УДК 519.6:539.3

Численно-аналитический метод определения осадки штампонабивного фундамента с микросваями в нелинейно-деформируемом грунтовом основании

В. Е. Быховцев

Компьютерное объектно-ориентированное моделирование деформаций основания штампонабивного фундамента с микросваями при равномерной нагрузке на фундамент для условий линейного и нелинейного деформирования грунта показало, что горизонтальные составляющие перемещения в любых горизонтальных плоскостях больше чем на порядок меньше вертикальной компоненты. Поэтому с достаточной для инженерных расчётов точностью можно принять $\mathbf{u}=0,\,\mathbf{v}=0,\,\mathbf{w}\neq0;\,\mathbf{r}$ где $\mathbf{u},\,\mathbf{v},\,\mathbf{w}-\mathbf{r}$ горизонтальные и вертикальная компоненты вектора перемещения. Отсюда следует, что компоненты вектора деформаций будут равны

$$\varepsilon_x = \frac{\partial U}{\partial x} = 0, \quad \varepsilon_y = \frac{\partial V}{\partial y} = 0, \quad \varepsilon_z = \frac{\partial W}{\partial z} \neq 0, \quad \theta = \varepsilon_x + \varepsilon_y \quad \varepsilon_z = \frac{\partial W}{\partial z} \neq 0.$$
 (1)

Для анализа сдвиговых деформаций воспользуемся уравнениями равновесия в перемещениях, уравнениями Ламе, при статической нагрузке и без учёта массовых сил:

$$(\lambda + G)\frac{\partial \theta}{\partial x} + G\nabla^{2}U = 0,$$

$$(\lambda + G)\frac{\partial \theta}{\partial y} + G\nabla^{2}V = 0,$$

$$(\lambda + G)\frac{\partial \theta}{\partial y} + G\nabla^{2}W = 0.$$
(2)

Эти уравнения при учёте (1) преобразуются к виду

$$\frac{\partial \theta}{\partial x} = \frac{\partial^2 W}{\partial x \partial z} = 0, \quad \frac{\partial^2 W}{\partial y \partial z} = 0, \quad \frac{\partial \theta}{\partial z} = \frac{\partial^2 W}{\partial z^2} = 0.$$
 (3)

Следовательно, сдвиговые деформации будут равны:

$$\gamma_{xy} = \frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} = 0; \quad \gamma_{yz} = \frac{\partial V}{\partial z} + \frac{\partial W}{\partial y} = 0; \quad \gamma_{zx} = \frac{\partial W}{\partial x} + \frac{\partial U}{\partial z} = 0. \tag{4}$$

Из последнего уравнения группы (3) следует

$$\frac{\partial W}{\partial z} = c_0$$
, откуда $W = \int_0^H c_0 dz + c_1 = c_0 H$. (5)

при H = 0 W = 0, следовательно $c_1 = 0$.

При упругом деформировании значение константы c_0 может быть определено исходя из указанного выше решения Буссинеска, будем иметь

$$c_0 = \beta_{\text{\tiny SKN}} \frac{P}{ES}. \tag{6}$$

В итоге получим выражение для определения осадки штампонабивного фундамента с микросваями на упругом основании

$$W^{e} = \beta_{SKB} \frac{P}{ES} H \tag{7}$$

Между интенсивностями деформаций при условии линейного и нелинейного деформирования твёрдого тела и при законе деформирования в виде степенной функции устанавливается следующая связь.

$$\varepsilon = \left(\frac{1+m}{2A}E_o\varepsilon_i^e\right)^{\frac{1}{m}},\tag{8}$$

где А, т – параметры уравнения закона деформирования эквивалентного грунтового основания:

$$\sigma''_{i} = A \left(\varepsilon''_{i} \right)^{m}, \tag{9}$$

$$\varepsilon_{i} = \frac{\sqrt{2}}{2(1+\mu)} \sqrt{(\varepsilon_{x} - \varepsilon_{y})^{2} + (\varepsilon_{y} - \varepsilon_{z})^{2} + (\varepsilon_{z} - \varepsilon_{x})^{2} + \frac{3}{2}(\gamma_{xy}^{2} + \gamma_{yz}^{2} + \gamma_{zx}^{2})}$$
(10)

- интенсивность деформаций, индексы \underline{e} и \underline{h} — признаки линейного и нелинейного деформирования. Для рассматриваемой задачи из (8) при учёте (1,3) будем иметь

$$\frac{\partial W^{H}}{\partial z} = (1+\mu) \left(\frac{1+m}{2(1+\mu)} \cdot \frac{E}{A} \right)^{\frac{1}{m}} \left(\frac{\partial W^{e}}{\partial z} \right)^{\frac{1}{m}}$$
(11)

Интегрируя (11) при учёте (7), получим

$$W^{H} = \left(\frac{1+m}{2(1+\mu)^{1-m}} \cdot \frac{E}{A}\right)^{\frac{1}{m}} \int_{0}^{H} c_{0}^{\frac{1}{m}} dz = \left[\frac{1+m}{2(1+\mu)^{1-m}} \cdot \frac{\beta_{9KB}}{A} \frac{P}{S_{nn}}\right]^{\frac{1}{m}} \cdot H.$$
 (12)

Общий подход к определению параметров А и m закона деформирования (9) изложен в [2]. Но как показывают результаты компьютерного моделирования различных систем механики грунтов, значения этих параметров зависят от формы и размеров моделируемого фундамента. Для рассматриваемого типа фундамента методом вычислительного эксперимента получено.

$$\begin{split} m_{_{\mathfrak{I}\!K\!B}} &= \frac{1 + 2\,\mu_{_{\mathfrak{I}\!K\!B}}}{2} \cdot tg\,\varphi \ , \quad \mu_{_{\mathfrak{I}\!K\!B}} < \,\mu_{_{0}} \, , \quad 0 < \mu_{_{\mathfrak{I}\!K\!B}} < 1; \\ &\quad A = A_{_{\mathfrak{I}\!K\!B}} = (1 - 2\,\mu_{_{\mathfrak{I}\!K\!B}}) \cdot tg\,\varphi \cdot E_{_{\mathfrak{I}\!K\!B}}^{m} \cdot \sigma_{_{I,K\!P,\mathfrak{I}\!K\!B}}^{1 - m} \, ; \\ &\quad \sigma_{_{I,K\!P,\mathfrak{I}\!K\!B}} = c + 0,01 \cdot tg\,\varphi \cdot (0,5 - \mu_{_{\mathfrak{I}\!K\!B}}) \cdot E_{_{\mathfrak{I}\!K\!B}} \, . \end{split}$$

Этим содержание формулы (12) определено полностью для вычисления осадки штампонабивного фундамента на эквивалентном грунтовом основании. Таким образом, осадка штампонабивного фундамента с микросваями на нелинейно-деформируемом эквивалентном однородном основании нелинейно зависит от нагрузки и параметров закона деформирования, что полностью соответствует многочисленным экспериментальным данным. Оценку

методики и точности полученных формул проведём методом компьютерного объектноориентированного моделирования на примере конкретных задач.

Определим осадку штампонабивного фундамента с ростверком 0,7*0,9*0,5м и микросваями длиной 1,0м в грунтовом основании: песок пылеватый средней плотности с характеристиками $\phi = 30$, c = 0.004MПа, E = 25 МПа, e = 0.64; $\mu = 0.275$ при условии его линейного деформирования. Данные вычислений представлены в таблице.

Осадка штампонабивного фундамента с микросваями (см)

Таблица.

Нагрузка	Опытные данные	Компьютерное	Аналитическое
кН		моделирование	решение
300	1,3	1,9	1,76
400	3,8	3,6	3,72
500	6,5	6,3	6,65
600	9,5	9,7	10,69

Из анализа полученных результатов очевидно соответствие полученных результатов и опытных данных, следовательно, штампонабивной фундамент с микросваями и грунтовое основание необходимо рассматривать только как нелинейно-деформируемую систему.

Abstract. A numeric-analytical method of detecting the setting of the foundation with micropiles in nonlineary-deformable ground base is consodered.

Литература

- 1. А. В. Александров, В. Д. Потапов, Основы теории упругости и пластичности, Москва, Высшая школа, 1990.
- 2. В. Е. Быховцев, А. В. Быховцев, В. В. Бондарева, Компьютерное моделирование систем нелинейной механики грунтов, Гомель, УО «ГГУ им. Ф. Скорины», 2002.
- 3. М. А. Журавков, Математическое моделирование деформационных процессов в твёрдых деформируемых средах, Минск, БГУ, 2002.
 - 4. Н. А. Цытович, Механика грунтов, Москва, Стройиздат, 1963.

Гомельский государственный университет им. Ф. Скорины

Поступило 25.08.05