УДК 512.542

О вложении подгрупп в проекторы конечных разрешимых групп

Т.И.ВАСИЛЬЕВА

По известной теореме Силова, существующие в каждой конечной группе силовские p-подгруппы наряду с сопряженностью обладают свойством вложения: их подгруппами исчерпываются все p-подгруппы данной группы. При этом силовские p-подгруппы являются \mathfrak{S}_p -проекторами группы. Аналогичное свойство вложения, согласно теоремам Холла-Чунихина, присуще π -холловым подгруппам (или \mathfrak{S}_π -проекторам) π -разрешимой группы. Однако, как показывают примеры формаций всех нильпотентных групп, всех сверхразрешимых групп и др., для проекторов целого ряда формаций свойство вложения не выполняется.

В 1978 году Л.А. Шеметковым в [1] была поставлена задача: найти условия, при которых фиксированная \mathfrak{F} -подгруппа содержится в \mathfrak{F} -проекторе. В настоящей работе данная задача исследуется для классов Шунка заданного вида, откуда получается вложение нильпотентных и π -разложимых подгрупп соответственно в картеровы подгруппы и π -разложимые проекторы разрешимых групп.

В работе рассматриваются только конечные разрешимые группы.

Для подгруппы H группы G используется обозначение $H \leq G$. Пусть $\mathfrak X$ и $\mathfrak F$ некоторые классы групп. Подгруппа H группы G называется \mathfrak{X} -проектором [2], если HN/N — максимальная \mathfrak{X} -подгруппа в G/N для любой нормальной подгруппы N из G. Примитивная группа — это группа G, в которой существует максимальная подгруппа Mс единичным ядром $Core_G(M)$; в этом случае M называется примитиватором группы G. Класс Шунка — непустой гомоморф \mathfrak{X} , содержащий всякую группу G, у которой $G/Core_G(M) \in \mathfrak{X}$ для любой максимальной подгруппы M из G. Если \mathfrak{X} — класс Шунка. то его границей называется класс групп $b(\mathfrak{X})$ [3], состоящий из всех таких примитивных групп G, что $G \notin \mathfrak{X}$, но $G/N \in \mathfrak{X}$ для любой нормальной подгруппы $N \neq 1$ группы G. Через π обозначается некоторое множество простых чисел, π' — дополнение к π во множестве всех простых чисел, $\pi(\mathfrak{X})$ — множество всех различных простых делителей порядков групп, принадлежащих \mathfrak{X} . Через $\mathfrak{X} \times \mathfrak{F}$ обозначается класс всех групп G. представимых в виде $G = A \times B$, где $A \in \mathfrak{X}, B \in \mathfrak{F}; \mathfrak{X}_{\pi}$ — класс всех π -групп, которые принадлежат \mathfrak{X} ; \mathfrak{N} — класс всех нильпотентных групп; \mathfrak{S} — класс всех разрешимых групп. Подгруппа H группы G называется абнормальной, если $x \in H, H^x > для$ любого $x \in G$. Остальные определения и обозначения можно найти в [1] и [3].

Определение. Пусть H и F — подгруппы группы G. Будем говорить, что H арифметически вкладывается в F, если из условий $H \leq U \leq G$, $F \leq U \leq G$ и $V \trianglelefteq U$ всегда следует, что $\pi(HV/V) \subseteq \pi(FV/V)$.

Ясно, что если H содержится в некотором \mathfrak{F} -проекторе F группы, то H арифметически вкладывается в F. Однако обратное утверждение выполняется не всегда. Например, пусть \mathfrak{U} — формация всех сверхразрешимых групп. В симметрической группе S_4 силовская 2-подгруппа H арифметически вкладывается в \mathfrak{U} -проектор F, который изоморфен симметрической группе S_3 . Но \mathfrak{U} -подгруппа H не содержится в F^x для любого $x \in S_4$.

Напомним [2], что для класса Шунка $\mathfrak X$ во всякой группе G существует в точности один класс сопряженных $\mathfrak X$ -проекторов и понятия $\mathfrak X$ -проектора и $\mathfrak X$ -покрывающей

подгруппы совпадают. Картерова подгруппа (т.е. самонормализуемая нильпотентная подгруппа) является \mathfrak{N} -проектором группы.

Теорема 1. Пусть \mathfrak{X} — класс Шунка такой, что любая группа из его границы $b(\mathfrak{X})$ является либо группой простого порядка, либо имеет нильпотентный примитиватор. Если \mathfrak{X} -подгруппа H группы G арифметически вкладывается в каждый \mathfrak{X} -проектор из G, то H содержится в некотором \mathfrak{X} -проекторе группы G.

 \mathcal{A} оказательство. Пусть G — группа наименьшего порядка, для которой теорема не выполняется. Тогда в G имеется \mathfrak{X} -подгруппа H, которая арифметически вкладывается во всякий \mathfrak{X} -проектор группы G и не содержится ни в одном \mathfrak{X} -проекторе группы G.

Возьмем минимальную нормальную подгруппу N группы G. Факторгруппа $HN/N \simeq H/H \cap N \in Q\mathfrak{X} = \mathfrak{X}$. Покажем, что HN/N арифметически вкладывается во всякий \mathfrak{X} -проектор R/N группы G/N. Пусть $HN/N \leq U/N \leq G/N$, $R/N \leq U/N \leq G/N$ и $V/N \leq U/N$. В R существует \mathfrak{X} -проектор F. Так как R = FN и, по лемме 15.1 из [1], F является \mathfrak{X} -проектором группы G, то множество $\pi(HN/N \cdot V/N/V/N) = \pi(HV/V) \subseteq G/N$ следует существование такого элемента G/N. Из сопряженности G/N. Из сопряженности G/N. Следует существование такого элемента G/N. Что G/N0 что G/N1.

Если $R^x \neq G$, то для R^x условия теоремы выполняются. Значит, $H \leq F^y$ для некоторого $y \in G$. Противоречие с выбором G.

Предположим, что $R^x=G$. Тогда $G/N\in\mathfrak{X}$ для любой минимальной нормальной подгруппы N группы G. Так как $G\notin\mathfrak{X}$ и \mathfrak{X} есть класс Шунка, то $G\in b(\mathfrak{X})$. По условию теоремы, G имеет нильпотентный примитиватор. Обозначим его через M. Тогда группа $G=MN,\,M\cap N=1,\,N=C_G(N)$ и $|N|=p^\alpha$ для некоторого простого числа p. Поскольку $M\simeq G/N\in\mathfrak{X}$ и M \mathfrak{X} -абнормальна в G, то M является \mathfrak{X} -проектором группы G.

Пусть силовская p-подгруппа M_p группы M отлична от 1. Тогда $M=N_G(M_p)$. Силовская p-подгруппа G_p группы G, содержащая M_p , имеет вид: $G_p=M_pN$. Отсюда $M_p\neq N_G(M_p)=M\cap G_p=M_p$. Пришли к противоречию.

Предположим, что $M_p=1$. Обозначим $\pi_1=\pi(G)\setminus\{p\}$. Тогда M является π_1 -холловой подгруппой, а $H=\pi_1$ -подгруппой группы G. Так как G обладает D_{π_1} -свойством, то $H\leq M^g$ для некоторого $g\in G$. Это противоречие завершает доказательство теоремы.

Ввиду того, что класс всех нильпотентных групп является классом Шунка, рассмотренным в теореме 1, получаем

Следствие. Если нильпотентная подгруппа H группы G арифметически вкладывается во всякую картерову подгруппу группы G, то H содержится в некоторой картеровой подгруппе группы G.

Лемма 1. Пусть $\mathfrak X$ и $\mathfrak H$ — классы Шунка такие, что $\pi(\mathfrak X)\cap\pi(\mathfrak H)=1$. Тогда $\mathfrak X imes\mathfrak H$ — класс Шунка.

Доказательство. Обозначим $\pi=\pi(\mathfrak{X})$. Тогда $\pi(\mathfrak{H})\subseteq\pi'$. Покажем, что $\mathfrak{X}\times\mathfrak{H}-$ гомоморф. Пусть $G=A\times B$, где $A\in\mathfrak{X},\,B\in\mathfrak{H}$ и $K\unlhd G$. Тогда $G/K=AK/K\cdot BK/K$, причем $AK/K\simeq A/A\cap K\in Q\mathfrak{X}=\mathfrak{X},\,BK/K\simeq B/B\cap K\in Q\mathfrak{H}=\mathfrak{H}$. Так как $AK/K-\pi$ -группа, а $BK/K-\pi'$ -группа, то $AK/K\cap BK/K=1$. Таким образом, $G/K\in\mathfrak{X}\times\mathfrak{H}$, т.е. $\mathfrak{X}\times\mathfrak{H}-$ гомоморф.

Докажем теперь, что класс $\mathfrak{X} \times \mathfrak{H}$ примитивно замкнут. Пусть $G/Core_G(M) \in \mathfrak{X} \times \mathfrak{H}$ для любой максимальной в G подгруппы M.

Так как \mathfrak{X} — класс Шунка, то в G существует \mathfrak{X} -проектор R. Если R=G, то $G\in \mathfrak{X}\times \mathfrak{H}$.

Пусть $R \neq G$. Покажем, что $R \leq G$. Для этого возьмем любую максимальную в G подгруппу W, содержащую R, и докажем, что для ее ядра $Core_G(W)$ факторгруппа $G/Core_G(W) \in \mathfrak{H}$.

Из $G/Core_G(W) \in \mathfrak{X} \times \mathfrak{H}$ следует $G/Core_G(W) = A/Core_G(W) \times B/Core_G(W)$, где $A/Core_G(W) \in \mathfrak{X}$, $B/Core_G(W) \in \mathfrak{H}$. Поскольку $G/Core_G(W)/B/Core_G(W) \simeq A/Core_G(W) \in \mathfrak{X}$ и $RCore_G(W)/Core_G(W)$ есть \mathfrak{X} -проектор в $G/Core_G(W)$, то $G/Core_G(W) = R/Core_G(W) \cdot B/Core_G(W)$. Ввиду этого и того, что $RCore_G(W)/Core_G(W)$ является π -группой, получаем $RCore_G(W)/Core_G(W) = A/Core_G(W)$. Это означает, что $RCore_G(W) \leq G$. Тогда из $RCore_G(W) \leq W$ имеем $RCore_G(W) = Core_G(W)$. Отсюда $G/Core_G(W) = B/Core_G(W) \in \mathfrak{H}$.

По обобщенной лемме Фраттини, $G=N_G(R)Core_G(W)$. Если $N_G(R) \neq G$, то $N_G(R)$ содержится в некоторой максимальной в G подгруппе T. Для ее ядра $Core_G(T)$ по доказанному выше $G=N_G(R)Core_G(T)\leq T$. Противоречие. Значит, $N_G(R)=G$.

В группе G для класса Шунка $\mathfrak H$ существует $\mathfrak H$ -проектор H. Как и для $\mathfrak X$ -проектора R, легко показать, что $H \le G$. Если $RH \ne G$, то RH содержится в некоторой максимальной подгруппе M группы G. По доказанному выше, $G/Core_G(M) \in \mathfrak H$. Противоречие. Итак, $G=R\times H\in \mathfrak X\times \mathfrak H$. Лемма доказана.

Отметим несколько свойств абнормальных подгрупп

Лемма 2. Пусть $R \leq G$ и $N \subseteq G$. Тогда справедливы следующие утверждения:

1) если R абнормальна в G и содержится в подглипре W глипры G то RN/N

1) если R абнормальна в G и содержится в подгруппе W группы G, то RN/N абнормальна в WN/N;

2) если $N \leq R$ и R/N абнормальна в G/N, то R абнормальна в G.

Доказательство получается прямой проверкой.

Теорема 2. Пусть \mathfrak{X} — класс Шунка, π — некоторое множество простых чисел и $\mathfrak{F} = \mathfrak{N}_{\pi} \times \mathfrak{X}_{\pi'}$. Если абнормальная \mathfrak{F} -подгруппа H группы G арифметически вкладывается в каждый \mathfrak{F} -проектор группы G, то H содержится в некотором \mathfrak{F} -проекторе из G.

Доказательство. Пусть G— группа наименьшего порядка, для которой теорема не выполняется. Тогда в G имеется абнормальная $\mathfrak F$ -подгруппа H, которая арифметически вкладывается во всякий $\mathfrak F$ -проектор из G и не содержится ни в одном $\mathfrak F$ -проекторе из G.

Пусть N — минимальная нормальная подгруппа группы G. По лемме 1, $\mathfrak F$ является гомоморфом. Поэтому факторгруппа HN/N есть $\mathfrak F$ -подгруппа, и по лемме 2, абнормальна в G/N. Рассмотрим произвольный $\mathfrak F$ -проектор группы G/N. Он имеет вид FN/N, где F — некоторый $\mathfrak F$ -проектор группы G. Если $HN/N \leq U/N \leq G/N$. $FN/N \leq U/N \leq G/N$ и $V/N \trianglelefteq U/N$, то $\pi(HN/N \cdot V/N/V/N) = \pi(HV/V) \subseteq \pi(FV/V) = \pi(FN/N \cdot V/N/V/N)$, т.е. HN/N арифметически вкладывается во всякий $\mathfrak F$ -проектор из G/N. В силу выбора G найдется элемент $x \in G$ такой, что $HN/N \leq (FN/N)^{xN} = F^xN/N$.

Если $F^xN \neq G$, то H — абнормальная подгруппа группы F^xN . По лемме 15.1 из [1], всякий $\mathfrak F$ -проектор из F^xN является $\mathfrak F$ -проектором в G, поэтому H арифметически вкладывается в каждый $\mathfrak F$ -проектор из F^xN . Отсюда следует, что $H \leq F^{xy}$ для некоторого $y \in F^xN$. Противоречие с выбором G.

Пусть теперь $F^xN=G$. Так как по лемме 1 $\mathfrak F$ есть класс Шунка и $G/N\in \mathfrak F$ для любой минимальной нормальной подгруппы N группы G, то F является примитиватором в G. Пусть $|N|=p^{\alpha}$ для некоторого простого числа p. Рассмотрим два случая.

1) Число $p \in \pi$.

Если p не делит |F|, то N является силовской p-подгруппой группы G. Так как

H арифметически вкладывается в F, то $\pi(H)\subseteq\pi(F)$, т.е. p не делит |H|. Обозначим $\omega=\mathbb{P}\setminus\{p\}$, где \mathbb{P} — множество всех простых чисел. Группа G разрешима, поэтому обладает D_{ω} -свойством. Отсюда ω -подгруппа H содержится в некоторой ω -холловой подгруппе $G_{\omega}=F^g$ для некоторого $g\in G$. Получили противоречие с выбором G.

Таким образом, p делит |F|.

Предположим, что $p \in \pi(H)$. Силовская p-подгруппа F_p группы F нормальна в F. Из максимальности F в G и самоцентрализуемости N следует, что $N_G(F_p) = F$. Силовская p-подгруппа G_p группы G, содержащая F_p , имеет вид $G_p = F_p N$. Тогда $1 \neq Z(G_p) \leq N_{G_p}(F_p) \leq F$. Но $G_p \leq G$. Это противоречит тому, что ядро F в G равно 1.

Пусть $p \notin \pi(H)$. Обозначим $\pi_1 = \pi(H)$. Тогда $N - \pi_1'$ -группа. Из $F \in \mathfrak{F}$ следует, что $F \leq N_G(F_p)$. Подгруппа F максимальна в G и ее ядро равно 1, поэтому $F = N_G(F_p)$. С другой стороны $F_p \neq G_p$, а значит, $F_p \neq N_{G_p}(F_p) = F \cap G_p = F_p$. Получили противоречие.

2) Пусть $p \in \pi'$.

Так как π' -холлова подгруппа $F_{\pi'}$ группы F нормальна в F и G=FN, то $F_{\pi'}N=G_{\pi'}$ — нормальная π' -холлова подгруппа группы G. Из $HG_{\pi'}/G_{\pi'} \leq G/G_{\pi'} \in \mathfrak{N}_{\pi}$ и абнормальности H в G следует, что $HG_{\pi'}=G$. Поэтому π -холлова подгруппа H_{π} группы H является π -холловой подгруппой группы G. Отсюда $H_{\pi}=F_{\pi}^{y}$ для некоторого $y\in G$. Из $F^{y}\in \mathfrak{F}$ получаем, что $F^{y}\leq N_{G}(F_{\pi}^{y})$. Так как N — единственная минимальная нормальная подгруппа в G и $N\cap F^{y}=1$, то $F^{y}=N_{G}(F_{\pi}^{y})$. Из π -разложимости H следует $H\leq N_{G}(H_{\pi})=F^{y}$. Это противоречие завершает доказательство теоремы.

Следствие 1. Пусть $\mathfrak{F} = \mathfrak{N}_{\pi} \times \mathfrak{S}_{\pi'}$. Если абнормальная \mathfrak{F} -подгруппа H разрешимой группы G арифметически вкладывается в каждый \mathfrak{F} -проектор группы G, то H содержится в некотором \mathfrak{F} -проекторе из G.

Следствие 2. Если картерова подгруппа H разрешимой группы G арифметически вкладывается во всякий p-разложимый проектор группы G, то H содержится в некотором p-разложимом проекторе из G.

Abstract. A condition of the embedding of \mathfrak{X} -subgroups in \mathfrak{X} -projectors of finite soluble groups for the Schunck class \mathfrak{X} is obtained.

Литература

- 1. Л.А. Шеметков, Формации конечных групп, Москва, Наука, 1978.
- 2. W. Gaschütz, Lectures on subgroups of Sylow type in finite soluble groups, Notes on Pure Math. 11 (1979), 1-100.
- 3. K. Doerk, T. Hawkes, Finite soluble groups, Berlin-New York, Walter de Gruyter, 1992.

Белорусский государственный университет транспорта Поступило 20.09.04