства скважин, чем больше глубина до воды от поверхности земли, тем выше концентрация хлорид-иона в подземных водах, что соответствует естественному режиму природных вод Республики Беларусь и только скважины 35-1 и 51, отличаются от этой закономерности.

Оценивая тесноту связи величины загрязнения с глубиной до воды, можно констатировать, что только по сульфат-иону в скважинах 51 и 150 наблюдается высокая связь с глубиной до воды (таблица 1). Заметная связь между глубиной до воды и содержанием компонентов отмечается для фосфора фосфатного в скважине 51, для сухого остатка в скважинах 13 и 35-1, для хлорид-иона в скважине 25 и для сульфат-иона в скважине 35-1. Умеренная прямая связь с глубиной до воды для хлорид-иона наблюдается в скважине 25.

Наиболее тесную обратную связь загрязнения с глубиной до воды имеют скважины 35-1 и 51, наиболее тесную прямую связь – скважины 13 и 150.

По результатам проведенного исследования можно сделать следующие выводы:

- 1) Анализ связи химического загрязнения грунтового водоносного горизонта с атмосферными осадками по наиболее изученным скважинам локального мониторинга показал, что эта связь проявляется сложным образом и на каждом участке по-своему.
- 2) Наиболее четко связь загрязнения грунтовых вод с атмосферными осадками проявляется по скважинам 13 и 51 вблизи отвала фосфогипса и на дальней периферии по скважине 150. На остальной территории влияние атмосферных осадков проявляется опосредованно и затушевывается местными факторами.
- 3) Вблизи скважины 13 атмосферные осадки уменьшают загрязнение, а вблизи скважины 51 увеличивают (проявляется влияние рельефа местности). Вблизи скважины 150 атмосферные осадки уменьшают загрязнение в силу удаленности от отвала фосфогипса.
- 4) Для большинства скважин, чем больше глубина до воды от поверхности земли, тем выше концентрация хлорид-иона в подземных водах, что соответствует естественному режиму природных вод Беларуси и только скважины 35-1 и 51, выпадают из этой закономерности.

## Список литературы

- 1 Климентов, П.П. Методика гидрогеологических исследований / П.П. Климентов, В.М. Кононов. М.: Высшая школа, 1989. 448 с.
- 2 Основы гидрогеологии. Гидрогеодинамика / И.К. Гавич, В.С. Ковалевский, Л.С. Язвин [и др.]. Новосиборск : Наука, 1983. 241 с.
- 3 Комаров, И.С. Накопление и обработка информации при инженерногеологических исследованиях / И.С. Комаров. – М.: Недра, 1972. – 295 с.