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On Modular Identity for Local Fitting Classes!
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1. Introduction

As early as 1960s, Neumenn [8] and Shmel’kin [11] have studied the s ﬁz of the
variety of groups. Later on, some of their results were extended to other %g s of groups.
For example, Barnes, Humphrey and Castinean-Hilles [1] proved that the e of all soluble
Schunck classes of Lie algebras over some fixed field a distributive la :'Sel’kin [9] proved
that lattices of Schunck classes of finite groups is modular lattice;*Skiba [12] proved that the
lattice of all formations of finite groups and the lattice of all Ioca@nationss of finite groups
are modular lattice. The author and Shum {4} proved th lattice of universal algebras
of Mal’cev algebras satisfying the maximal condition for s gebras is distributive and its
sublattice consisting of all Schunck classes of finite a@as is algebraic. The author and
Shum [5] also proved that for every subsystem functQQ» he lattice of all 7-closed formations
of finite algebras is modular ([5, Corollary 3.11])

However, the problem of ”whether the@ice of all soluble Fitting classes of finite
groups is a modular or not” up to now is esolved. The problem has been placed in
Kourovka Notebook [13, Problem 14.%%

In this paper, we give a condition under which the modular law of the lattice of local
Fitting classes holds.

All groups consider(ig in thig paper are finite. All unexplained notations and termi-
nologies are standard. The‘é}i?er is referred to the text of K.Doerk and T.Hawkes (3] or
Guo [6] for notations a inologies not given in this paper.

, Q ’7 2. Preliminaries
A c@aoups is called a Fitting class provided the following two conditions are

satisfied:

ViR% € F and N 9 G, then N € F.
it N;, N, <G and N, Ny € F, then N1N; € F.

“ondition (2) of the definition says that there is a unique maximal normal F-subgroup

@ which is called the F-radical of G and denoted by G#.

Let F and H be Fitting classes. Then the class FH = (G : G/Gx € H) is called the
product of the Fitting classes F and H. It is well known that the product of two Fitting
classes is a Fitting class and the multiplication of Fitting classes satisfies associative law.

Recall that a class F of groups is called a formation if it is closed under homomorphic
image and also subdirect product. It is clear that for a non-empty formation F, every group
G has a smallest normal subgroup (denoted by G¥) whose quotient is in F. Let M and
H be two non-empty formations. We define their product MH = (G : GH e M). 1t is
well known that the product of two formations is again a formation. We denote by &y the
formation of all finite p/-groups and N, the formation of all p-groups. Let F?(G) = GNvtw |
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A function f defined by f: P —s {Fitting classes} is called a Hartley function (or in
orevity, H-function) (see [10]). For a H-function f, let LR(f) = (G: FP(G) € f(p)forall p €
= 7(G)). A Fitting class F is called a local [10], if there exists a H-function [ such that
F = LR(f). In this case, we say that F is locally defined by f or fis a H-function of F.

We denote by FVH the minimal Fitting containing FUH, and by FV,H the minimal
local Fitting class containing F U H.

It is easy to see that the set £ of all Fitting classes is a partially ordered set by the
mclusion relation. Moreover, any two-elements F and H in £ have a least upper bound
F V'H and a greatest lower bound F N H. Therefore, L is a lattice. It is also clear that tl ex
set of all soluble Fitting classes and the set of all soluble local Fitting classes are lattic b

For the set of all H-functions, we define a partial ordering: f; < f, if and
f1(p) € fa(p) for every prime p. Let F be a local Fitting class and f a H-function
say that f is a integrated if f(p) C F for all p € P. Q

Let €2 be the set of all H-functions of F. Then, the least element i Q&ecalled the
east H-function of F.

Let X be a class of groups. Then Sn(X) denotes the set o normal subgroups
of all groups in X'; FitX denotes the least Fitting class containing hat is, FitX = n
{F : F is a Fitting class and F D X'}, and [FitX denotes t%&st local Fitting class
sontaining &', that is, [FitA = N{F : F is a local Fitting class DX},

3. Lemmas $®©

] Lemma 3.1. Let X be a nonempty set (@uble groups and F = [FitX. Then the
Sllowing statements hold.

(a) F has the least H-function f.
(b) For the least H-function [, we ha

[ Fi ), if pen(X),
Hp) = if ﬁepgw(x%

= N1 fi, the intersection<o -functions of F. Then, obviously, f< fiforalli eI and
£ € Q. We prove tha@ = F. In fact, since f < f;, LR(f) € LR(f)) = F. On the
wther hand, let G ince F = LR(f;) = (X : X% ¢ fi(p), for all p € n(X)), for all
% < I, we have r% NLR(f)) = (Y : Y&y ¢ Mier fi(p) = f(p)) = LR(f). This shows
: and’ hence LR(f) = F.

lows from [10, Lemma 22]. The proof is completed.

i)t € I} be an arbitrary set of H-functions. Then, we denote by V(f; :i € 1)
ction f such that f(p) = Fit(Uses fi(p)) for all p € P, and denote by Nies fi the
H-function f such that f(p) = N,e;fi(p) for all p € P.

‘ Lemma 3.2. Let f; be the least H-function of Fitting class 7,4 € I. Then V(f; : i €
= I) is the least H-function of the Fitting class F =V, (Fi:iel).

Proof. Let m = m(Uie1 Fi) = Uier(n(Fy)) = m(F), f = V(fi:i € I) and h be the least
#-function of the Fitting class F. We only need to prove that h = f.

Let p € P\ m. Then by Lemma 3.1, for every i € I, fi(p) = @ and h(p) = @.
= follows that f(p) = @ = h(b). Now assume that p € 7. Then there exists i € I such
- that fi(p) # @. By Lemma 3.1, we know that h(p) = Fit(F(F?)), for all p € . However,
sace Fit(F(FP)) = Fit(FP(G) : G € UierF), we have h(p) = Fit(Uie;Fit(FP(G)) : G €

where X'(F?) = Fit(FP(G) : G
Proof. (a) Let Q t of all H-functions of the local Fitting class F and f =
|
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c F) = Fit(Uier fi(p)) = V(fi 1 1 € I)(p) = f(p). This shows that h = f. The proof is
completed.

The following lemma can be analogously verified (cf. [10, Lemma 21}).

Lemma 3.3. Let F = Ny Fi, where F; = LR(f)). Then F = LR(f), where

§ = Msarfs-

4. The Main Results

Theorem 4.1. Let X = LR(z),Y = LR(y) and F = LR(f) be local Fitti Xsses
with least H-function z,y and f respectively, and & < f. 1f z and y satisfy that y(p) =
= S,(G : G = Gupp)Gyp) for all p € P, where z(p) # @ and y(p) # 2, th following

modular law hold: Q
(XVY)NF =XV (YNF). :«&,

Proof. We firstly prove that the modular law hold for the 1ctions .,y and f.

Since z < f, we have that z(p) C f(p) forallp e P. 1 aly to see that £ < zV f
and z < zVy. Hencez < (zV )N (zVy). Analogously, yTVf < f <2V f and hence
yNf<(zVvy)N(zVf). This shows that =V (y N f) @y)ﬂ(m\/ﬂ ByzV f=f, we
have

f (1)

(

We now prove the reverse inclusion: (= ¥ < xV(yN f). It only need to prove that
(Vi) N F)P) € (v (N H)(P), for ever € . Obviously, if £(p) = @ or 2(p) Vy(p) = 2
then ((zVy)N f)(p) € (zV (ynf)) Henée, we can assume that z(p) Vy(p) and f(p) are
all not empty. ‘

If 2(p) = @, then (z(p)V/
and consequently, ((z V¥)

Assume that y(p)

sV (ynf)<(z

D (p) = y(p)Nf(p) and 2(p)V (y(P)N (p)) = y(PINS (»),
N (z Vv (yn MHP),
NThen (2(p) Vy(p)) 0 £(p) = 2(p) ) F(p) = 2(p). On the other
hand, z(p) V (y(p) N f( (p). Hence, in this case, we also have that ((z Vy)N f(p) ©
C (zV(ynMHP).

Now, we &X hat z(p),y(p) and f(p) are all not empty. Let K € (z(p) V y(p)) N
O f(p). Then, therelexists a group G = Ga4(p)Gy(p) such that K <G and K € f(p). It follows

that K < ON= Gw(p)Gy(p) N Gf(p) == Gx(p)(Gy(p) N Gf(p)) = Gm(p)Gy(p)nf(p). Therefore K €
€ m(P)@P £(p)), and consequently, ((z V)N f)(p) & (xV (y N f))(p), for every p € I

that

e equalities (1) and (2), we obtained that
@vy)nf=zVvEn/f) | (3)

By Lemma’ 3.2, we know that X V¥ = LR(z Vy). Then, by Lemrﬁa' 2.3, we have (X V
vV Y)NF=LR((zVy)N ). On the other hand, Y NF = LR(yn f)and XV (YNF) =
= LR(z V (yN f)). Thus, by using the equality (3), we obtain that

XV (YNF)y=(XVY)NF.

This
‘%‘? (zvy)nf<aV(yns) (2)

This completes the proof.

It is well known that every nonempty Fitting class § can be compared with the Fitting
classes §* (cf. Lockett [7]), where 3* is the smallest Fitting class containing § such that
the F*-radical of the direct product G x H of the groups G and H is equal to the direct
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product of the F*-radical of G and the F*-radical of H, for all groups G and H. Let f be a
H-function. We define a H-function f* as follows: T (p) = (f(p))*, for all p P

Abstract. Let ¥ — LR(z),Y = LR(y) and F = LR(f) be local Fitting classes with least
H-function z,y and [ respectively, and z < f. In this paper, we prove that if z and y satisfy
that z(p) v y(p) = Sn(G: G = G Gyy) for all p e P, where z(p) + @ and y(p) # @, then
the following modular Jaw hold: (x VIVINF = x V(Y nF). x
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