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On s-Semipermutable Subgroups!

NA TaNGg, WENBIN GUO

1. Introduction

% with all

in G, if H is
Kegel [6]. As

A subgroup H of a group G is called quasinormal in G, if H per
subgroups of G. A subgroup H of a finite group G is called s-quasinor,
permutable with all Sylow subgroup of G. This concept was first m‘rrod
a generalization of s-quasinormality, the concept of s-semipermutabi T s-seminormality)
was introduced in [1]. A subgroup G is called s-semipermutabl , if H is permutable
with every Sylow p-subgroup of G with (|H|,p) = 1. In this ., We use s-semipermutable
subgroups to study the structure of finite groups. &e

All the groups considered in this paper are fini All unexplained notations and
terminologies are standard and can be found in Guo JQ@ Shemetkov [9)].

Q

2. Elementar operties

A class of groups § is called a fo@ion, if § satisfies the following two conditions:

() If GeFand NG, the 7/N &€ 5§

(2) If G/N € § and G/M n G/(MNN)Eeg.

It is clear that for a empty formation §, every group G has the smallest normal
subgroup N (denoted by %se quotient group G/N € §. The normal subgroup G¥
is called the S’-remdual o) formation g is said to be a saturated formation if G € §
whenever G/®(G Well known that the class M of all nilpotent groups and the
class 8 of all superb roups are both saturated formations.

The pro | nilpotent normal subgroups of a group G is also a nilpotent normal
5ubgroup, de g&y F(G), which is called the Fitting subgroup of G. Let C' = Ce(F(G)),
Z=Z(F e M/Z = Soc(C/Z). We called F*(G) = MF(G) is the generalized Fitting
subg‘rou (of [10, V, Def 4.9]). It is well known that if G is a soluble group, then

bgroup H of group G is called H a semipermutable subgroup if HK = KH for
ubgroup K such that (|H|,|K|) = 1. A subgroup H of G is called a s-semipermutable
oup of G if HP = PH for every Sylow p-subgroup such that (p,|H|) = 1 (see [1]).
For the sake of convenience, we list here some known results which will be useful in

the sequel.

Lemma 2.1 [11]. Let H be a s-semipermutable subgroup of G

(1) If H<T < G, then H is s-semipermutable in T';

(2) If H is a p-subgroup and H <G, then HK/K is s-semipermutable in G/K.

Lemma 2.2 . Let § be be an S-closed saturated formation and H a subgroup of G.
Then H NZ3(G) C ZS (H).

Lemma 2.3 [8, Lemma 3.9]. Let § = &,MN, is p-nilpotent class. If G is a minimal
non-g-group, then the following statemenis hold:
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(1) G is a Schmidt group;
(2) G¥ is a Sylow subgroup of G.
Lemma 2.4 [7, Lemma 2.8]. Suppose G is a group and P is a normal p-subgroup
of G contained in Zy(G), then Ca(P) 2 OP(G), where OP(G)=( g€ G | pt|g| ).

3. Main Results

Theorem 3.1.  Let G be a group with p | |G|. Then G is p-nilpotent of and only if
there exists a normal subgroup H of G such that G/H is p-nilpotent, every cyclic subgm)‘a
of order 4 of H is s-semipermutable in G and every subgroup of H of order p is cont

m 73 (G), where § is the formation of all p-nilpotent groups.
' Proof. The necessity part is obvious, we only need to prove sufficiency parQ sume
that the claim is false and choose G to be a counterexample of minimal order

Let K be a proper subgroup of G. Then K/K N H ~ KH/H < plies that
K/K N H is p-nilpotent. Every cyclic subgroup of K N H of order 4 1s®mipermutable
@ G and hence is s-semipermutable in K by Lemma 2.1. Every &roup of HN K of
order p is contained in Z (G)N K C Z3(K) by Lemma 2.2. So K s es the hypotheses,
and K is p-nilpotent by the choice of G. Thus G is a minimal IW—nilpotent group. Now
- 10,VIIL,3.4] implies that G is a Schmidt group, that is, G is potent but every proper
subgroup of G'is nilpotent. Then by [3, Theorem 3.4.11], @ a normal Sylow p-subgroup
£ and G/P ~ @, where Q is a non-normal cyclic Syl&-subgroup of G, P/®(P) is a
minimal subgroup of G/®(P). We consider the followin\cases:

Case 1. P is abelian. By [3, Theorem 3.4.11)\ P i$ an elementary abelian p-subgroup.
Since G/ H is p-nilpotent, we have P < I byﬁ 2.3. By the hypotheses, P < Z3(G),

Sence (G is p-nilpotent, a contradiction.
Case 2. P is not abelian and pj ' %7 y [3, Theorem 3.4.11], the expotent of P is
» Since G/ H is p-nilpotent, by Lem% C H. Hence, by the hypothesis, P < Z3 (G).
& follows that G is p-nilpotent, a cofitradiction.
Case 3. P is non-abelian 7 2. Since HNPAG, (HNP)®(P)/®(P)AG/P(P).
By (3, Theorem 3 4.11] P/® s a minimal normal subgroup G/®(P), we have (H N
N P)®(P) = )or HN AP H N P C ®(P), then G/®(P) is p-nilpotent, and so &
= p—mlpotent a gont;rac ((% HNP =P, then H > P. If there exists z € P\®(P) and
z)| = 4, then by the@ eses, (r) is s-semipermutable in G, that is (z)Q = Q(z), where
0 is a Sylow ¢-su f G and q # 2. Obviously, Q(z)®(P) N P = (z)&(P). For an

arbitrary g € P) NP)? = Q(z)qP(P)N P = Q(z)®(P) N P. This shows that Q
= (z)®(P). Since P/®(P) is an elementary abelian p-subgroup,

mormalizes @)

~we have P no {zes (1’) (P). So1# (z)®(P)<4[P)Q = G. In view of minimal normality of

P.'@(PE;@ ain that (z)®(P) = P, Therefore P = (2). The final contradiction completes
T

the pr

: eorem 3.2. Suppose H is a normal subgroup of a group G such that G/H is
milpotent. If every cyclic subgroup of order 4 of F*(H) s-semipermutable in G. Then G is

- milpotent if and only if every element of prime order of F* (H) is contained in Z,,(G).

Proof. If G is nilpotent, then G = Z,.(G). Hence the necessity is obvious, we only

s==d to prove the sufficiency.

Assume the claim is not true, and let G be a counterexample of minimal order. Then

w= prove it via the following steps.

(1) Every proper normal subgroup of G is nilpotent.

Let M is a maximal normal subgroup of G. Since M/M N H MH/M < G/H is
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nilpotent, by [5,X,13.11] F*(M N H) C F*(H) and by Lemma 2.2, we have Z.,(G) N M C
C Zo(M). Applying Lemma 2.1, we see that M and M N H satisfies the hypotheses. The
minimal choice of G implies that M is nilpotent. It follows that F(G) is a unique maximal
normal subgroup of G

(2) H=G=G"and F*(G) = F(G) < G.

If H < G, then H is nilpotent by (1). Thus F*(H) = F(H) = H. By Theorem 3.1 we
have that G is nilpotent, a contradiction. Hence H = G, F(G) < G and G/F(G) = G/M
is simple. If G/M = G/F(G) is a cyclic subgroup of prime order, then G is nilpatent by
Theorem 3.1, a contradiction. Hence we may assume that G /M is a non-abeliam8imple
group. Then, obviously, we have G’ < M. It follows that G = G'. If F(®x F*(G),
then F*(H) = F*(G) = G = H. Again by Theorem 3.1 we have that G4ig¥nilpotent, a
contradiction. Thus F(G) = F*(G).

(3) Final contradiction.

Since F*(G) = F(G) is not the identity group, we may/choese a minimal prime
divisor g of [F(G)|. Let @ be the Sylow g-subgroup of F(G). Sihee/Q char F(G) <G, we
have @ < G. By the hypotheses, every element 7 of prime $td8r ©f Q contains in Z(G),
thus Cg(Q) > O%(G) by Lemma 2.4. If ¢ # 2, then C(Q) 20%(G) by [2, p.184, Theorem
3.10]. So G/Cs(Q) is a g-group. If g = 2, for every subgreup (z) of order 4 of @, by the
hypotheses, (z)P is a subgroup of G, where P is a Sylow p-subgroup of G, and p is an
arbitrary prime number with p # 2. Since (z) = (@@ N P) = Q N (z)P < (z) P, we have
(z) is normalized by P. Therefore (z) centralizedshy P by 2, p.178, Theorem 2.4]. By the
arbitrary choice of P, we have O*(G) < Cg(QY By [4, 1V, Theorem 5.12]. So G/C(Q) is a
2-group. Hence, in any case, we have G/AC%(Q) is a g-group, where g is the smallest prime
of |F(G)].

We claim that Co(Q) = G.n fact, if Ce(Q) < G, then by (1) C(Q) is nilpotent,
and G/Ca(Q) is a g-group. Ityfellows that G is soluble. But G = G’ implies that G is not
soluble, a contraction. So CAQIN= G and hence Q < Z(G). 1t follows that F*(G/Q) =
= F*(G)/Q. Now consider the factor group G = G/Q. Since Q is a Sylow g-subgroup of
(@), and q is the smattestNprime, every element Z of prime order ¢ in F*(G) can be view
as the image of an elemetit, = of prime order ¢ in F*(G), for every ¢ > g. So x lies in Zo (G)
by the hypotheses and thus we have Z lies in Z5(G/Q) = Zoo(G)/Q. Obviously, F*(G) has
no an element of‘order 2. It follows that G'/Q satisfies the hypotheses. The minimal choice
of G' implies G/Qyis nilpotent and so G is nilpotent, a contradiction. This completes the
proof.

Corallary 3.2.1 [7,Theorem 4.5]. Let H is a normal subgroup of a group G such
that G nilpotent. Suppose every cyclic subgroup of order 4 of F* (H) s-quasinormal in
G Then' G is nilpotent if and only if all elements of prime order of F* (H) are contained in
X

Corollary 3.2.2. Let G be a group. Suppose that every cyclic subgroup of order 4
of F*(G') is s-semipermutable in G. Then G is nilpotent if and only if all elements of prime
order of F*(G') are contained in Z(G).

Corollary 3.2.3.  Let G be a group. Suppose that every cyclic subgroup of order
4 of F*(G™) is s-semipermutable in G. Then G is nilpotent if and only if all elements of
prime order of F*(G™) are contained in Z..(G).

Abstract. A subgroup H of a finite group G is called s-semipermutable in G if H is
permutable with every Sylow p-subgroup of G with (p,|H|) = 1. In this paper, we use s-
semipermutable subgroups to study the structure of finite groups. In particular, we obtained
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new criterions of p-nilpotency and nilpotency of a finite group. Some know results are
generalized.

References

1. Chongmu Chen. Inner-outer Y -groups and minimal non-Y -groups [M].
Chongging: Southwest Normal University Press, 1988.

2. D.Gorenstein. Finite Groups [M]. Chelsea, New York, 1968.

3. W.Guo. The Theory of Classes of Groups [M]. Science Press-Kluwer Aca d@@
Publishers, Beijing-New York-Dordrecht-Boston-London, 2000. ?

4. B.Huppert. Endliche Gruppen [ [M]. Berlin-Heidelberg-New York ger-
- Verlag, 1968.

5. B.Huppert. Blackburn N, Finite Group III [M]. Berl un-Held@j&New York,

Springer- Verlag, 1982.
| 6. O.H.Kegel. Sylow-Gruppen and Subnormalteiler Endhcher@ppen [J]. Math.Z,
1962, 78: 205-221.

7. Y.Li and Y.Wang. On m-quasinormally embedded sub s of finite group [J]. J
of Algebra, 2004, 281: 109-123.
, 8. L.Miao and W.Guo. The influence of c-norma @ ubgroups on the structure
of finite groups [J]. Izvestiya of Gomel State University. lems in Algebra, 2000, 3(16):
101-106.

9. L.A.Shemetkov. Formations of Finite Q,%\As M]. Moscow, Nauka, 1978.
- 10. M.Xu. A Introduction to Finite G ups ]. Science Press Beijing, 1999.

11. Q.Zhang and L.Wang. The m of s- Semlpermutable Subgroups on the
Structure of Finite Groups [J]. J. of Ma $ 5 48(1): 81-88.
hou Normal University Received 10.03.06

niversity of Science and Tech Chma



