УДК 539.12

ФИЗИКА

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ТЕРМОУПРУГИХ ПОЛЕЙ ПРИ ЛАЗЕРНОЙ ОБРАБОТКЕ КРИСТАЛЛОВ АЛМАЗА

Е.Б. Шершнев, Ю.В. Никитюк, А.Е. Шершнев, С.И. Соколов

Гомельский государственный университет им. Ф. Скорины, Гомель, Беларусь

FEATURES OF FORMATION OF THERMOELASTIC FIELDS AT LASER PROCESSING OF DIAMOND CRYSTALS

E.B. Shershnev, Yu.V. Nikitjuk, A.E. Shershnev, S.I. Sokolov

F. Scorina Gomel State University, Gomel, Belarus

Выполнен расчет термоупругих полей, формируемых в кристаллах алмаза при воздействии лазерного излучения вдоль осей симметрии второго (*L*₂), третьего (*L*₃) и четвертого (*L*₄) порядка. Полученные результаты могут быть использованы для оптимизации процесса лазерной обработки кристаллов алмаза.

Ключевые слова: лазерная обработка, алмаз, графит, метод конечных элементов.

Calculation of the thermoelastic fields formed in crystals of diamond upon exposure of laser radiation along the axes of symmetry of the second (L_2) , the third (L_3) and the fourth (L_4) order is executed. The received results can be used for optimisation of the process of laser processing of diamond crystals.

Keywords: laser treatment, diamond, graphite, finite element method.

Введение

Уникальные физические свойства кристаллов алмаза обеспечивают стабильную работу в критических условиях устройств, созданных на его основе, и делают перспективным его применение при создании новой техники [1]. Лазерная обработка имеет существенные преимущества перед другими способами обработки кристаллов алмаза. К достоинствам данной технологии относится возможность получения узких резов с минимальной зоной термического влияния в сочетании с высокой производительностью процесса размерной обработки. Также следует отметить возможность автоматизации процесса высокоточной обработки кристаллов алмаза [2]. Особый интерес представляет изучение особенностей лазерной обработки кристаллов алмазов в различных кристаллографических направлениях [3]-[5]. В этих работах выявлены особенности формирования температурных полей при воздействии лазерного излучения на кристаллы алмаза в трех различных кристаллографических направлениях (вдоль осей симметрии второго, третьего и четвертого порядка). В то же время вызывает интерес изучение особенностей локализации полей термоупругих напряжений, формируемых в кристаллах алмаза при лазерном воздействии в вышеуказанных кристаллографических направлениях.

1 Моделирование процесса лазерного нагрева кристаллов алмаза

Лазерное воздействие на кристаллы алмаза приводит к значительному увеличению температуры, сопровождаемому фазовыми переходами. В соответствии с [3] в данной работе была использована упрощенная схема превращений алмаза под воздействием лазерного излучения: алмаз ⇒ фазовый переход ⇒ графит. При этом полагалось, что стадия интенсивной графитизации кристаллов алмаза наступает по достижении обрабатываемым материалом температуры 2300 К.

Расчет полей термоупругих напряжений, формируемых в кристаллах алмаза при лазерном воздействии, был выполнен с использованием метода конечных элементов в рамках несвязанной задачи термоупругости в квазистатической постановке [6]–[8]. Моделирование процесса фазового перехода алмаз – графит осуществлялось по алгоритму, проведенному в работе [5].

При расчетах плотность, удельная теплоемкость, коэффициент теплопроводности алмаза и графита принимались равными соответственно: $\rho_a = 3520 \text{ кг/m}^3$, $\rho_z = 2300 \text{ кг/m}^3$; $C_a = 854 \text{ Дж/кг-K}$, $C_z = 994 \text{ Дж/кг-K}$; $\lambda_a = 427 \text{ Вт/м-K}$, $\lambda_{z\perp} = 88 \text{ Вт/м-K}$, $\lambda_{z\parallel} = 355 \text{ Вт/м-K}$ [3]. Символом $\lambda_{z\perp}$ обозначен коэффициент теплопроводности графита в направлении, перпендикулярном гексагональным граням, а символом $\lambda_{z\parallel}$ обозначен коэффициент теплопроводности графита в направлении, параллельном гексагональным граням.

Алмаз принадлежит к кубической системе, вследствие чего его упругие свойства описываются тремя независимыми компонентами тензора модулей упругости. Для расчетов использовались следующие константы упругой жесткости: C_{11} =1079 ГПа, C_{12} =124 ГПа, C_{44} =578 ГПа [9]. При этом для моделирования лазерной обработки

[©] Шершнев Е.Б., Никитюк Ю.В., Шершнев А.Е., Соколов С.И., 2015 38

изотропной алмазной пластины были использованы модуль Юнга и коэффициент Пуассона, приведенные в [10].

Расчет термоупругих полей, формируемых в кристаллах алмаза в результате лазерного воздействия, был выполнен для четырех различных вариантов: I – анализ воздействия лазерного излучения вдоль оси симметрии второго порядка (L_2) , II – анализ воздействия лазерного излучения вдоль оси симметрии третьего порядка (L_3) , III – анализ воздействия лазерного излучения вдоль оси симметрии четвертого порядка (L_4) , IV – анализ воздействия лазерного излучения вдоль оси симметрии четвертого порядка (L_4) , IV – анализ воздействия лазерного излучения без учета графитизации и анизотропии свойств кристаллов алмаза. При этом для первых трех вариантов расчета моделирование было выполнено с учетом графитизации.

Моделирование процесса лазерного нагрева кристаллов алмаза было выполнено в соответствии со схемой, представленной на рисунке 1.1. Цифрой 1 отмечен лазерный пучок, цифрой 2 – алмазный образец. На рисунке стрелкой указано направление перемещения обрабатываемого изделия относительно лазерного пучка.

Рисунок 1.1 – Схема расположения лазерного пучка в зоне обработки

Расчеты были выполнены для образца, имеющего форму прямоугольного параллелепипеда с геометрическими размерами $2\times3\times1,5$ мм, с использованием следующих значений технологических параметров обработки: плотность мощности лазерного излучения $P_0 = 1,8\cdot10^{10}$ Вт/м², радиус поперечного сечения лазерного пучка R = 0,05 мм. Модуль скорости относительного перемещения лазерного пучка и образца V = 7 мм/с.

2 Результаты конечно-элементного анализа

Результаты проведенных расчетов представлены в таблице 2.1 и на рисунке 2.1. В таблице 2.1 σ_x обозначены напряжения, действующие вдоль оси X, а σ_y – напряжения, действующие вдоль оси Y, согласно рисунка 1.1. На рисунке 2.1 показаны рассчетные распределения полей температурных напряжений в случае лазерной обработки кристаллов алмаза вдоль оси симметрии четвертого порядка.

Таблица 2.1 – Результаты расчетов моделирования лазерной обработки кристаллов алмаза

	inn nusepnon ooput	photan	nob usin	iusu	
Вариант обработки Макси- мальные напряжения в зоне обработки, МПа		I 110	II 111	III 100	IV
σ_x	растяжения	98	90	96	95
	сжатия	1230	1850	1070	1020
σ_v	растяжения	117	95	91	110
	сжатия	1460	2090	1260	1200

Рисунок 2.1 – Распределение полей термоупругих напряжений в алмазе при обработке его вдоль оси L_4 , МПа: *а*) напряжения σ_x ; \hat{o}) напряжения σ_y

Анализ данных, приведенных в таблице 2.1, показывает, что учет анизотропии свойств кристаллов алмаза и учет процесса графитизации оказывает существенное влияние на значения термоупругих напряжений в зоне лазерной обработки и позволяет сделать вывод о том, что использование изотропной модели процесса лазерной обработки кристаллов алмазов приводит к существенным погрешностям. Так, при сравнении максимальных напряжений, формируемых в зоне обработки кристаллов алмаза вдоль оси L_2 , видно, что использование изотропной модели дает погрешность, достигающую 18%. В случае моделирования обработки кристалла алмаза вдоль оси L_3 и L_4 эти погрешности достигают 45% и 14% соответственно. Кроме этого, нужно отметить, что разница в величинах максимальных напряжений, формируемых при обработке вдоль различных осей симметрии, составляет от 8% до 42%. Данная разница в величинах растягивающих напряжений должна быть учтена при выборе параметров процесса лазерной обработки кристаллов алмаза.

Заключение

Методом конечных элементов выполнен расчет термоупругих полей, формируемых в кристаллах алмаза в результате воздействия лазерного излучения в различных кристаллографических направлениях. Полученные результаты позволяют сделать вывод о необходимости учета процесса графитизации и ориентации кристаллов при моделировании процессов лазерной обработки алмазов. Результаты моделирования могут быть использованы для оптимизации процесса лазерной обработки кристаллов алмаза.

ЛИТЕРАТУРА

1. Митягин, А.Ю. Технология и оборудование для обработки алмазных материалов современной техники / А.Ю. Митягин, А.А. Алтухов, А.Б. Митягина // Технология и конструирование в электронной аппаратуре. – 2009. – № 1. – С. 53–58.

2. Лазерная техника и технология: в 7 кн.: учеб. пособие для вузов / А.Г. Григорьянц, А.А. Соколов; под ред. А.Г. Григорьянца. – М.: Высш. шк, 1988. – Кн. 4: Лазерная обработка неметаллических материалов. – 191 с. 3. Физические основы лазерной обработки алмазов: в 15 кн.: учеб. пособие для ВТУЗов / А.И. Шкадов; под ред. А.М. Бочарова. – Смоленск, 1997. – Кн. 3: Физические основы лазерной обработки алмазов. – 288 с.

4. *Shalupaev*, *S.V.* Dependence of the diamond laser processing efficiency on crystallographic directions / S.V. Shalupaev, E.B. Shershnev, Y.V. Nikitjuk, V.V. Sviridova // SPIE. – 2001. – Vol. 4358. – P. 329–333.

5. Шершнев, Е.Б. / Моделирование лазерной обработки кристаллов алмаза // Е.Б. Шершнев, Ю.В. Никитюк, А.Е. Шершнев // Известия Гомельского государственного университета им. Ф. Скорины. – 2011. – № 6 (69). – С. 164–168.

6. Шабров, Н.Н. Метод конечных элементов в расчетах деталей тепловых двигателей / Н.Н. Шабров. – Л.: Машиностроение, 1983. – 212 с.

7. *Коваленко, Л.Д.* Основы термоупругости / Л.Д. Коваленко. – Киев: Навукова думка, 1970. – 307 с.

8. *Карзов*, *Г.П.* Физико-механическое моделирование процессов разрушения / Г.П. Карзов. – СПб.: Политехника, 1993. – 391 с.

9. *Кривцов, А.М.* Сравнение микромоделей описания упругих свойств алмаза / А.М. Кривцов, О.С. Лобода, С.С. Хакало // Известия РАН. Механика твердого тела. – 2012. – № 5. – С. 44–52.

10. Беломестных, В.Н. Нетрадиционный подход к определению анизотропных коэффициентов Пуассона кубических кристаллов / В.Н. Беломестных, Э.Г. Соболева // Письма о материалах. – 2012. – Т. 2, № 1. – С. 13–16.

Поступила в редакцию 14.10.14.