УДК 512.542

И. В. Близнец, А. Н. Скиба

О $\mathfrak{H}_{\Theta^{\mathfrak{L}}}$ -КРИТИЧЕСКИХ ФОРМАЦИЯХ

Все рассматриваемые нами группы конечны. Напомним некоторые спределения и обозначения из работы [1].

В дальнейшем класс всех простых групп мы будем обозначать символом $\mathfrak I.$ Для произвольного класса простых групп $\mathfrak T$ через $\mathfrak T'$ мы обозначаем множество $\mathfrak I\setminus \mathfrak X.$

Пусть $\mathfrak L$ — произвольный непустой класс простых групп. Тогда всякую функцию вида $f: \mathfrak L \cup \{\mathfrak L'\} \mapsto \{$ формации групп $\}$, принимающую одинаковые значения на изоморфных группах, называют $\mathfrak L$ -композиционным спутником. В случае, когда $\mathbf Z_p$ — группа простого порядка p, вместо эдриси $f(\mathbf Z_p)$ иногда применяется запись f(p).

Пусть \mathfrak{L}^+ — совокупность всех абелевых групп из \mathfrak{L} , \mathfrak{L}^- — совокупность всех неабелевых групп из \mathfrak{L} . Тогда записи $\operatorname{Supp}(f)$, $\operatorname{Supp}_+(f)$ и $\operatorname{Supp}_-(f)$ соответственно обозначают множества $\{A \in \mathfrak{L} \cup \{\mathfrak{L}'\} \mid f(A) \neq \varnothing\}$, $\{A \in \mathfrak{L}^+ \cup \{\mathfrak{L}'\} \mid f(A) \neq \varnothing\}$ и $\{A \in \mathfrak{L}^- \cup \{\mathfrak{L}'\} \mid f(A) \neq \varnothing\}$.

Для произвольного множества простых групп $\mathfrak T$ символ $E(\mathfrak T)$ обозначает класс всех таких групп, у которых все композиционные факторы приндлежат классу $(\mathfrak T)$. По определению единичные группы принадлежат $E(\mathfrak T)$.

Символом $C^A(G)$ сбозначается пересечение всех централизаторов всех таких главных факторов H/K группы G, что $A \in \mathcal{K}(H/K)$ (($C^A(G) = G$, если группа G таковых главных факторов не имеет). Наряду с записью $C^{Z_p}(G)$ мы будем применять более короткую запись $C^p(G)$.

Легко видель, что $C^A(G)=G_{E(A)'}$, если A — простая неабелева группа и $C^p(G)=G_{\mathfrak{G}_p}$, где $\mathfrak{G}_{\mathfrak{C}_p}$ — класс всех таких групп [2], у которых все главные абелевы p-факторы центральны.

Для произвольного \mathfrak{L} -композиционного спутника f полагают $CF_{\mathfrak{L}}(f)=\{G\mid G\mid G\in f(\mathfrak{L}')$ и $G/C^A(G)\in f(A)$ для всех $A\in \mathcal{K}(G)\cap \mathfrak{L}\}.$

Если формация \mathfrak{F} такова, что $\mathfrak{F}=CF_{\mathfrak{L}}(f)$ для некоторого \mathfrak{L} -композиционного спутника f, то говорят, что она \mathfrak{L} -композиционна, а $f-\mathfrak{F}$ -композиционный спутник этой формации. Если при этом все значения f лежат в \mathfrak{F} , то спутник f называется внутренним (или приведенным).

Непустая совокупность формаций Θ называется полной решеткой формаций [3], если $\mathfrak{G} \in \Theta$ и пересечение любого множества формаций из Θ снова принадлежит Θ .

Мы называем \mathcal{L} -композиционный спутник Θ -значным, если все его непустые значения принадлежат Θ . Символом $\Theta^{\mathcal{L}}$ обозначается полная решетка, состоящая из всех таких формаций, которые имеют хотя бы один Θ -значный \mathcal{L} -композиционный спутник.

Для произвольного набора $\{f_i \mid i \in I\}$ \mathfrak{L} -композиционных спутников f жерез $\bigcap_{i \in I} f_i$ обозначается такой спутник, что

$$(\bigcap_{i\in I} f_i)(A) = \bigcap_{i\in I} f_i(A)$$

для всех $A \in \mathfrak{I}$.

Пусть $\{f_i|i\in I\}$ набор всех Θ -значных \mathfrak{L} -композиционных спутников формации $\mathfrak{F}\in\Theta^{\mathfrak{L}}$. Тогда спутник $\bigcap_{i\in I}f_i$ называется минимальным Θ -значным \mathfrak{L} -композиционным спутником \mathfrak{F} . Каноническим \mathfrak{L} -композиционным спутником формации $\mathfrak{F}=CL(f)$, где f — минимальный \mathfrak{L} -композиционный спутник этой формации, называется спутник F такой, что

$$F(A) = egin{cases} \mathfrak{N}_p f(A), & ext{сти} |A| =: p \in \mathbb{P}, \ \mathfrak{F}, & ext{ссли} |A \in (\mathfrak{I} \setminus \mathfrak{A}) \cup \{\mathfrak{L}'\}. \end{cases}$$

Мы называем следуя [3], формации из Θ Θ -формациями, а формации из $\Theta^{\mathfrak{L}}$ — $\Theta^{\mathfrak{L}}$ -формациями.

Пусть \mathfrak{H} — произвольный класс групп. Тогда Θ -формация \mathfrak{F} называется \mathfrak{H}_{Θ} -критической [4] или игаче минимальной не \mathfrak{H} - Θ -формацией [5], если $\mathfrak{F} \not\subseteq \mathfrak{H}$, но $\mathfrak{F}_1 \subseteq \mathfrak{H}$ для каждой собственной Θ -подформация \mathfrak{F}_1 из \mathfrak{F} .

Символом Обота $\mathfrak X$ обозначается пересечениє всех тех Θ -формаций, которые содержат класс групп $\mathfrak X$.

Теорема. Пусть Θ — такая полная решетка формаций, что $\Theta^{\mathfrak{L}}\subseteq \Theta$. Пусть f — минимльный Θ -значный \mathfrak{L} -композиционный спутник формации \mathfrak{F} и H — канонический \mathfrak{L} -композиционный спутник формации \mathfrak{H} . Тогда в том и только в том случае \mathfrak{F} является $\mathfrak{H}_{\theta\mathfrak{L}}$ -критической формацией, когда $\mathfrak{F}=\Theta^{\mathfrak{L}}$ form G, где G — такая монолитическая группа с монолитом R, что либо $\mathcal{K}(R)\cap \mathfrak{L}=\varnothing$ и $f(\mathfrak{L}')-(H(\mathfrak{L}'))_{\Theta}$ -критическая формация, либо $C_G(R)\subseteq R\not\subseteq \Phi(G)$ и $f(A)-(H(A))_{\Theta}$ -критическая формация, где $A\in \mathcal{K}(R)$.

 \mathcal{A} оказательство. Необходимость. Пусть G — группа минимального порядка из $\mathfrak{F}\setminus\mathfrak{H}$ с монолитом $R=G^{\mathfrak{H}}$. Тогда, очевидно, $\mathfrak{F}=\Theta^{\mathfrak{L}}$ form G.

Пусть $A \in \mathcal{K}(R)$. Предположим прежде, что $A \notin \mathfrak{L}$. В этом случае $G_{E\mathfrak{L}}=1$. Значит, по теореме 1 [1]

$$f(\mathfrak{L}') = \Theta \text{form} G \not\subseteq H(\mathfrak{L}') = \mathfrak{H}.$$

Пусть \mathfrak{M} — произвольная собственная Θ -подформация в $f(\mathfrak{L}')$. Допустим, что $\mathfrak{M} \not\subseteq H(\mathfrak{L}')$ и $T \in \mathfrak{M} \setminus H(\mathfrak{L}')$. Тогда $T \in \mathfrak{F} \setminus \mathfrak{H}$. Значит, $\Theta^{\mathfrak{L}}$ form $T = \mathfrak{F}$ и поэтому

$$f(\mathfrak{L}') = \Theta \text{form}(T/T_{E\mathfrak{L}} \subseteq \mathfrak{M} \subset f(\mathfrak{L}').$$

Противоречие. Таким образом, $\mathfrak{M}\subseteq H(\mathfrak{L}')$. Следовательно, $f(\mathfrak{L}')-(H(\mathfrak{L}'))$ критическая формация.

Пусть $A \in \mathfrak{L}^-$. В этом случае $C^A(G) = 1$ и поэтому

$$f(A) = \theta \text{form} G \not\subseteq H(A) = \mathfrak{H}.$$

Пусть \mathfrak{M} — произвольная собственная θ -подформация в f(A) Допустим, что $\mathfrak{M} \not\subseteq H(A)$ и $T \in \mathfrak{M} \setminus H(A)$. Тогда $T \in \mathfrak{F} \setminus \mathfrak{H}$. Значит, $\theta^{\mathfrak{L}}$ form $T = \mathfrak{F}$ и поэтому

$$f(A) = heta \mathrm{form}(T/C^A(T)) \subseteq \mathfrak{M} \subset f(A).$$

Противоречие. Таким образом, $\mathfrak{M}\subseteq H(A)$. Следовательно, $f(A)-(H(A))_{\theta}$ -критическая формация.

Предположим теперь, что $A \in \mathfrak{L}^+$. Рассмотрим группу $T = [R](G/C_G(R))$. Понятно, что $C^A(T) = R$. По лемме 3.32 [6] $T \in \mathfrak{F}$. Допустим, что $T \in \mathfrak{H}$. Тогда $T/C^A(T) \cong T/R \cong G/C_G(R) \in \mathcal{H}(A)$. Но $G/R \in \mathfrak{H}$. Значит, $G \in \mathfrak{H}$. Противоречие. Поэтому $T \notin \mathfrak{H}$. Следовательно, $T \in \mathfrak{F} \setminus \mathfrak{H}$. Таким образом, ввиду выбора группы G мы имеем |T| = |G| и $\mathfrak{F} = \Theta^{\mathfrak{L}}$ form T. Понятно, что $R = T^{\mathfrak{H}}$. Ввиду теоремы 1 [1]

$$f(A) = \Theta \text{form}(T/C^A(T)) = \Theta \text{form}(G/C_G(R)) = \Theta \text{form}(G/R) \not\subseteq H(A).$$

Пусть \mathfrak{M} — произвольная собственная Θ -подформация в f(A). Допустим, что $\mathfrak{M} \not\subseteq H(A)$ д F — группа минимального порядка из $\mathfrak{M} \setminus H(A)$. Так как $H(A) = \mathfrak{N}_p H(A)$, то $O_p(T) = 1$. Пусть P — простой точный H-модуль над F_p и F = [T]H. Тогда $F \in \mathfrak{F}$. Если $\Theta^{\mathfrak{L}}$ form $F = \mathfrak{F}$, то

$$f(A) = \Theta \text{form}(F/C^A(F)) = \Theta \text{form}T \subseteq \mathfrak{M} \subset f(A),$$

что певозможно. Значит, Θ form $F\subset \mathfrak{F}$ и поэтому $F\in \mathfrak{H}$. Следовательно, $F/C^A(F)\cong T\in H(A)$. Противоречие. Значит, $\mathfrak{M}\subseteq H(A)$. Таким образом, $f(A)-(H(A))_{\Theta}$ -критическая формация.

Достаточность. Понятно, что $\mathfrak{F} \not\subseteq \mathfrak{H}$. Пусть, \mathfrak{M} – произвольная собственная $\Theta^{\mathfrak{L}}$ -подформация в \mathfrak{F} и m — ее минимальный Θ -значный \mathfrak{L} -композиционный спутник. Ввиду теоремы 1 [1] $m \leq f$. Покажем, что $m \leq H$.

Пусть $A \in \mathcal{K}(R)$. Предположим, что $A \notin \mathfrak{L}$. В этом случае $G_{E\mathfrak{L}} = 1$ и поэтому

$$f(\mathfrak{L}') = \Theta \text{form} G \not\subseteq m(\mathfrak{L}') = \mathfrak{M}.$$

Значит, $m(\mathfrak{L}') \subset f(\mathfrak{L}')$. Следовательно, по условию $m(\mathfrak{L}') \subseteq H(\mathfrak{L}')$. Кроме того, поскольку $G/R \in \mathfrak{H}$ и $C^B(G)/R = C^B(G/R)$ для всех простых групп $B \ncong A$, то $m(B) \subseteq f(B) \subseteq H(B)$ для всех $B \in \mathfrak{L}$. Значит, $m \leq H$. (Аналогично проверяется случай, когда $A \in \mathfrak{L}^-$).

Пусть $A \in \mathfrak{L}^+$. В этом случае $R = C_G(R)$. Значит, $C^A(G) = R$. Допустим, что m(A) = f(A). Тогда $G/C^A(G) = G/R \in m(A)$. Значит, если A-p-тоупла, то по лемме 4 [7]

 $G \in \mathfrak{N}_p m(A) \subseteq \mathfrak{M}$

и поэтому

$$\mathfrak{F}=\Theta^{\mathfrak{L}}\mathrm{form}G\subseteq\mathfrak{M}\subset\mathfrak{F},$$

что невозможно. Следовательно, $m(A) \subset f(A)$ и поэтому $m(A) \subseteq H(A)$. По лемме 1 [7] $G_{\mathcal{EL}}/R = (G/R)_{\mathcal{EL}}$ и $C^B(G/R)$ для всех простых групп $B \ncong A$. Следовательно, поскольку $G/R \in \mathfrak{H}$, то $f(\mathcal{L}') \subseteq H(\mathcal{L}')$ и $f(B) \subseteq H(B)$ для всех $B \in \mathcal{L} \setminus (A)$. Но $m \leq f$ и поэтому $m(A) \subseteq H(A)$ для всех $A \in \{\mathcal{L}'\} \cup \mathcal{L}$. Итак, $m \leq H$. Следовательно, $\mathfrak{M} \subseteq \mathfrak{H}$. Таких образом, $\mathfrak{F} - \mathfrak{H}_{\Theta^{\mathcal{L}}}$ -критическая формация. Теорема доказана.

Summary

I.V.Bliznets and A.N.Skibz. On $\mathfrak{H}_{\Theta^{\mathfrak{L}}}$ -critical formations // Proc. Gomel State Univ. — 1999. — $\mathfrak{M}1(15)$ Problems in Algebra. — P. 140–144

Let $\mathfrak L$ be an arbitrary non-empty class of simple groups. Then every function $f: \mathfrak L \bigcup \{\mathfrak L'\} \to \{\text{formations of groups}\}$ having an equal values on isomorphic groups is called $\mathfrak L$ -composition satellite.

Symbol $C^A(G)$ denotes an intersection of all centralizers of all such chief factor H/K of G that $A \in \mathcal{K}(H/K)$ ($C^A(G) = G$ if G has no such chief factors).

For an arbitrary \mathcal{L} -composition satellite f it is supposed

$$CF_{\mathfrak{L}}(f) = \{G \mid G/G_{E\mathfrak{L}} \in f(\mathfrak{L}') \text{ and } G/C^A(G) \in f(A) \text{ for all } A \in \mathcal{K}(G) \cap \mathfrak{L}\}.$$

If a formation \mathfrak{F} has the form $\mathfrak{F} = CF_{\mathfrak{L}}(f)$ for some \mathfrak{L} -composition satellite then it is said that \mathfrak{F} is \mathfrak{L} -composition and f is a composition satellite of \mathfrak{F} .

A non-empty set of formations θ is called a complete lattice of formations if $\mathfrak{G} \in \theta$ and an intersection of any set of formations from θ belongs to θ .

We call \mathfrak{L} -composition satellite θ -valued if all its non-empty values belong to θ . Symbol $\theta^{\mathfrak{L}}$ denotes a complete lattice consisting of all such formations that has a θ -valued \mathfrak{L} -composition satellite.

Let \mathfrak{H} be an arbitrary class of groups. Then θ -formation \mathfrak{F} is called \mathfrak{H}_{θ} -critical or else minimal non- \mathfrak{H}_{θ} -formation if $\mathfrak{F} \not\subseteq \mathfrak{H}$ but $\mathfrak{F}_1 \subseteq \mathfrak{H}$ for every proper θ -subformation \mathfrak{F}_1 of \mathfrak{F} .

In this note a general description of $\mathfrak{H}_{\theta^{\mathcal{L}}}$ -critical formations where \mathfrak{H} is a \mathcal{L} composition formation is given.

Литература

- 1. Скиба А.Н., Шеметков Л.А. Частично композиционные формации конечных групп // Докл. НАН Беларуси. Т.43, N 4, с.5-6.
- 2. Ведерников В.А. Элементы теории классов групп. Смеденск, 1988, 122 с.
- 3. Скиба А.Н. Алгебра формаций. Минск: Беларуская навука. 1997. 240 с.
- 4. Скиба А.Н. О критических формациях // Весц. АН БССР. Сер. фіз.-мат. навук. 1980, N 4, с.27-33.
- 5. Шеметков Л.А. Экраны ступенчатых формаций // Тр. Всесоюзн. симпозиум по теории групп. Киев, 1980. С.37-50.
- 6. Шеметков Л.А., Скиба А.Н. Формации алгебраических систем. М.: Наука, 1989. 244 с.
- 7. Шеметков Л.А., Скиба А.И. Кратно £-композиционные формации конечных групп // Препринты Томельского госуниверситета. 1998, Август, N 78, 26 с.

Гомельский государственный университет им. Ф.Скорины e-mail: blizuets@gsu.unibel.by e-mail: skiba@gsu.unibel.by

Поступило 22.07.99