UDC 519.41/47

Groups with finitely many nonnormal subgroups

N. S. CHERNIKOV

Recently the complete constructive description of groups in which all nonnormal subgroups generate a proper subgroup was obtained [1]. Using [1], we obtain the following proposition which describes infinite groups with finitely many nonnormal subgroups.

Theorem. For an infinite group F the following statements are equivalent.

- (i) The set of all nonnormal subgroups of F is finite.
- (ii) The set of all nonnormal cyclic subgroups of F is finite.
- (iii) All nonnormal subgroups of F generate a finite subgroups.
- (iv) All nonnormal cyclic subgroups of F generate a finite subgroup.
- (v) For some prime p,

$$F = G \times D \tag{1}$$

where G is a nonabelian p-subgroup and D is a finite Dedekind p'-subgroup, and also for some central quasicyclic subgroup B of G, G/B is finite abelian.

Remind that Dedekind groups are groups in which all subgroups are normal. Dedekind's Theorem [2] gives the complete description of finite Dedekind groups.

Proof. Clearly, (i) \longrightarrow (ii).

- (ii) \longrightarrow (i). Take any nonnormal subgroup T of F. Put $S = \bigcap_{g \in F} T^g$. For any $a \in T \setminus S$,
- $\langle a \rangle \not \subseteq F$. In view of Lemma 1 [1], $T = \langle T \backslash S \rangle$. Thus T is generated by some nonnormal cyclic subgroups of G. Since the set of all such subgroups is finite, the set of all nonnormal subgroups of F is finite too.

Also we conclude that the subgroup of F generated by all its nonnormal subgroups coincides with the subgroup generated by all its nonnormal cyclic subgroups. Therefore $(iii) \longleftrightarrow (iv)$.

Clearly, $(iv) \longrightarrow (ii)$.

(ii) \rightarrow (iv). Take any $\langle g \rangle \not \supseteq F$ and any distinct primes p,q. Then $\langle g \rangle = \langle g^p \rangle \langle g^q \rangle$. Therefore $\langle g^p \rangle \not \supseteq F$ or $\langle g^q \rangle \not \supseteq F$. Consequently, the set of all primes p for which $\langle g^p \rangle \not \supseteq G$ is infinite. Therefore for some distinct primes r and s, $\langle g^r \rangle = \langle g^s \rangle$. Consequently, $\langle g \rangle$ is finite. Therefore the set $M = \{a : \text{ for some } g \in F, a \in \langle g \rangle \not \supseteq F\}$ is finite. In consequence of Dietzmann's Lemma (see, for instance, [3]), $\langle M \rangle$ is finite.

Thus $(i) \longleftrightarrow (ii) \longleftrightarrow (iii) \longleftrightarrow (iv)$.

(iii) \longrightarrow (v). In view of Theorem 1 [1], for some prime p, (1) is valid where G and D are as above but D is not necessarily finite. Also, by this theorem, for some locally cyclic subgroup $B \triangleleft G$ and subgroup A of finite exponent, G = AB and $A' \subseteq B$, and also in the case when B is infinite (i.e. B is quasicyclic), $B \subseteq Z(G)$.

Take any $\langle g \rangle \not \supseteq F$. Then $\langle g \rangle = \langle u \rangle \times \langle v \rangle$ with $\langle u \rangle \subseteq G$ and $\langle v \rangle \subseteq B$. Clearly, $\langle u \rangle \not \supseteq G$. Then, with regard to (1), for any $\langle w \rangle \subseteq D$, $\langle u \rangle \langle w \rangle \not \supseteq F$. Consequently, D belongs to the subgroup T generated by all nonnormal subgroups of F. Since T is finite, D is finite too.

Further, in consequence of the statement 1 of Theorem 1 [1], the subgroup $S = T \cap G$ is generated by all nonnormal subgroups of G.

Assume that there exists $h \in G \backslash S$ of order p. Since $\langle h \rangle \subseteq G$ and G is a p-group, obviously, $h \in Z(G)$. Take any $\langle g \rangle \not \subseteq G$. Since $\langle g \rangle \subseteq S$, $gh \notin S$. So $\langle gh \rangle \subseteq G$.

Further, take any $x \in G$ for which $g^x \notin \langle g \rangle$. For some $n \in \mathbb{N}$, $(gh)^x = (gh)^n$. So $g^{\overline{h}x} = g^x h = g^n h^n$ and $g^{-n}g^x = h^{n-1}$. Since $g^{-n}g^x \in S$ and $S \cap \langle h \rangle = 1$, $h^{n-1} = 1$. Consequently, $g^x = g^n \in \langle g \rangle$, which is a contradiction.

Thus, all elementary abelian subgroups of G belong to finite S and, at the same time, are finite. Therefore, obviously, all abelian subgroups of \widetilde{G} are Chernikov, i.e. G satisfies the

minimal condition for abelian subgroups.

Since A satisfies the minimal condition for abelian subgroups and, obviously, is a locally finite p-group, it is Chernikov (S.N.Chernikov's Theorem; see, for instance, [4], Theorem 4.1). But A is of finite exponent. So A is finite. Then, because of G is infinite and G = AB, B is infinite. Since B is an infinite locally cyclic p-subgroup, it is quasicyclic.

Since A is finite and $A' \subseteq B$ and G = AB, G/B is finite abelian.

(v)—)(iii). By O.J.Schmidt's Theorem (see, for instance, [3], Theorem 1.45), G is locally finite. Take any finite subgroup A of G for which G = AB. Let V < B and |V| = $=\frac{|A'|}{p}t$ where t is the exponent of the group A/A'^p . Then AV is a finite subgroup of G. In consequence of Theorem 5 [1], G is not Dedekind and AV contains all nonnormal subgroups G. By Lemma 4 [1], AVD contains all nonnormal subgroups of F. Since AVD is finite, is valid. Theorem is proven.

Note that in the statement 3 of Theorem 5 [1] must be: " $B \supseteq A'$ ".)

Remark. Obviously, G from Theorem is locally finite. Take any finite subgroup A of G for which

$$G = AB.$$
 (2)

It is easy to see that

$$G = AB. \tag{2}$$

$$A' = G' \subseteq B \cap A \tag{3}$$

and $A/B \cap A \simeq G/B$.

In view of Theorem 3 [1], for any finite p group A such that $A' \subseteq Z(A)$ and A' is cyclic and for any cyclic subgroup T of A such that $A'' \subseteq T \subseteq Z(A)$, there exists a p-group G such that A < G and for some central quasicyclic subgroup B of G, relations (2), (3) are fulfilled and $B \cap A = T$. By Corollary 5 [1], if $C^* = A^*B^*$ and B^* is a central quasicyclic p-subgroup G^* and also there exists an isomorphism ψ of A onto A^* such that $(A \cap B)^{\psi} = A^* \cap B^*$, then $G^* \simeq G$.

Abstract. The complete description of infinite groups with the finite set of all nonnormal subgroups is obtained.

References

1. Chernikov N.S., Dovzhenko S.A. Groups in which all nonnormal subgroups generate ■ proper subgroup // Sibirsk. Mat. Ž, 47, № 1 (2006), 211–235.

2. Dedekind R. Über Gruppen, deren sämmtliche Teiler Normalteiler sind // Math.

Ann., 48 (1897), 548-561.

3. Robinson D.J.S. Finiteness conditions and generalized soluble groups. Pt 1., Berlin Springer, 1972.

4. Chernikov S.N. Groups with prescribed properties of the system of subgroups, Moscow: Nauka, 1980.

Institut of Mathematics, National Academy of Science, Kiev, Ukraine

Received 4.04.06