УДК 512.542

С. Ф. Каморников, Ю. В. Кравченко

ФУНКТОРЫ ГАШЮЦА

Рассматриваются только конечные разрешимые группы. Используются определения и обозначения, принятые в [1, 2]. Напомним некоторые из инх

Пусть \mathfrak{X} — непустой класс групп. Подгруппа H группы G называется \mathfrak{X} -проектором (или \mathfrak{X} -покрывающей подгруппой в терминологии работь [2]), если выполняются следующие условия:

1) $H \in \mathfrak{X}$;

2) из $H\subseteq U\subseteq G, U_0\triangleleft U$ и $U/U_0\in\mathfrak{X}$ всегда следует $HU_0\equiv U.$

В работе [3] Гашюц показал, что в любой группе существует единственный класс сопряжённых \mathfrak{X} -проекторов, если \mathfrak{X} — непустан насыщенная формация. В [4] аналогичное утверждение доказано для классов Шунка. Напомним, что классом Шунка называется примитивно замкнуйый гомоморф, т.е. класс групп \mathfrak{X} , обладающий свойствами:

- 1) каждая факторгруппа любой группы из $\mathfrak X$ также принадлежит $\mathfrak X$;
- 2) из того, что $G/M_G \in \mathfrak{X}$ для любой максимальной подгруппы M из G, следует всегда $G \in \mathfrak{X}$.

Выше через M_G обозначается ядро подгруппы M в группе G, т.е. наибольшая нормальная подгруппа группа G, содержащаяся в M.

В работе [5] Гашюц показал, что классами Шунка исчерпываются все проективные классы, т.е. классы £, относительно которых в любой группе существуют £-проекторы. В связи с этим результатом возникает вопрос: существуют ли в группах другие классы сопряжённых подгрупп, свойства которых сохраняются при гомоморфизмах и в содержащих их подгруппах групп. Отрицательный ответ на этот вопрос даётся в настоящей работе. При этом мы используем функциональный подход, основы которого заложены в работе [6].

Пусть A,B — группы, $\phi:A\to B$ — эпиморфизм. Пусть Ω — некоторая система подгрупп из A. В дальнейшем через Ω^{ϕ} обозначается множество $\{H^{\bullet}, H\in \Omega\}$. Пусть Θ — отображение, которое ставит в соответствие каждой группе G некоторую непустую систему $\Theta(G)$ её подгрупп. Говорят [7], что Θ — подгрупповой функтор, если выполняется следующее условие абстрактности:

$$(\Theta(G))^{\phi} = \Theta(G^{\phi})$$

для любого изоморфизма ϕ каждой группы G.

Будем говорить, что Θ — проективный подгрупповой функтор, если:

1) $\Theta(G)$ — класс сопряжённых подгрупп группы G;

- 2) $(\Theta(G))^{\phi} \subseteq \Theta(G^{\phi})$ для любого эпиморфизма ϕ группы G;
- 3) если $H \in \Theta(G)$ и $H \subseteq U \subseteq G$, то $H \in \Theta(U)$.

Замечание. 1) В [6] Барнсом и Кегелем введено понятие так называемого включающего функтора, которое по сути совпадает с понятием проективного подгруппового функтора.

2) Примером проективного подгруппового функтора является функтор, выделяющий в каждой группе множество всех её \mathfrak{X} -проекторов, где \mathfrak{X} класс Шунка. В [6] такие функторы называются функторами Гашюца

Следуя [6], назовём собственным классом проективного подгруднового функтора Θ класс групп

$$\{G \mid \Theta(G) = \{G\}\}.$$

Барнс и Кегель изучили (см. [6]) ряд свойств собственного класса проективного подгруппового функтора. В частности, они показали, что такой класс замкнут относительно фраттиниевых расширений и конечных прямых произведений. Другие свойства собственного класса исследуются в данной работе.

Теорема 1. Пусть Θ — проективный подгрупповой функтор. Тогда собственный класс функтора Θ является классом Шунка.

Доказательство. Пусть $\mathfrak{X} = \{G \mid \Theta(G) = \{G\}\}$ — собственный класс проективного подгруппового функтора Θ . Тот факт, что \mathfrak{X} — класс групп, следует из отмеченного выше условия абстрактности.

Пусть группа G принадлежит классу \mathfrak{X} . Это означает, что $\Theta(G)=\{G\}$. Тогда ввиду условия 2) определения проективного подгруппового функтора следует, что

$$GN/N = G/N \in \Theta(G/N)$$

для любой нермальной подгруппы N группы G. Так как $\Theta(G/N)$ — класс сопряжённых подгрупп, то $\Theta(G/N) = \{G/N\}$. Значит, $G/N \in \mathfrak{X}$ и класс \mathfrak{X} является гомоморфом.

Пусть теперь $G/M_G \in \mathfrak{X}$ для любой максимальной подгруппы M группы G. Предположим, что $\Theta(G) \neq \{G\}$. Тогда в G найдётся собственная подгруппа R, принадлежащая $\Theta(G)$. Заключим R в некоторую максимальную подгруппу H группы G. Так как Θ — проективный подгрупповой функтор, то $RH_G/H_G \in \Theta(G/H_G)$. Отсюда и из равенства $\Theta(G/H_G) = \{G/H_G\}$ следует, что $RH_G/H_G = G/H_G$, а значит, $RH_G = G$. Но это невозможно, так как $RH_G \subseteq H$. Пришли к противоречию. Следовательно, $\Theta(G) = \{G\}$ и $G \in \mathfrak{X}$. Таким образом, класс \mathfrak{X} является классом Шунка. Теорема доказана.

Замечание. Так как классы Шунка замкнуты относительно фраттиниевых расширений, а разрешимые классы Шунка замкнуты относительно конечных прямых произведений, то теорема 1 включает соответствующие результаты работы [6].

Теорема 2. Пусть Θ — проективный подгрупповой функтор $u \mathfrak{X}$ — собственный класс функтора Θ . Тогда для любой группы G каждая подгруппа H $us \Theta(G)$ является \mathfrak{X} -проектором группы G.

Доказательство. Ввиду условия 3) определения проективного подгруппового функтора следует, что $H \in \Theta(H)$. Так как все подгруппы из $\Theta(H)$ сопряжены, то $\Theta(H) = \{H\}$, а значит, $H \in \mathfrak{X}$.

Пусть теперь $H\subseteq U\subseteq G, U_0 \triangleleft U$ и $U/U_0\in \mathfrak{X}$. Тогда $\mathfrak{A} H\subseteq U$ и $H\in \Theta(G)$ стедует, что $H\in \Theta(U)$. Так как $U/U_0\in \mathfrak{X}$, то $\Theta(U/U_0)=\{U/U_0\}$. Теперь из условия 2) определения проективного подгруппового функтора заключаем, что $HU_0/U_0\in \Theta(U/U_0)$, а значит, $HU_0/U_0=U/U_0$. Таким образом, $H-\mathfrak{X}$ -проектор группы G. Теорема доказана.

Следствие. Множество всех проективных подгрупповых функторов совзедает с множеством всех функторов Гашюца.

Summary

S.F.Kamornikov and Yu.V.Kravchenko. Gaschütz functors // Proc. Gomel State Univ. — 1999. — №1(15) Problems in Algebra. — P. 37–40

The notion of projective subgroup functor has been introduced and the connection of these functors and Gaschütz functors has been studied

Литература

- 1. Пеметков Л.А. Формации конечных групп. М.: Наука, 1978.
- 2. Doerk K., Hawkes T. Finite soluble groups. Berlin-New York: Walter de Gruyter, 1992.
- 3. Gaschütz W. Zur Theorie der endlichen auflosbaren Gruppen // Math. Z. 1963. Bd.80, № 4. S. 300–305.
- 4. Schunck H. 为-Untergruppen in endlichen auflosbaren Gruppen // Math. Z. 1967. Bd. 97, № 4. S. 326–330.

- 5. Gaschütz W. Selected topics in the theory of soluble groups // Camberra: Lectures given at the 9th Summer Research Institute of the Austral. Math. Soc., 1969.
- 6. Barnes D.W., Kegel O.H. Gaschütz functors on finite soluble groups // Math. Z. 1966. Bd.94, № 2. S. 134-142.
- 7. Плоткин Б.И. Радикалы в группах, операции на классах групп и радикаль ные классы // Сборник, посвящённый памяти А.И.Мальцева. Новосибирск PEROSVITORINATIVI MAREHINO . Наука, 1973. С. 205-244.