УДК 512.542

Тотально насыщенные формации с метанильпотентным l_{∞} -дефектом $\leqslant 2$

В. Г. Сафонов

1 Введение. Определения и обозначения

Все рассматриваемые группы конечны. Мы придерживаемся терминологии принятой в [1–3].

Пусть \mathfrak{F} и \mathfrak{H} — некоторые тотально насыщенные формации. Тогда длину решетки $\mathfrak{F}/_{\infty}\mathfrak{H}\cap\mathfrak{F}$ (конечную или бесконечную) тотально насыщенных формаций, заключенных между $\mathfrak{F}\cap\mathfrak{H}$ и \mathfrak{F} . называют \mathfrak{H}_{∞} -дефектом формации \mathfrak{F} и обозначают $|\mathfrak{F}:\mathfrak{H}\cap\mathfrak{F}|_{\infty}$. В случае когда $\mathfrak{H}=\mathfrak{M}^2$ — формация всех метанильпотентных групп \mathfrak{N}_{∞}^2 -дефект тотально насыщенной формации будем называть её метанильпотентным l_{∞} -дефектом.

В 1997г. А.Н.Скибой [3] было получено описание разрешимых тотально насыщенных формаций с нильпотентным l_{∞} -дефектом ≤ 2 . В работе автора [4] изучались тотально насыщенные формации, у которых нильпотентный l_{∞} -дефект не превосходит 3.

Исследованию и классификации тотально насыщенных формаций, имеющих заданные ограничения на решетку их тотально насыщенных подформаций, а также изучению различных свойств решетки тотально насыщенных формаций, посвящены работы [2-10].

В настоящей статье дается описание тотально насыщенных формаций, имеющих метанильпотентный дефект $\leqslant 2$.

Напомним некоторые из используемых определений и обозначений [2,3].

Всякую формацию конечных групп называют θ -кратно насыщенной. При $n\geqslant 1$ формацию $\mathfrak F$ называют n-кратно насыщенной, если она имеет такой локальный экран. все непустые значения которого — (n-1)-кратно насыщенные формации. Формацию n-кратно насыщенную для любого целого неотрицательного n называют m-кратно насыщенной.

Для всякой совокупности групп $\mathfrak M$ через l_∞ form $\mathfrak M$ обозначают тотально насыщенную формацию, порожденную классом групп $\mathfrak M$, т.е. пересечение всех тотально насыщенных формаций, содержащих $\mathfrak M$. При этом, если $\mathfrak M=\{G\}$, то формацию l_∞ form (разывают однопорожденной тотально насыщенной формацией.

Для любых тотально насыщенных формаций \mathfrak{M} и \mathfrak{H} полагают $\mathfrak{M}\vee_{\infty}\mathfrak{H}=l_{\infty}$ form $(\mathfrak{M}\cup\mathfrak{H})$. Частично упорядоченное по включению \subseteq множество всех тотально насыщенных формаций l_{∞} с операциями \vee_{∞} и \cap образует полную решетку. Формации из l_{∞} называют l_{∞} -формациями. Экран, все непустые значения которого l_{∞} -формации называют l_{∞} -значным. Если \mathfrak{F} — тотально насыщенная формация, то через \mathfrak{F}_{∞} обозначают её минимальный l_{∞} -значный локальный экран. Для всякой совокупности групп \mathfrak{X} полагают $\mathfrak{X}_{\infty}(p)=l_{\infty}$ form $(G/F_p(G)|G\in\mathfrak{X})$, если $p\in\pi(\mathfrak{X})$ и $\mathfrak{X}_{\infty}(p)=\emptyset$, если $p\notin\pi(\mathfrak{X})$.

Тотально насыщенную формацию $\mathfrak F$ называют $\mathfrak H_\infty$ -критической (или, иначе, минимальной тотально насыщенной не $\mathfrak H$ -формацией), если $\mathfrak F \not\subseteq \mathfrak H$, но все собственные тотально насыщенные подформации из $\mathfrak F$ содержатся в классе групп $\mathfrak H$.

Тотально насыщенная формация $\mathfrak F$ называется $\mathit{неприводимой}$ (или l_∞ - $\mathit{неприводимой}$ формацией), если $\mathfrak F \neq l_\infty \mathrm{form}(\cup_{i\in I}\mathfrak X_i) = \vee_\infty(\mathfrak X_i|i\in I)$, где $\{\mathfrak X_i|i\in I\}$ — набор всех собственных тотально насыщенных подформаций из $\mathfrak F$. В противном случае формация $\mathfrak F$ называется $\mathit{npuводимой}$ тотально насыщенной формацией (или l_∞ - $\mathit{npuводимой}$ формацией).

Для произвольной последовательности простых чисел p_1, p_2, \ldots, p_n и всякой совокупности групп \mathfrak{X} класс групп $\mathfrak{X}^{p_1p_2\ldots p_n}$ определяют следующим образом:

1) $\mathfrak{X}^{p_1} = (A/F_{p_1}(A)|A \in \mathfrak{X}); 2) \mathfrak{X}^{p_1p_2...p_n} = (A/F_{p_n}(A)|A \in \mathfrak{X}^{p_1p_2...p_{n-1}}).$

Последовательность простых чисел p_1, p_2, \ldots, p_n называют nodxodsщей для \mathfrak{X} , если $p_1 \in \pi(\mathfrak{X})$ и для любого $i \in \{2, \ldots, n\}$ число $p_i \in \pi(\mathfrak{X}^{p_1p_2\ldots p_{i-1}})$. Множество всех подходящих для \mathfrak{X} последовательностей обозначают через $P(\mathfrak{X})$. Символом $P^n(\mathfrak{X})$ обозначают совокупность всех таких последовательностей p_1, p_2, \ldots, p_n из $P(\mathfrak{X})$, у которых $p_i \neq p_{i+1}$ при всех $i \in \{1, \ldots, n-1\}$.

Пусть p_1, p_2, \ldots, p_n — некоторая подходящая для $\mathfrak F$ последовательность. Тогда

тотально локальный экран $\mathfrak{F}_{\infty}p_1p_2\dots p_n$ определяют следующим образом:

1) $\mathfrak{F}_{\infty}p_1=(\mathfrak{F}_{\infty}(p_1))_{\infty};$

2) $\mathfrak{F}_{\infty}p_1 \dots p_n = (\mathfrak{F}_{\infty}p_1 \dots p_{n-1}(p_n))_{\infty}$.

Через \mathfrak{N} , \mathfrak{N}^2 и \mathfrak{S} обозначаются классы всех нильпотентных, метанильпотентных и разрешимых групп, \mathfrak{N}_{π} — класс всех нильпотентных π -групп, где π — некоторое непустое множество простых чисел.

2 Используемые результаты

В виде следующих лемм сформулируем некоторые известные результаты теории формаций, используемые в работе.

Лемма 1 [2, с.75]. Пусть f_1 — локальный экран формации \mathfrak{F} , h — внутренний локальный экран формации \mathfrak{F} . Тогда формация $\mathfrak{F}\mathfrak{F}$ имеет такой локальный экран f. что для любого простого числа p справедливы утверждения:

1) $f(p) = f_1(p)\mathfrak{H}$, ecau $p \in \pi(\mathfrak{F})$;

2) f(p) = h(p), $ecnu \ p \in \pi'(\mathfrak{F})$.

Лемма 2 [3, с. 33]. Пусть $\mathfrak{F} = l_{\infty}$ form \mathfrak{X} , где \mathfrak{X} — непустой класс групп. Тогда если f — минимальный l_{∞} -значный экран формации \mathfrak{F} , то справедливы следующие утверждения:

1) $\pi(\mathfrak{X}) = \pi(\mathfrak{F});$

2) $f(p)=\mathfrak{X}_{\infty}(p)=\mathfrak{F}_{\infty}(p)$ при всех простых числах p;

3) если h-n роизвольный l_{∞} -значный экран формации \mathfrak{F} , то при любом $p\in\pi(\mathfrak{X})$ имеет место $f(p)=l_{\infty}\mathrm{form}(A|A\in h(p)\cap\mathfrak{F},\ O_p(A)=1).$

Лемма 3 [10]. Пусть G — монолитическая группа, $R = \operatorname{Soc}(G)$ — неабелева группа. Тогда $\mathfrak{F} = l_{\infty}$ form G имеет единственную максимальную l_{∞} -подформацию $\mathfrak{M} = \mathfrak{S}_{\pi(R)}l_{\infty}$ form G/R). В частности, $\mathfrak{S}_{\pi(R)} \subseteq \mathfrak{M} \subset \mathfrak{F}$.

Лемма 4 [3, с. 94]. Пусть \mathfrak{F} — разрешимая формация. Тогда в том и только в том случае \mathfrak{F} — минимальная тотально локальная не \mathfrak{N}^m -формация, когда \mathfrak{F} = $\mathfrak{N}_{p_1}\mathfrak{N}_{p_2}\ldots\mathfrak{N}_{p_{m+1}}$ для некоторой последовательности p_1,p_2,\ldots,p_{m+1} из $P^{m+1}(\mathfrak{F})$.

Лемма 5 [2, с.168]. Пусть \mathfrak{F} и \mathfrak{H} — формации, причем \mathfrak{H} локальна и G — группа минимального порядка из $\mathfrak{F} \setminus \mathfrak{H}$. Тогда G монолитична, ее монолит совпадает c $G^{\mathfrak{H}}$ и если $G^{\mathfrak{H}}$ — p-группа, то $G^{\mathfrak{H}} = C_G(G^{\mathfrak{H}}) = F_p(G)$.

Лемма 6 [2, с.79]. Пусть H/K главный фактор группы $G, p \in \pi(H/K)$. Тогда $O_p(G/C_G(H/K)) = 1$.

Лемма 7 [10]. Пусть \mathfrak{F} и \mathfrak{X} — тотально насыщенные формации, причем $\mathfrak{X}\subseteq \mathfrak{N}$. Тогда и только тогда $\mathfrak{F}-\mathfrak{X}_{\infty}$ -критическая формация, когда выполняется одно из следующих условий:

1) $\mathfrak{F} = \mathfrak{N}_p$, $r \partial e \ p \notin \pi(\mathfrak{X})$;

2) $\mathfrak{F} = \mathfrak{N}_p \mathfrak{N}_q$ для некоторых различных простых чисел p и q из $\pi(\mathfrak{X})$.

Лемма 8 [4]. Пусть \mathfrak{M} , \mathfrak{F} и $\mathfrak{H}-l_{\infty}$ -формации, $\mathfrak{X}=\mathfrak{M}\vee_{\infty}\mathfrak{F}$, $\mathfrak{L}=\mathfrak{M}\cap\mathfrak{F}$. Тогда

если \mathfrak{H}_{∞} -дефект формаций \mathfrak{M} и \mathfrak{F} конечен, то

$$|\mathfrak{X}:\mathfrak{H}\cap\mathfrak{X}|_{\infty}=|\mathfrak{M}:\mathfrak{H}\cap\mathfrak{M}|_{\infty}+|\mathfrak{F}:\mathfrak{H}\cap\mathfrak{F}|_{\infty}-|\mathfrak{L}:\mathfrak{H}\cap\mathfrak{L}|_{\infty}.$$

Лемма 9 [10]. Для любых двух тотально насыщенных формаций \mathfrak{M} и \mathfrak{F} имеет место решеточный изоморфизм

$$\mathfrak{M}\vee_{\infty}\mathfrak{F}/_{\infty}\mathfrak{M}\simeq\mathfrak{F}/_{\infty}\mathfrak{M}\cap\mathfrak{F}.$$

Следующая лемма непосредственно вытекает из леммы 5.2.7 [3]. **Лемма 10.** Пусть \mathfrak{M} , \mathfrak{F} и $\mathfrak{H} - l_{\infty}$ -формации, где $\mathfrak{M} \subseteq \mathfrak{F}$. Тогда

$$|\mathfrak{M}:\mathfrak{H}\cap\mathfrak{M}|_{\infty}\leqslant |\mathfrak{F}:\mathfrak{H}\cap\mathfrak{F}|_{\infty}.$$

Лемма 11 [3, с. 94]. Пусть Θ — такая полная решетка формаций, что $\Theta^l \subseteq$ $\subseteq \Theta$. Пусть h- канонический экран формации $\mathfrak{H},\ f-$ минимальный Θ -значный экран формации \mathfrak{F} . Тогда \mathfrak{F} является \mathfrak{H}_{Θ^l} -критической формацией в том и только в том случае, когда $\mathfrak{F}=\Theta^l$ formG, где G — такая группа минимального порядка из $\mathfrak{F}\setminus\mathfrak{H}$ с монолитом $R = G^5$, что для всех $p \in \pi(R)$ формация $f(p) (h(p))_{\Theta}$ -критична.

Лемма 12 [9]. Пусть \mathfrak{F} — неразрешимая тотально насыщенная формация. Tогда в \mathfrak{F} найдется по меньшей мере одна \mathfrak{S}_{∞} -критическая подформация.

Пемма 13 [9]. Пусть \mathfrak{F} — тотально насыщенная формация. Тогда и только тогда \mathfrak{F} — минимальная тотально насыщенная неразрешимая формация, когда \mathfrak{F} = $=l_{\infty} {
m form} G$, гde~G~- такая монолитическая группа с неабелевой минимальной нормальной подгруппой R, что группа G/R разрешима.

Лемма 14 [9]. Пусть 3 — тотально насыщенная формация. Тогда следующие утверждения равносильны:

- 1) решетка $L_{\infty}(\mathfrak{F})$ имеет конечную длину;
- 2) решетка $L_{\infty}(\mathfrak{F})$ конечна;
- 3) \mathfrak{F} разрешимая однопорожденная l_{∞} -формация.

3 Основной результат

Лемма 15. Пусть G — такая монолитическая группа, что $P = \mathrm{Soc}(\mathrm{G})$ —

абелева p-группа. Тогда если $P \not\subseteq \Phi(G)$, то $l_{\infty} \text{form} G = \mathfrak{N}_p l_{\infty} \text{form} (G/P)$.

 ${\mathcal J}$ оказательство. Пусть ${\mathfrak F}=l_{\infty}{
m form} G,\ {\mathfrak L}=l_{\infty}{
m form} (G/P)$ и ${\mathfrak M}={\mathfrak N}_p{\mathfrak L}$. Ввиду леммы 1 формация $\mathfrak M$ имеет такой l_∞ -значный локальный экран m, что $m(p)=(1)\mathfrak L=$ $=\mathfrak{L}$ и $m(q)=\mathfrak{L}_{\infty}(q)$ для любого простого числа q
eq p. Так как по условию P-p-группа то для любого $q \neq p$ имеем $P \subseteq F_q(G)$ и

$$(G/P)/F_{\mathfrak{g}}(G/P) = (G/P)/F_{\mathfrak{g}}(G)/P \simeq G/F_{\mathfrak{g}}(G).$$

Но тогда по лемме 2

$$m(q)=\mathfrak{L}_{\infty}(q)=l_{\infty}\mathrm{form}((G/P)/F_{q}(G/P))=l_{\infty}\mathrm{form}(G/F_{q}(G))=\mathfrak{F}_{\infty}(q)$$

для любого простого числа $q\in\pi(G),\ q\neq p.$ Кроме того, поскольку $P\not\subseteq\Phi(G),$ то $P = C_G(P) = F_p(G)$ и

$$m(p) = \mathfrak{L} = l_{\infty} \text{form}(G/P) = l_{\infty} \text{form}(G/F_p(G)) = \mathfrak{F}_{\infty}(p).$$

Таким образом, $m=\mathfrak{F}_{\infty}$. Последнее влечет $\mathfrak{F}=\mathfrak{M}$. Лемма доказана.

Лемма 16. Пусть \mathfrak{F} — неметанильпотентная тотально насыщенная формация. Тогда в \mathfrak{F} найдется по меньшей мере одна \mathfrak{N}_{∞}^2 -критическая подформация.

Доказательство. Пусть $\mathfrak{F}-$ такая l_{∞} -формация, что $\mathfrak{F} \not\subseteq \mathfrak{N}^2$. Выберем в $\mathfrak{F} \setminus \mathfrak{N}^2$ группу минимального порядка A. Тогда A- монолитическая группа с монолитом $R=A^{\mathfrak{N}^2}$. Если R- неабелева группа, то $|\pi(R)|\geqslant 3$ и ввиду леммы $3\mathfrak{S}_{\pi(R)}\subset \mathfrak{F}$. Значит, если p,q и r- различные простые числа из $\pi(R)$, то $\mathfrak{X}=\mathfrak{M}_p\mathfrak{N}_q\mathfrak{M}_r\subseteq \mathfrak{F}$ и, в силу леммы $4\mathfrak{X}-$ искомая \mathfrak{N}^2_{∞} -критическая подформация формации $\mathfrak{F}.$ Пусть R- абелева p-группа для некоторого простого числа p. Ввиду насыщенности формации \mathfrak{N}^2 имеем $R\not\subseteq \Phi(A)$. Тогда согласно лемме $15l_{\infty}$ form $A=\mathfrak{M}_pl_{\infty}$ form A/R. Ввиду леммы $5R=C_G(R)=F_p(G)$. Поскольку по лемме $6O_p(A/R)=1$ и A/R разрешимая группа, то любая минимальная нормальная подгруппа группы A/R является p'-группой. Поэтому $F(A/R)\in \mathfrak{N}_{p'}$. Так как $A/R\in \mathfrak{N}^2\setminus \mathfrak{N}.$ то l_{∞} form $(A/R)\subseteq \mathfrak{N}_{p'}\mathfrak{N}.$ По лемме f в формации l_{∞} form A/R0 содержится по меньшей мере одна минимальная тотально насыщенная ненильпотентная подформация $\mathfrak{L}.$ Согласно лемме f0 нь тогда f0. Но тогда

$$\mathfrak{X} = \mathfrak{N}_p \mathfrak{L} = \mathfrak{N}_p \mathfrak{N}_q \mathfrak{N}_r \subseteq \mathfrak{N}_p l_{\infty} \text{form}(A/R) \subseteq \mathfrak{F}.$$

Ввиду леммы 4 \mathfrak{X} — искомая минимальная тотально насыщенная неметанильпотентная формация. Лемма доказана.

Пемма 17. Пусть $\mathfrak{F}-$ тотально насыщенная формация. Тогда и только тогда $|\mathfrak{F}:\mathfrak{N}^2\cap\mathfrak{F}|_{\infty}=1$, когда $\mathfrak{F}=\mathfrak{M}\vee_{\infty}\mathfrak{H}$, где $\mathfrak{M}-$ метанильпотентная тотально насыщенная формация, $\mathfrak{H}-\mathfrak{N}^2$ -критическая формация, при этом: 1) всякая метанильпотентная l_{∞} -подформация из \mathfrak{F} входит в $\mathfrak{M}\vee_{\infty}(\mathfrak{H}\cap\mathfrak{N}^2)$; 2) всякая неметанильпотентная l_{∞} -формация \mathfrak{F}_1 из \mathfrak{F} имеет вид $\mathfrak{H}\vee_{\infty}(\mathfrak{F}_1\cap\mathfrak{N}^2)$.

Доказательство. Необходимость Пусть \mathfrak{F} — тотально насыщенная формация с \mathfrak{N}^2_∞ -дефектом 1. Так как \mathfrak{F} неметанильпотентная формация, то по лемме 16 в \mathfrak{F} содержится некоторая минимальная тотально насыщенная неметанильпотентная подформация \mathfrak{H} . По условию леммы $\mathfrak{M} = \mathfrak{F} \cap \mathfrak{X}$ — максимальная тотально насыщенная подформация формации \mathfrak{F} . Поэтому $\mathfrak{F} = \mathfrak{H} \vee_\infty \mathfrak{M}$.

Достаточность. Пусть $\mathfrak{F} = \mathfrak{H} \vee_{\infty} \mathfrak{M}$, где \mathfrak{H} — минимальная тотально насыщенная неметанильпотентная формация, а \mathfrak{M} — метанильпотентная тотально насыщенная формация. Тогда ввиду леммы 8 \mathfrak{N}^2_{∞} -дефект формации \mathfrak{F} равен 1.

Установим теперь справедливость второй части леммы. В силу леммы 9 имеет место решеточный изоморфизм

$$\mathfrak{F}/_{\infty}(\mathfrak{H}\cap\mathfrak{N}^{2})\vee_{\infty}\mathfrak{M}=((\mathfrak{H}\cap\mathfrak{N}^{2})\vee_{\infty}\mathfrak{M})\vee_{\infty}\mathfrak{H}/_{\infty}(\mathfrak{H}\cap\mathfrak{N}^{2})\vee_{\infty}\mathfrak{M}\simeq$$
$$\simeq \mathfrak{H}/_{\infty}\mathfrak{H}\cap((\mathfrak{H}\cap\mathfrak{N}^{2})\vee_{\infty}\mathfrak{M})=\mathfrak{H}/_{\infty}\mathfrak{H}\cap\mathfrak{N}^{2}.$$

Поскольку $\mathfrak{H} \cap \mathfrak{X}$ — максимальная тотально насыщенная подформация в \mathfrak{H} , то $(\mathfrak{H} \cap \mathfrak{N}^2) \vee_{\infty} \mathfrak{M}$ — максимальная тотально насыщенная подформация в \mathfrak{F} . Так как $\mathfrak{F} \not\subseteq \mathfrak{N}^2$. то любая метанильпотентная тотально насыщенная подформация из \mathfrak{F} содержится в $(\mathfrak{H} \cap \mathfrak{N}^2) \vee_{\infty} \mathfrak{M}$.

Допустим теперь, что в $\mathfrak F$ имеется минимальная тотально насыщенная неметанильпотентная подформация $\mathfrak H_1$ и $\mathfrak H_1 \neq \mathfrak H$.

Тогда $\mathfrak{H}\vee_{\infty}\mathfrak{H}_1\subseteq\mathfrak{F}$. По лемме $8\,\mathfrak{N}_{\infty}^2$ -дефект формации $\mathfrak{H}\vee_{\infty}\mathfrak{H}_1$ равен 2. Последнее противоречит лемме 10.

Таким образом, в формации $\mathfrak F$ нет минимальных тотально насыщенных неметанильпотентных подформаций, отличных от $\mathfrak H$.

Пусть теперь $\mathfrak L$ произвольная неметанильпотентная тотально насыщенная подформация формации $\mathfrak F$. Тогда, по лемме 16 и доказанному выше, имеем $\mathfrak S\subseteq \mathfrak L$. Поэтому

$$\begin{split} \mathfrak{L} &= \mathfrak{L} \cap \mathfrak{F} = \mathfrak{L} \cap (\mathfrak{H} \vee_{\infty} \mathfrak{M}) = \mathfrak{H} \vee_{\infty} (\mathfrak{L} \cap \mathfrak{M}) = \\ &= \mathfrak{H} \vee_{\infty} (\mathfrak{L} \cap (\mathfrak{F} \cap \mathfrak{N}^2)) = \mathfrak{H} \vee_{\infty} (\mathfrak{L} \cap \mathfrak{N}^2). \end{split}$$

Лемма доказана.

Лемма 18. Пусть \mathfrak{F} — тотально насыщенная формация, p — некоторое простое число. Тогда и только тогда \mathfrak{F} — минимальная тотально насыщенная не $\mathfrak{N}_p\mathfrak{N}^2$ -формация, когда $\mathfrak{F}=\mathfrak{N}_{p_1}\mathfrak{N}_{p_2}\mathfrak{N}_{p_3}$, где p_1,p_2,p_3 — такая последовательность простых чисел из $P^3(\mathfrak{F})$, что $p_1\neq p$.

Доказательство. Необходимость. Пусть \mathfrak{F} — минимальная тотально насыщенная не $\mathfrak{N}_p\mathfrak{N}^2$ -формация. Обозначим через \mathfrak{M} — единственную максимальную тотально насыщенную подформацию формации \mathfrak{F} . Тогда $\mathfrak{F}-\mathfrak{M}_{\infty}$ -критическая формация. По лемме $11\ \mathfrak{F}=l_{\infty}$ form G, где G — такая группа минимального порядка из $\mathfrak{F}\setminus \mathfrak{M}$ с монолитом $P=G^{\mathfrak{M}}$, что для любого $p\in \pi(P)$ формация $\mathfrak{F}_{\infty}(p)$ является $(\mathfrak{N}_p\mathfrak{M}_{\infty}(p))_{\infty}$ -критической.

Покажем, что $\mathfrak{F}\subseteq\mathfrak{S}$. Предположим противное. Тогда поскольку $G/P\in\mathfrak{M}\subseteq\mathfrak{S}$ \mathfrak{S} $\mathfrak{$

Возможны следующие два случая: 1) $\mathfrak{M} \subseteq \mathfrak{N}^2$; 2) $\mathfrak{M} \subseteq \mathfrak{N}^2$.

Пусть имеет место 1). Тогда поскольку $\mathfrak{F}-(\mathfrak{N}_p\mathfrak{N}^2)_\infty$ -критическая формация, то $\mathfrak{M}\subseteq\mathfrak{N}^3$.

Допустим, что $\mathfrak{F}\subseteq\mathfrak{N}^3$. Так как $G\not\in\mathfrak{N}^2$, то l(G)=3 и $G\in\mathfrak{N}_q\mathfrak{N}^2$ для некоторого простого числа $q\neq p$. Тогда

Гогда
$$\mathfrak{M} \subseteq \mathfrak{N}_q \mathfrak{N}^2 \cap \mathfrak{N}_p \mathfrak{N}^2 = (\mathfrak{N}_q \cap \mathfrak{N}_p) \mathfrak{N}^2 = \mathfrak{N}^2.$$

Противоречие.

Пусть $\mathfrak{F} \not\subseteq \mathfrak{N}^3$ Тогда \mathfrak{F} — минимальная тотально насыщенная не \mathfrak{N}^3 -формация. По лемме 4 $\mathfrak{F} = \mathfrak{N}_{p_1} \mathfrak{N}_{p_2} \mathfrak{N}_{p_3} \mathfrak{N}_{p_4}$ для некоторой последовательности простых чисел p_1, p_2, p_3, p_4 из $P^4(\mathfrak{F})$. Тогда поскольку $\mathfrak{F} = \mathfrak{N}_{p_1} (\mathfrak{N}_{p_2} \mathfrak{N}_{p_3} \mathfrak{N}_{p_4}) = (\mathfrak{N}_{p_1} \mathfrak{N}_{p_2} \mathfrak{N}_{p_3}) \mathfrak{N}_{p_4}$ и $\mathfrak{N}_{p_1} \mathfrak{N}_{p_2} \mathfrak{N}_{p_3}$ — наследственная формация, то $\mathfrak{N}_{p_1} \mathfrak{N}_{p_2} \mathfrak{N}_{p_3} \vee_{\infty} \mathfrak{N}_{p_2} \mathfrak{N}_{p_3} \mathfrak{N}_4 \subseteq \mathfrak{F}$. Так как $\mathfrak{F} \subseteq \mathfrak{N}^3$, то $\mathfrak{N}_{p_1} \mathfrak{N}_{p_2} \mathfrak{N}_{p_3} \vee_{\infty} \mathfrak{N}_{p_2} \mathfrak{N}_{p_3} \mathfrak{N}_4 \subseteq \mathfrak{F}$. Значит, $\mathfrak{N}_{p_1} \mathfrak{N}_{p_2} \dots \mathfrak{N}_{p_3} \vee_{\infty} \mathfrak{N}_{p_2} \mathfrak{N}_{p_3} \mathfrak{N}_4 \subseteq \mathfrak{M}$. Но $\mathfrak{M} \subseteq \mathfrak{N}_p \mathfrak{N}^2$. Следовательно, $p_1 = p_2 = p$. Противоречие. Таким образом, данный случай невозможен.

Пусть имеет место 2). Так как $\mathfrak{F} \subseteq \mathfrak{N}^2$, то \mathfrak{F} — минимальная тотально насыщенная не \mathfrak{N}^2 -формация. Ввиду леммы 4 $\mathfrak{F} = \mathfrak{N}_{p_1}\mathfrak{N}_{p_2}\mathfrak{N}_{p_3}$ для некоторой последовательности простых чисел p_1, p_2, p_3 из $P^3(\mathfrak{F})$. Поэтому $\mathfrak{F} \subseteq \mathfrak{N}_{p_1}\mathfrak{N}^2$. Так как $\mathfrak{F} \subseteq \mathfrak{N}_p\mathfrak{N}^2$, то $p_1 \neq p$ и формация \mathfrak{F} удовлетворяет условию леммы.

 \mathcal{J} остаточность. Пусть \mathfrak{F} — формация из условия леммы. Тогда ввиду леммы 4 \mathfrak{F} — минимальная тотально насыщенная не \mathfrak{N}^2 -формация. Поэтому любая собственная тотально насыщенная подформация из \mathfrak{F} содержится в \mathfrak{N}^2 и, следовательно, в $\mathfrak{N}_p\mathfrak{N}^2$. Так как при этом $p \neq p_1$, то $\mathfrak{F} \not\subseteq \mathfrak{N}_p\mathfrak{N}^2$. Значит, \mathfrak{F} — минимальная тотально насыщенная не $\mathfrak{N}_p\mathfrak{N}^2$ -формация. Лемма доказана.

Лемма 19. Пусть $\mathfrak{F}-$ тотально насыщенная формация. Тогда если $|\mathfrak{F}:\mathfrak{F}\cap\mathfrak{N}^2|_{\infty}=2,$ то $\mathfrak{F}-$ разрешимая l_{∞} -приводимая формация.

Доказательство. Предположим, что $\mathfrak{F}-l_{\infty}$ -неприводимая формация и пусть $\mathfrak{M}-$ единственная максимальная тотально насыщенная подформация формации \mathfrak{F} . Тогда $|\mathfrak{M}:\mathfrak{M}\cap\mathfrak{N}^2|_{\infty}=1$ и по лемме 17 $\mathfrak{M}=\mathfrak{H}_1\vee_{\infty}\mathfrak{M}_1$, где \mathfrak{H}_1- минимальная тотально

насыщенная не \mathfrak{N}^2 -формация, $\mathfrak{M}_1 \subseteq \mathfrak{N}^2$. Так как в силу леммы 4 $\mathfrak{H}_1 = \mathfrak{N}_{p_1}\mathfrak{N}_{p_2}\mathfrak{N}_{p_3}$, где p_1, p_2, p_3 — некоторая последовательность из $P^3(\mathfrak{F})$, то $\mathfrak{M} = \mathfrak{H}_1 \vee_{\infty} \mathfrak{M}_1 \subseteq \mathfrak{N}_{p_1}\mathfrak{N}^2$.

Понятно, что \mathfrak{F} — минимальная тотально насыщенная не \mathfrak{M} -формация. Значит, по лемме $11\ \mathfrak{F}=l_{\infty}\mathrm{form}G$, где G — такая группа минимального порядка из $\mathfrak{F}\setminus\mathfrak{M}$ с монолитом $P=G^{\mathfrak{M}}$, что для любого $q\in\pi(P)$ формация $\mathfrak{F}_{\infty}(p)$ является $(\mathfrak{N}_{p}\mathfrak{M}_{\infty}(p))_{\infty}$ -критической.

Покажем прежде, что формация $\mathfrak F$ разрешима. Допустим противное, тогда в силу леммы 12 в формацию $\mathfrak F$ входит по меньшей мере одна минимальная тотально насыщенная неразрешимая формация $\mathfrak X$. Согласно лемме 13 $\mathfrak X=l_\infty$ form X, где X — такая монолитическая группа с неабелевым монолитом Y, что группа X/Y разрешима. Так как Y — неабелева группа, то $|\pi(Y)|\geqslant 3$. Ввиду леммы 3 $\mathfrak S_{\pi(Y)}\subset \mathfrak F$. Следовательно, $\mathfrak S_{\pi(Y)}\subseteq \mathfrak M\subseteq \mathfrak N_{p_1}\mathfrak N^2$. Получаем противоречие. Таким образом, формация $\mathfrak F$ разрешима.

Предположим, что $\mathfrak{F}\subseteq\mathfrak{N}_{p_1}\mathfrak{N}^2$. Тогда поскольку $\mathfrak{F}\not\subseteq\mathfrak{N}^2$, то l(G)=3 и $P=F_{p_1}(G)$

— p_1 -группа. В силу леммы 15 $\mathfrak{F} = \mathfrak{N}_{p_1} l_{\infty} \text{form}(G/P)$.

Поскольку $\mathfrak{F}_{\infty}(p_1)$ — минимальная тотально насыщенная не $\mathfrak{N}_{p_1}\mathfrak{M}_{\infty}(p_1)$ -формация, то применяя леммы 2 и 11 $\mathfrak{F}_{\infty}(p_1) = l_{\infty}\mathrm{form}(G/F_{p_1}(G)) = l_{\infty}\mathrm{form}(G/P) = l_{\infty}\mathrm{form}A$, где A — такая группа минимального порядка из $\mathfrak{F}_{\infty}(p_1) \setminus \mathfrak{N}_{p_1}\mathfrak{M}_{\infty}(p_1)$ с монолитом $R = A^{\mathfrak{N}_{p_1}\mathfrak{M}_{\infty}(p_1)}$, что для любого $q \in \pi(R)$ формация $\mathfrak{F}_{\infty}p_1(q)$ является $(\mathfrak{N}_q\mathfrak{M}_{\infty}p_1(q))_{\infty}$ -критической. Поскольку \mathfrak{F} — разрешимая формация, то R — абелева q_1 -группа для некоторого простого числа q_1 . Так как $R \not\subseteq \Phi(A)$, то согласно лемме 15 $\mathfrak{F}_{\infty}(p_1) = l_{\infty}\mathrm{form}A = \mathfrak{N}_{q_1}l_{\infty}\mathrm{form}(A/F_{q_1}(A))$.

Снова применяя леммы 2 и 11 получаем, что

$$\mathfrak{F}_{\infty}p_1(q_1) = l_{\infty}\text{form}(A/F_{q_1}(A)) = l_{\infty}\text{form}B,$$

где B — такая группа минимального порядка из $\mathfrak{F}_{\infty}p_1(q_1)\setminus\mathfrak{N}_{q_1}\mathfrak{M}_{\infty}p_1(q_1)$ с монолитом $S=B^{\mathfrak{N}_{q_1}\mathfrak{M}_{\infty}p_1(q_1)}$, что для любого $q\in\pi(S)$ формация $\mathfrak{F}_{\infty}p_1q_1(q)$ ($\mathfrak{N}_q\mathfrak{M}_{\infty}p_1q_1(q)$) $_{\infty}$ -критична. Ввиду разрешимости формации \mathfrak{F} получаем, что S — абелева q_2 -группа, где $q_2\in\pi(\mathfrak{F})$. Так как $S\not\subseteq\Phi(B)$, то по лемме 15 $\mathfrak{F}_{\infty}p_1(q_1)=l_{\infty}$ form $B=\mathfrak{M}_{q_2}l_{\infty}$ form $(B/F_{q_2}(B))$. Поэтому

$$\mathfrak{F}=\mathfrak{N}_{p_1}l_{\infty}\mathrm{form}A=\mathfrak{N}_{p_1}\mathfrak{N}_{q_1}l_{\infty}\mathrm{form}B=\mathfrak{N}_{p_1}\mathfrak{N}_{q_1}\mathfrak{N}_{q_2}l_{\infty}\mathrm{form}(B/F_{q_2}(B)).$$

Поскольку $\mathfrak{N}_{p_1}\mathfrak{N}_{q_1}\mathfrak{N}_{q_2}\subseteq \mathfrak{F}$ и $\mathfrak{F}\subseteq \mathfrak{N}^3$, то $l_{\infty}\mathrm{form}(B/F_{q_3}(B))=(1)$. Значит, $\mathfrak{F}=\mathfrak{N}_{p_1}\mathfrak{N}_{q_1}\mathfrak{N}_{q_2}$. Но тогда согласно лемме 4 \mathfrak{F} — минимальная тотально насыщенная не \mathfrak{N}^2 -формация. Следовательно, $|\mathfrak{F}:\mathfrak{F}\cap\mathfrak{N}^2|_{\infty}=1$. Противоречие.

Значит, $\mathfrak{F} \not\subseteq \mathfrak{N}_{p_1}\mathfrak{N}^2$. Так как $\mathfrak{M} \subseteq \mathfrak{N}_{p_1}\mathfrak{N}^2$, то \mathfrak{F} — минимальная тотально локальная не $\mathfrak{N}_{p_1}\mathfrak{N}^2$ -формация. Ввиду леммы 18 $\mathfrak{F} = \mathfrak{N}_{q_1}\mathfrak{N}_{q_2}\mathfrak{N}_{q_3}$, где $q_1 \neq p_1$.

Тогда

$$\mathfrak{M}\subseteq\mathfrak{N}_{q_1}\mathfrak{N}^2\cap\mathfrak{N}_{p_1}\mathfrak{N}^2=(\mathfrak{N}_{q_1}\cap\mathfrak{N}_{p_1})\mathfrak{N}^2=\mathfrak{N}^2.$$

Противоречие. Лемма доказана.

Теорема 1. Пусть $\mathfrak{F}-$ тотально насыщенная формация. Тогда и только тогда $|\mathfrak{F}:\mathfrak{F}\cap\mathfrak{N}^2|_{\infty}=2$, когда $\mathfrak{F}=\mathfrak{H}_1\vee_{\infty}\mathfrak{H}_2\vee_{\infty}\mathfrak{M}$, где \mathfrak{H}_1 и \mathfrak{H}_2- различные минимальные тотально насыщенные неметанильпотентные формации, $\mathfrak{M}-$ метанильпотентная тотально насыщенная формация.

Доказательство. Необходимость. Пусть \mathfrak{F} — тотально насыщенная формация с метанильпотентным l_{∞} -дефектом 2. Согласно лемме 19 \mathfrak{F} — разрешимая l_{∞} -приводимая формация. Обозначим через \mathfrak{M} — такую максимальную тотально насыщенную подформацию формации \mathfrak{F} , что $|\mathfrak{M}:\mathfrak{M}\cap\mathfrak{N}^2|_{\infty}=1$. По лемме 17 $\mathfrak{M}=\mathfrak{H}_1\vee_{\infty}\mathfrak{M}_1$, где \mathfrak{H}_1 —

минимальная тотально насыщенная не \mathfrak{N}^2 -формация, $\mathfrak{M}_1\subseteq\mathfrak{N}^2$. Так как ввиду леммы 8 $\mathfrak{M}\vee_{\infty}(\mathfrak{F}\cap\mathfrak{N}^2)$ — формация \mathfrak{N}^2_{∞} -дефекта 1, то $\mathfrak{F}\cap\mathfrak{N}^2\subseteq\mathfrak{M}$. Поскольку \mathfrak{F} l_{∞} -приводимая формация, то в $\mathfrak{F}\setminus\mathfrak{M}$ найдется такая группа A, что $\mathfrak{X}=l_{\infty}$ form $A\neq\mathfrak{F}$. Тогда $\mathfrak{F} = \mathfrak{X} \vee_{\infty} \mathfrak{M}$.

Ввиду леммы $10\ d=|\mathfrak{X}:\mathfrak{X}\cap\mathfrak{N}^2|_{\infty}\leqslant 2$. Если d=0, то по лемме $8\ |\mathfrak{F}:\mathfrak{F}\cap\mathfrak{N}^2|_{\infty}=$ = 1, что невозможно. Пусть d=1. Тогда в силу леммы 17 $\mathfrak{X}=\mathfrak{H}_2\vee_{\infty}\mathfrak{M}_2$, где \mathfrak{H}_2 минимальная тотально насыщенная не \mathfrak{N}^2 -формация, $\mathfrak{M}_2\subseteq\mathfrak{N}^2$. Если $\mathfrak{H}_2=\mathfrak{H}_1$, то

$$\mathfrak{F}=\mathfrak{X}\vee_{\infty}\mathfrak{M}=(\mathfrak{H}_2\vee_{\infty}\mathfrak{M}_2)\vee_{\infty}(\mathfrak{H}_1\vee_{\infty}\mathfrak{M}_1)=\mathfrak{H}_1\vee_{\infty}\mathfrak{M}_2\vee_{\infty}\mathfrak{M}_1.$$

Снова применяя лемму 17 имеем d=1. Противоречие. Поэтому $\mathfrak{H}_2 \neq \mathfrak{H}_1$. Следователь-

$$\mathfrak{F} = \mathfrak{X} \vee_{\infty} \mathfrak{M} = (\mathfrak{H}_2 \vee_{\infty} \mathfrak{M}_2) \vee_{\infty} (\mathfrak{H}_1 \vee_{\infty} \mathfrak{M}_1) = \mathfrak{H}_1 \vee_{\infty} \mathfrak{H}_2 \vee_{\infty} (\mathfrak{M}_1 \vee_{\infty} \mathfrak{M}_2)$$

и формация 3 удовлетворяет условию теоремы.

Пусть теперь d=2. Так как $\mathfrak X$ разрешимая однопорожденная тотально насыщенная формация, то согласно лемме 14 в формации $\mathfrak X$ содержится конечное число тотально насыщенных подформаций. Индукцией по т покажем, что формация з удовлетворяет условию теоремы.

 Π усть \mathfrak{L} — такая максимальная тотально насыщенная подформация формации \mathfrak{X} , что $|\mathfrak{L}:\mathfrak{L}\cap\mathfrak{N}^2|_{\infty}=1$. Согласно лемме 17 $\mathfrak{L}=\mathfrak{H}_3\vee_{\infty}\mathfrak{M}_3$, где \mathfrak{H}_3 — минимальная тотально насыщенная не \mathfrak{N}^2 -формация, $\mathfrak{M}_3 \subseteq \mathfrak{N}^2$.

Поскольку ввиду леммы 19 $\mathfrak{X}-l_{\infty}$ приводимая формация, то в $\mathfrak{X}\setminus\mathfrak{L}$ найдется группа B такая, что $\mathfrak{X}_1=l_\infty$ form $B
eq \mathfrak{X}$. Тогда $\mathfrak{X}=\mathfrak{L}\vee_\infty\mathfrak{X}_1$. Пусть $d_1=|\mathfrak{X}_1:\mathfrak{X}_1\cap\mathfrak{N}^2|_\infty$. Рассуждая для формации \mathfrak{X}_1 также как для \mathfrak{X} получим, что при $d_1 < 2$ формация \mathfrak{F} удовлетворяет условию теоремы. Пусть $d_1 = 2$. Если $\mathfrak{H}_3 \not\subseteq \mathfrak{X}_1$, то в силу леммы $9 \ d_1 = 3$. Получаем противоречие. Поэтому $\mathfrak{H}_3\subseteq\mathfrak{X}_1$. Заметим также, что $\mathfrak{M}_3\not\subseteq\mathfrak{X}_1$. Поскольку в противном случае $\mathfrak{L}=\mathfrak{H}_3$ \forall $\mathfrak{M}_3\subseteq\mathfrak{X}_1,$ что противоречит максимальности формации £. Тогда

$$\mathfrak{X} = \mathfrak{L} \vee_{\infty} \mathfrak{X}_1 = (\mathfrak{H}_3 \vee_{\infty} \mathfrak{M}_3) \vee_{\infty} \mathfrak{X}_1 = \mathfrak{M}_3 \vee_{\infty} \mathfrak{X}_1.$$

Значит,

$$\mathfrak{X} = \mathfrak{L} \vee_{\infty} \mathfrak{X}_1 = (\mathfrak{H}_3 \vee_{\infty} \mathfrak{M}_3) \vee_{\infty} \mathfrak{X}_1 = \mathfrak{M}_3 \vee_{\infty} \mathfrak{X}_1.$$

$$\mathfrak{F} = \mathfrak{M} \vee_{\infty} \mathfrak{X} = \mathfrak{M} \vee_{\infty} (\mathfrak{M}_3 \vee_{\infty} \mathfrak{X}_1) = \mathfrak{M} \vee_{\infty} \mathfrak{X}_1 = (\mathfrak{H}_1 \vee_{\infty} \mathfrak{M}_1) \vee_{\infty} \mathfrak{X}_1.$$

Так как $\mathfrak{M}_3 \not\subseteq \mathfrak{X}_1$, то число тотально насыщенных подформаций формации \mathfrak{X}_1 меньше m. По индукции мы можем считать, что $\mathfrak{X}_1=\mathfrak{H}_2\vee_{\infty}\mathfrak{H}_3\vee_{\infty}\mathfrak{M}_4$, где \mathfrak{H}_2 и \mathfrak{H}_3 различные \mathfrak{N}^2_{∞} -критические формации, а $\mathfrak{M}_4\subseteq\mathfrak{N}^2$.

Если $\mathfrak{H}_1 \not\subseteq \mathfrak{X}_1$, то по лемме $8 \mid \mathfrak{F}: \mathfrak{F} \cap \mathfrak{N}^2 \mid_{\infty} = 3$. Последнее противоречит условию Следовательно, $\mathfrak{H}_1 \subseteq \mathfrak{X}_1$. Поэтому

$$\mathfrak{F}=\mathfrak{M}_1\vee_{\infty}\mathfrak{X}_1=\mathfrak{M}_1\vee_{\infty}(\mathfrak{H}_2\vee_{\infty}\mathfrak{H}_3\vee_{\infty}\mathfrak{M}_4)=\mathfrak{H}_2\vee_{\infty}\mathfrak{H}_3\vee_{\infty}(\mathfrak{M}_1\vee_{\infty}\mathfrak{M}_4),$$

т.е. формация \mathfrak{F} удовлетворяет условию теоремы.

 \mathcal{J} остаточность. Пусть $\mathfrak{F}=\mathfrak{H}_1\vee_{\infty}\mathfrak{H}_2\vee_{\infty}\mathfrak{M}$, где \mathfrak{H}_1 и \mathfrak{H}_2 — различные \mathfrak{N}_{∞}^2 критические формации, а $\mathfrak{M}\subseteq\mathfrak{N}^2$. Так как $\mathfrak{H}_1\cap\mathfrak{H}_2\subseteq\mathfrak{N}^2$, то в силу леммы $8\mid\mathfrak{H}_1\mid$ $\vee_{\infty}\mathfrak{H}_{2}:(\mathfrak{H}_{1}\vee_{\infty}\mathfrak{H}_{2})\cap\mathfrak{N}^{2}|_{\infty}=|\mathfrak{F}:\mathfrak{F}\cap\mathfrak{N}^{2}|_{\infty}=2.$ Теорема доказана.

Следствие 1. Пусть 3 — однопорожденная тотально насыщенная формация. Tогда и только тогда $|\mathfrak{F}:\mathfrak{F}\cap\mathfrak{N}^2|_{\infty}=2$, когда $\mathfrak{F}=l_{\infty}\mathrm{form}(A\times B\times C)$, причем группы $A,\ B\ u\ C\ y$ довлетворяют следующим условиям: $A\ u\ B\ -$ неизомор ϕ ные группы вида: $[P_1]([P_2]N), \ \textit{где}\ P_1\ -\ \textit{самощентрализуемая}\ \textit{минимальная}\ \textit{нормальная}\ \textit{подгруппа}\ \textit{груп-}$ nы $[P_1]([P_2]N),\ P_2$ — самоцентрализуемая минимальная нормальная подгруппа группы $[P_2|N, |N| - группа простого порядка, <math>C - метанильпотентная группа.$

Для доказательства следствия 1 нам понадобятся следующие две леммы.

Лемма 20 [3, с. 94]. Пусть \mathfrak{F} — разрешимая формация. Тогда в том и только в том случае \mathfrak{F} — минимальная тотально локальная не \mathfrak{N}^m -формация, когда \mathfrak{F} = l_{∞} formG, где $G = [P_1]([P_2] \dots ([P_m]N) \dots)$ — минимальная не \mathfrak{N}^m -группа, P_i — самочентрализуемая минимальная нормальная подгруппа в $[P_i]([P_{i+1}] \dots ([P_m]N) \dots)$ при всех $i=1,\dots,m$ и N — группа простого порядка.

Лемма 21 [8]. Пусть π — некоторое конечное множество простых чисел. Тогда для любого целого неотрицательного п любая тотально насыщенная подформация из \mathfrak{N}_{π}^{n} однопорождена.

Доказательство следствия 1. Пусть $\mathfrak{F} = l_{\infty}$ form G для некоторой группы G. По теореме 1 тогда и только тогда $|\mathfrak{F}:\mathfrak{F}\cap\mathfrak{N}^2|_{\infty}=2$, когда $\mathfrak{F}=\mathfrak{H}_1\vee_{\infty}\mathfrak{H}_2\vee_{\infty}\mathfrak{M}$, где \mathfrak{H}_1 и \mathfrak{H}_2 — различные \mathfrak{N}^2_{∞} -критические формации, а $\mathfrak{M}\subseteq\mathfrak{N}^2$. В силу леммы 20 $\mathfrak{H}_i=l_{\infty}$ form A_i (i=1,2), где A_i группа вида $[P_1]([P_2]N)$, P_1 — самоцентрализуемая минимальная нормальная подгруппа группы $[P_1]([P_2]N)$, P_2 — самоцентрализуемая минимальная нормальная подгруппа группы $[P_2]N$, |N| — группа простого порядка. Понятно, что $A_1\not\simeq A_2$ и $\mathfrak{F}\subseteq\mathfrak{G}$. Пусть n=l(G). Тогда $\mathfrak{F}\subseteq\mathfrak{M}_{\pi(G)}^n$. Поскольку $\mathfrak{M}\subseteq\mathfrak{F}$, то по лемме 21 $\mathfrak{M}=l_{\infty}$ form C для некоторой метанильпотентной группы C. Таким образом, $\mathfrak{F}=l_{\infty}$ form $A_1\vee_{\infty}l_{\infty}$ form $A_2\vee_{\infty}l_{\infty}$ form $C=l_{\infty}$ form $C=l_{\infty}$ form $C=l_{\infty}$ form $C=l_{\infty}$ следствие доказано.

Abstract The paper presents the description of totally saturated formations of a metanilpotent defect 2.

Литература

- 1. Л. А. Шеметков, Формации конечных групп, Москва, Наука, 1978.
- 2. Л. А. Шеметков, А. Н. Скиба, Формации алгебраических систем, Москва, Наука, 1989.
 - 3. А. Н. Скиба, Алгебра формаций, Минск, Беларуская навука, 1997.
- 4. В. Г. Сафонов, О приводимых тотально насыщенных формациях нильпотентного дефекта 3, Известия Гомельского государственного университета им. Ф.Скорины, $\mathbb{N}^{2}4(31)$ (2005), 157–162.
- 5. С. Ф. Каморников, О некоторых свойствах тотально локальных формаций, Матем. заметки, 60, № 1 (1996), 24–29.
- 6. Н. Н. Воробъёв, Об одном вопросе теории локальных классов конечных групп, Вопросы алгебры, Гомель, Изд-во Гом. ун-та, Вып. 14 (1999), 132–140.
- 7 W. Guo, K. P. Shum, On totally local formations of groups, Comm. Algebra, 30. N_0 5 (2002), 2117–2131.
- 8. В. Г. Сафонов, Об одном вопросе теории тотально локальных формаций конечных групп, Алгебра и логика, **42**, № 6 (2003), 727–736.
- 9. В. Г. Сафонов, О тотально насыщенных формациях конечной длины, Известия Гомельского государственного университета им. Ф.Скорины, № 6(27) (2004), 150–155.
- 10. В. Г. Сафонов, О двух задачах теории тотально насыщенных формаций, Докл. НАН Беларуси, 49, № 5 (2005), 16–20.